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ALMOST CONFORMAL 2-COSYMPLECTIC PSEUDO-SASAKIAN MANIFOLDS
VLADISLAV V. GOLDBERG and RADU ROSCA

INTRODUCTION. In the last years several papers have been concerned with almost r-con-
tact or r-paracontact manifolds (see [6] and [14]). On the other hand, V.V. Goldberg and
R. Rosca have recently studied in [12] almost 1-contact pseudo-Riemannian manifolds which
are endowed with a conformal cosymplectic pseudo-Sasakian structure.

Since the manifolds M which we are going to discuss are connected and paracompact, we
denote by d¥ = d+ e(w) (e(w): exterior product by the closed 1-form w ) the cohomology
operator (sec[13])on M. Thenany form v € M suchthat d“u = 0 is said to be d¥-closed.

The present paper 1s devoted to the study of even dimensional pseudo-Riemannian mani-
folds of signature (m + 2, m) which are endowed with an almost conformal 2-cosymplectic
pseudo-Sasakian structure. Such a manifold is denoted by M (U, €2, £, n%, g), and its
structure tensor fields (U, Q, &, n%, g) are : the paracomplex operator (see [15]), an
exterior recurrent (see [9]) 2-form of rank 2 m , two structure vector fields {,; a=2m+ 1,
2m + 2, two structure 1-forms n® = b(&,) (b: T'M — T M is the musical isomorphism
[6] defined by g) and the pseudo-Riemannian tensor g of M respectively.

We agree to call the 2-distribution D_ = {£_} and its orthogonal complementary D>, re-

spectively the contact and the neutral distribution of M , and we assume that the connection
V 1S symmetric.

Next setting £=5" f.€ (f, € C°M) and n=>b(£) =) f,n%, we call ¢ (respectively n)

the bicontact vector field (respectively the bicontact I-form) of M . It 1s proved that both 75
and the simple unit 2-form ¢ which corresponds to D, are exact . Further for the 2-form of

maximal rank : 9 = Q +  one finds d*™p = 0, thatis ¢ is d*"-exact. This proves the sig-
nificant fact that  defines on M a globally conformal symplectic structure CS,(2m+2,R)
and n (respectively &) is the Lee covector (respectively the Lee vector ) of CS (2m+2,R).
Next, any M 1is foliated by M, and M_ where M, is a 2m-dimensional para-Kdihlerian

manifold tangentto D+ and M_ is aflat surfce tangentto D_.

The proper immersion «: M, — M 1s pseudo umbilical [8), and the mean curvature
vector associated with  is the restriction £| M,

Some properties of the Lie algebra involving 1) and 7 are also outlined. It 1s proved that
for any vector ficld Z, € D;:L , the Lie derivative L qub is d*M-closed and any (2 ¢+ 1)-form

n, = M AP is arelative invariant of Z,.

Lee’s vector ficld € enjoys the following properties:

1) £ defines an infinitesimal homothety on M and is pregeodesic;

2) The Ricci curvature of ¢ is expressed by 2m||€])*;

3) The o-dualét of € is a Killing vector field and commutes with €.
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In Section 3 we give the following definition: A vector field 7 on an almost contact
manifold whose structure is defined by the pairing (7, £) 18 called a contact torse forming if
it satisfies the equation

VT =XZ+n7(2)T —v(T)(Z)E.

It is proved that any T 1is a conformal vector field (ie. Lrg = pg), and on
MU, Q, &, n*, g) the existence of T 1is defined by an exterior differential system in
involution (see [7]).

Some properties of the Lie algebra involving T and U7T and the structure tensor of M
are also discussed.

In the last Section 4 some improper foliations on the manifold M are considered.

Thus the following significant result emerges: any M(U, 2, _, %, g) may beregarded
as foliated by M, and M_.,where M, and M,. are both (m + 1) -dimensional coisotropic
and of defect m submanifolds of M .

Finally we prove that for any CIC E-submanifold (coisotropic C RE-submanifold) M,

(see [12]) the vertical distribuition 1$ an isotropic foliation (as in [5)).

1. PRELIMINARIES

Let (M, g) be an even dimensional Riemannian or pseudo-Riemannian manifold, say
dim M = 2m + 2 and let V be the covariant differential operator defined by the metric
tensor g.

We assume in the following that M 1s orientable and that the connection V 1S symmetric .

LetT'(TM) = XM (respectively b: TM — T*M) be the set of sections of the tangent
bundle T respectively the musical isomorphism [18] defined by g) .

Next, following [18], we set AY(M, TM) = I' Hom(AYT M, T'M) and notice that
elements of AY( M , T M) are vector valued g-forms, ¢ < dim M .

Denote by dY : AWM, TM) — A%! the exterior covariant derivative operator with

respect to 'V (it should be noticed that generally d¥° = dV o dV#0, unlike d?) and by
dp € AY(M, TM) the soldering form of M (dp is a canonical vector valued 1-form of M
[10] and one has dY (dp) = 0).

The operator

(1.1) d’ =d+ e(w)

acting on AM , where e(w) means the exterior product by the closed 1-form w € A' M , is
called the cohomology operator [13].
One has (d*)? = 0, and any form u € AM such that

(1.2) du =0
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1s said to be d¥-closed.

Let T € XM be aconformal vector field on an n-dimensional Riemannian or pseudo-
Riemannian manifold (M, g), that 1s such that

(1.3) Lrg=pg; peCTM,
the if w 1s any 1-form, one has (see [B 82]):
(1.4) Lrw= pw+ b[ 7,0~ (w)]; [, lis the Lie bracket.
If w 1s any g-form and = means the star isomorphism, then one has [B 82]:

-2
(1.5) ET*w:*,CTw+n 5 qp*w.

Consider now a pseudo-Riemannian manifold of signature (m+ 2 , m) and with a (1,1)-
tensor ficld U of square +1. Assume that there exists on M two structure fields £, € X M
and two structure 1-forms n* = b(£*) such that:

ﬂn(éﬁ)=6nﬁ:
(1.6) 5 - _ 3
Us=Id—n*"®¢,; of=2m+1,2m+2.

Then in a manner similar to [6], we say that the triplet (U, £, 1) defines an almost
2-contact structure.

By abusing language, the vector valued 1-form

(1.7) l.=n"®¢, € A{(M,TM)

will be called the contact line element and the 2-distribution D, = {£_} the contact distribu-
tion of M .

2. ALMOST CONFORMAL 2-COSYMPLECTIC PSEUDO-SASAKIANMANIFOLDS
Let f € C*, =1, 2 betwo nowhere vanishing scalar fields on M . Setting

(2.1) E=) f.l €D,

and

(2.2) n=fun" =008 € D,
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we agree to call £ (respectively n) the bicontact vector field (respectively the bicontact
1-form)on M.

Using the definition of conformal cosymplectic pseudo-Sasakian manifolds from our paper
[22], we now assume that £ and n® satisfy

(2.3) V¢, = —fuldp—1),
and
(2.4) df, = cn®, c¢= const.

First of all we notice that by (1.7) the equations (2.3) define {{_} as a quasi-concurrent
pairing (see [4]). Secondly, if we set

(2,5) €.6) =) fi=71,

x

where ( , ) replaces g, we get at once by (2.2) and (2.4) that

(2.6) n=df*/(2c)

which proves that 7 1s an exact form.
Further let Q € A? M be an exterior recurrent structure 2-form of M of rank 2m and
having —2n as a recurrence I-form (cf. [9]), that is

(2.7) dQQ = =29 N Q.
If the structure tensor saatisfy the conditions

(*(UZ) =0, ¢(2,¢,)=1%2),

(2. UZY +g(Z' . UZ) =0

| Qz,2) = —g(UZ,2") — i, =bUZ),
(VN Z =n(Z2)Udp+ bW (UZ2)Q¢E, Z2,Z2'€ XM,

(2.8)

then any manifold M(U, Q, £_, n%, g) for which conditions (1.6), (2.3), (2.4), (2.7) and
(2.8) are satisfied is defined as an almost conformal 2-cosymplectic pseudo-Sasakian mani-

fold .
It follows from (2.7) and (1.1) that

(2.9) d*7Q =0
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which proves that Q is d*"-closed.

In wiew of hereafter discussion we shall make use of the adapted Witt local field frames
(see [15], [12] and [5]).

Denote by W = vect.{h,, h,.,h,=€,;a=1,....,m;a*=a+m;a=m"+1,
m*+ 2} such a frame, and let W* = covect .{w®, w® , w* = n®} be the associated coframe.

The distribution {h_, h_.} defines a real basis and by (1.6), (2.9) one has (see [L 51]):

(2.10) Uh =h, Uh.=-h. Ut=0,

and U 1s also called the para complex opertor [15].
Clearly {h,, h,.} defines the orthogonal complementary distribution of D_ and we agree

to dentoe it by DX . On the other hand, since the metric tensor associated with DX has a

neutral structure [19], we shall call Dj the neutral distribution of M .
Further the W -basis being normed one has

Q(hq,fn)—fﬂ, g(hu"ga)zoa

2.11
( ) {g(h‘ua hb‘) = 5.:1:5: g(gﬂ"g.ﬂ') = 1:

and one may say that ¢ are the anisotropic vector fields of W

If 045; A, B, C € {a, a*, o} and ©F are the local connection forms in the tangent
bundle 7'M and the curvature 2-forms on M respectively, then the structure equations of M
may be written 1n the indexless form as

(2.12) Vh=0®he A" (M, TM),
(2.13) dw = —0 A w,
(2.14) dd=—-0N0+©.

Using (2.3), (2.4), (1.2), (2.9) and (2.10), one finds (see [12], [15]) that

03+ 0% =0 =0, 6.=0,

(2.15) '
0%+ 0> =0, 02+0% =0,

and

(2-16) 9!’1 e fﬂwﬂ'! 9{1- — fuwﬂ"
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Next in terms of the W*-basis, the soldering form dp and the structure 2-form Q are
expressed by

dp=w’@h, +w* Qh +7*QRE, =g =

(2.17) =22w“®wﬂ'+znﬂ®n“
and
(2.18) Q=) wAw

It should be noted that 2 1s exchangeable with the para-Hermitian component 2 Y w®®

w® of g and by (2.15), (2.16) and (2.2), it is a routine matter to verify the equation (2.7).
Let us go back to the bicontact vector field ¢ defined by (2.1). Using (1.7), (2.3), (2.4)
and (2.8), one finds

(2.19) Vé=—fdp+ (f* + o)l

Taking into account the trace g expressed by (2.17), at point p € M one has

div £ =tr(VE) = ) (w(V, O+
(2.20) ’

+w*(V, 6 +1%(V 6) = 2c.

Hence since ¢ = const., it follows that ¢ defines an infinitesimal homothety on M .
Further it is easily seen by means of (2.17) that

(2.21) Vel = ct

which shows that £ is a pregeodesic.
On the other hand, applying the general formula of K. Yano (see [28]), we find

div(V ,Z)—div(div Z) + (div Z)* = Ric(Z)+

+Y 9(Vy, Z,hg)g(hy, YV, 7),
AB
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where Z € x M and Ric is the Ricci curvature. Setting Z = £, one finds by (2.19) and (2.20)
that

(2.22) Ric(§) = 2mf?.
Denote now by
(2 '23) o = nm"‘+1 A nm"+2

the simple unit form which corresponds to D_,and by u: TM — T'M* the bundle isomor-
phism defined by

(2 .24) w(Z) = —izp.

One readily finds

(2.25) (b~ op)é = Jmes1&mes2 = Froa2€mes1 = £ € D, = (& i Npes1) -

Taking the covariant derivative of ¢+ and using (2.3) and (2.4), one finds

(2.26) VE = (™ @€puaa — 1™ @ Epent)-

We notice that {I_, V&1) is a metric tensor exchangeable (up to 2 ¢) with o.
Further one readily derives form (2.26) that (V ¢+, Z')+(V .61, Z) = 0 which proves

that ¢+ is a Killing vector field.
In addition, by (2.19) and (2.26) one finds: Vel = ¢ L= V€ 1 and this moves to

(2.27) [£,641=0,

that is € and £+ commute.

In the following we agree to call £+ the conctact dual (or p-dual) vector field of th contact
vector fields €.

In connection with £+ it is worth to emphasize the following fact. If we set n = b(¢4) ,
then by (2.4) and (2.24) one gets

(2.28) dn = 2cyp,

and on¢ may state that ¢ 1s an exact 2-form.
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Denote now by ¢~ the simple unit form which corresponds to the neutral 2 m-distribution
Dcl. Clearly by (2.8), vt is an exterior recurrent 2m-form on M . Then, since ¢ is closed
and DI (respectively D) is annihilated by ¢ (respectively by o), it follows from Frobe-
nius theorem that both D and D;:L are involutive. Therefore one may say that any manifold
MU, Q,¢,,n%, g) isfoliate.

On the other hand, if Z_, Z! € D_ are any vector fields of D_, one finds by (2.3) that
Vzgzc € D_. This proves that D, is a totally geodesic foliation (cf. [17]). It we denote by
M, the surface tangent to D_, it is readily seen by (2.12) and (2.13) that M_ 1s flat.

On the other hand, let M, be the 2m-dimensional leaf of D_. Then by (2.7) M, has
a symplectic structure and it is readily deduced from (2.17) and (2.18) that M, 1S a para-
Kdhlerian manifold (see [15] or [20]). Therefore we may conclude that the mamfold M
under discussion may be viewed as foliated by M, and M _.

Consider on M the almost symplectic form

(2.29) b=Q+op.
Operating on ¢ by d?7" and using (2.9) and (2.23), one gets

(2.30) d*Mp=0.

In addition, since 7 is an exact form, the equation (2.30) expresses that the 1 18 d*"-exact.
This proves the significant fact that ¢ defines a globally conformal symplectic structure
CS (2m+2,R)(see [13]) on M. In this case the g™ space of cohomology HI(M,n) is

isomorphic to the ¢" space of cohomology H%( M , R) of G. de Rham (see [13]).

It should be noticed that since the pairing (1), 27) defines a conformal symplectic struc-
ture, then it turns out that  and b= (n) = ¢ define respectively the Lee covector and the Lee
vector field of this structure.

We shall now outline a general property of any conformal symplectic structure defined by

(2.31) d*Mp =0,

First of all any vector field Z, € XM such that n(Z,) = a = const., will be called a
constant Lee section. Set i, 1 = « and take the Lie derivative of ¢ with respectto Z . One

has

(2.23) Ly¥=—2ap+ 4>y

and since (d?")% = 0, it follows by operating on (2.32) by d*7 (see Section 1) and taking
into account (2.31) that

(2.33) d*"(Ly %) = 0.
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Hence all 2-forms L, 7 are d*"-closed. Moreover, if I is the (1.1)-operator defined by
L:u—uAvy;ue A M (note that one has dLu = Ldu + u A Lu) , we set

(2.34) ﬂq=an=nA¢qEA2q+1M.

Since obviously L, i = 0, one derives L, 1, = (gn A Lz %) A 9~! . Taking account
of (2.32), one finally gets

(2.35) | dLy n,= 0.

Hence if 7 1s the Lee covector of any conformal symplectic structure, then L%7 is a relative
integral invariant of Z_ (see [1]).
Consequentyl we may state the following theorem:

Theorem 2.1. Let M be a Riemannian or pseudo-Riemannian manifold endowed with a
conformal symplectic structure, such that dy+2nA+yp =0 ,andlet Z € X M be a constant

Lee section of the Lee covector . Then for any Z_, the Lie derivative L, 1 is d*7-closed.
Further if m, isthe (2q + 1)-form defined by n, = n A9, then any n is a relative integral

invairnat of the constant Lee section Z .

Finally we shall outline some crucial properties of the proper immersion x: M, —
MU, ,&,,n% g) . Since the soldering form of the para-Kéhlerian manifold M, is

(2.36) dpy, = dp|y, =w®@h,+w® @ h,,

the mean curvature vector valued (2m — 1)-form @E A*™Y M, TM) of M, (see [8],
[12], [19], [5], [19]) is defined by

@z*dpk = E(—l)“"lm1 A AREA..ARTA
(2.37) Awl'h...f\w’“'@hﬂ.+E(—l)“'“1wl A.AWTA

Aw' A AR AL AW @K,

Remind that x 1s the star isomorphism and that we denote the elements induced by « by
the same letters.

If o represents the volume element of M, , then one has dY@) = 2mH ® o where H
denotes the mean curvature vector fields associated with k. Taking into aaccount (2.13) and
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(2.14) and using (2.10), one finds by operating d¥ on (@) that in the case under discussion H
is defined by £|,, . In addition, since on M, the contact line element [, vanishes, it follows

from (2.19) that the mean quadratic form II = —{dp,, V H) associated with « is expressed
by II = f*g, where g, = g| um, - Hence, following a well-known definition (see [3]) the

immesion k: M, — M(U, 2, &,, n%, g) 1S pseudo-umbilical.
We close this section combining the results which we have obtained in the following the-
orem:

Theorem 2.2. Let M(U, &, &, 1%, g) be a (2m + 2)-dimensional almost conformal
2-cosymplectic pseudo-Sasakian manifold. Let D, = {£_.} (respectively ) the contact
2-distribution (respectively the simple unit form corresponding to D_). Let £ € D_ (re-
spectively n=b(€) € Dj- ) the bicontact vector field (respectively the bicontact 1-form) and
let d*" = d + e(2n) be the cohomology operator on M with respect to 2m. Then one has
the following properties:

(1) Any manifold M is foliated by M_ and M, where M_ is a totally geodesic surface
tangent to D, and M, a 2 m-dimensional para-Kdhlerian manifold tangent to the comple-

mentary orthogonal distribution D of D_ (D} is the neutral distriibution).
(2) The 2-form of maximal rank 1 = Q + @ is d*"-closed, i.e., 1 defines a conformal
symplectic structure O’SP(Zm + 2, R ) whose Lee covector (respectively Lee vector) is 7

(respectively € ).
(3) For any vector field Z, € Dj- the Lie derivative L, v is d*"-closed, and any

(2q+ 1) Sform n, = n A% is a realtive integral invariant of Z,, .
(4) The proper immersion k: M, — M is pseudo-umbilical, and the mean curvature
vector field associated with k is {|y -

(5) The vector field £ enjoys the following properties.

(i) € defines an infinitesimal homothety on M and is pregeodesic,
(ii) the Ricci curvature of € is expressed by 2m||€||* ;

(iii) the p-dual ¢* of ¢ is a Killing vector field and commutes with €.

3. CONTACT TORSE FORMING ON MU, Q2,¢&_,1% 9)

Let M(V, g) be an oriented Riemannian or pseudo-Riemannian manifold with soldering
form dp. Assume that M is endowed with an almost contact or almost r-contact structure
having & (respectively n = b(£)) as an r-contact vector field (respectively r-contact vec-
tor 1-form). As an extension of a definition given in [26], we agree to call any vector field
T € XM such that

(3.1) VT =XMp+nQT —WT)®E XeC®M; < VT =xdp+TA¢
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a contact torse forming (abbreviation c.t.f.). By (3.1) one has for any vector fields Z, Z2' €
XM

(3.2) (V;T,Z'Y+{VyT,Z)=2).

The above equation proves in intrinsic manner thatany 7 is a conformal vector field (see
[18]) and 1s equivalent to

(3.3) Lrg=pg; p=2divT/dim M
that is
(3 .4) div T = 2(m + 1)\,

We shall search now under what conditions the manifold A under discussion carries a
c.t.f. vector field. Setting

(3.5) v=(T,l)=) T*n"€AN'M
and using (2.3) and (2.12), one derives from (3.1) that

(1
SAITIF = O+ n(THKT) — I,
L dT* =A% = T+ fo(v = 2b(T)).

(3.0) <

Further by exterior differentiation one finds

db(T)+2nANT) =0 < d*"W(T) =0,
dy+2nAy=0 <« d*Ty=0,
(3.7) (A+(T))dd(T) = - 2N+ 7(T))n+
+d(AN+n(T)) AMT),
(d\+dn(T)) A(T)=0.

Hence from the equation (3.7) and by (2.6) one may say that both 1-forms b(7") and -
are d*"-exact.

Denote now by X the exterior differential system defined by the equations (3.6) and (3.7).
It is easy to sce that for the system X the Cartan characters are r =7, x5 =3, sy =4 ,and
therefore, by Cartans’s test (see [7]) the system X is in involution, and its solution depends
on 4 arbitrary functions of one variable.
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Next by the last equation (2.8) and by (3.1) one gets

(3.8) VUT =(A—n(T))Udp—n@UT +(UT)®¢

and one quickly derives

(3.9 (UT,T]1=29(T)UT

which shows that 7~ defines an infinitesimal confromal transformation of UT .
On the other hand, consider the 1-form b(U7T). Using (3.8) and (2.13), one gets by
exterior differentiation of this form the following equation:

{3.10) db(UT) = 2() —n(T))Q
and since i, b(UT) = 0, one has
(3.11) LoO(UT) =2(X—n(T)H)H(UT)).
But by (3.9) one may write
[T, UT] = —-2n(T)MUT)

and so we can see from (3.4) that the equation (3.11) is coherent withe the general equation
(1.4).

It is worth to emphasize that by means of the general formula (1.5) the property defined by
(3.11) is invariant under the star isomorphism. Effectively since in the case under discussion
p = 2, one quickly finds

L xb(UT) =201+ m) —n(T)) xb(UT)

and the above equation shows that 7 defines an infinitesimal conformal transformation of
*(UT).

We shall now discuss some additional properties of the Lie algebra involving T, UT €
X M and the structure tensor of the manifold under consideration.

Denote by (b(7), b(UT))p the Poisson bracket withrespect to {2 of the 1-forms b(7)
and b(UT) . Recall that ( ), is an isomorphism Z — —i, which moves the Lie bracket

from X M to A' M. Accordingly one has

(o(T),0(UT))p = 4y yr L2
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and by (3.9) one finds
(3.12) (O(T),b(UT))p =2n(T)(y — T)).
But b(7T) and ~ being both d*"-exact one derives from (3.12) that

dn(T)
n(T)

d(X(T),b(UT))p = A((T),(UT))p

which shows that (b(T), b(UT))p is d=4MT)/1(T) _exact.
Finally take the Lie derivative of ¢ with respect to UT . One has i, = b(T) — 7.
Using the first equation of (3.7), one derives

(3.13) Lyr¥=20A(y-dT)).

By reference to (2.6) one finds that the exterior differentiation of (3.13) gives d( L, +4) =0
and this shows that 4 is arelative invariant of U7 .

Theorem 3.1. Let T be a contact torse forming on the manifold M defined in Section 2 and
let d“ be the cohomology operator with respect to w. Then any T is a conformal vector
field and on any M the existeance of T is determined by an exterior differential system in
involution. The c.tf. T enjoys the following properties:

(1) The dual from b(T) is d*"exact, and T defines an infitesimal conformal transforma-
tion of the 1-form b(UT) .

(2) The Poisson bracket (b(T), b(UT))p with respect to the structure 2-form L2 is
d~¢(D/T) _exqct.

(3) The conformal symplectic form 1 of M is a relative integral invariant of UT , i.e.

4. IMPROPER IMMERSIONS IN M (U, Q, &, 7%, g)

We say taht an n-foliation F' on m-dimensional pseudo-Riemannian manifold M(n < m)
is an improper foliation if the maximal leaf of F' 1s an improper manifold of M .
Consider at each point p of M the two complementary distributions:

D, =vect.{h_,€ ..;5a=1,...,m},

D_.=vect{hu.,€ ..n;a"=a+m}

a

and denote by

| ™ m'+1
o,=w A...ANw" An
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and

.1 m* m*+2
Op=w A...Aw" An

the simple unit forms corresponding respectively to D, and D,.. By (24), (2.15), (2.16) and
making use of (2.13) one finds

(4.1) {dcrﬂ=~—-(mn+t‘?)f\crﬂ¢:rd’“"+ecra=0,
' do,.=—(mn+6) Ao, & d""% =0
where
(4.2) 0=) 62eNM
G

is called teh Ricci 1-form [19] (one always has df = 0) .

Since both (m + 1)-forms o_ and o, are exterior recurrent and o, (respectively o, )
annihilates D, (respectively D, ), it follows by Frobenius theorem that both, D, and D, ,
are (m + 1)-foliations.

Consider for instance the foliation D, and denote by orth D, the distribution which is
orthogonal to D, . Clearly by (2.10) and (2.11) one has orth D, C D, which shows that D),
is a coisotropic foliation. Obviously D, enjoys the same property.

Denote by M, and Mﬂ* the maximal leaves of D, and D, respectively and by

dpﬂ = w° & hu + ﬂm-+l @fm*ﬂ

and
dpu‘ = wﬂ‘ ® h’u" + ﬂmwz & Em‘+2

the corresponding soldering forms.

Since €_(a = m*+ 1, m*+ 2) are the only anisotropic vectors of these forms, 1t follows
at once that g, = (7™ *1)?2, g.. = (7™ *%)? (we denote the induced elements on M, and
M_. by the same letters).

Therefore M may be also viewed as foliated by M, and M, where M, and M,. are
coisotropic and of defect d = m submanifolds of M(d = dim M, —rank g,) .

It should be noted that M, and M. can also be regarded as anti-invariant submanifolds
of M [27].

Effectively let us consider M, and denote by Tpa(Ma) and T;SI;(ME) the tangent space

and the normal space respectively at any point p, € M, .
By reference to (2.10) one has UT,, (M,) = T5-(M,) which proves the above assertion.
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The equation (4.1) also shows that the manifold M is endowed with an exterior recurrent
structure [2]. Then the recurrence form mn+ 6 (respectively (mn— €) defines an element of
H'(D,.; R)) which constitutes the first class of cohomology of the foliation D_. (respec-
tively of D, (see [16]). It is easy to see that on M, the form —(mn + ) moves to —¢, and
on M,. the form —(mn — ¢) moves to 6.

Using a generalization mf Tachibana theorem [25] and results of [23], one may say that
b= (—8) (respectively b= (8)) represents the improper mean curvature vector of M. (re-
spectively of M, ).

Using (2.3) and (2.4), one readily finds thaton M, and M_, we have

vzgm‘i*l = (f'r%;‘%] — C)ﬂm.-l-l A dpu

and
Vz£m'+2 = (ffzn'+2 o l'.'t) ,qm'+2 A dpu"

This proves that on the coisotropic submanifolds M, and M . the anisotropic vecotr fields
¢, are exterior concurrent [23)]. This property allows at once to write

Ric(£,) = m(f*> —c).

Letnow «: M; — M(U, L, ¢, n%, g) be the improper immerison of a general
co1sotropic submanifold M, in M . By definition, one has T;;(M 1) C Tp;(M ;) and, without

loss of generality, we may assume that T;-(M;) C S, = vect.{h,} C D,.
Following [12] we call Sp the normal self-orthogonal space associated with «, and we
assume that dim T;;(M D =Ull<m).

Consider now on M, the two complimentary differentiable distributions:
D:p;— D, =T, (M) \T;;(MI)

D*:p; — D;; = T;(MI) C T, (Mp).

It easy to find from (2.7) that one has
(4.3) UD, C D,, UD; =T; (M),

and therefore follwing [12] one can say that the submanifold M; under consideration is a
CIC Rsubmanifold (i.e. coisotropic contact C R-submanifold).
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Suppose that M, is defined by

*

(4 .4) w' =0, 1t s*=2m+2—1,...2m.

_ Lo =
Then one has D, = vect.{h;, h,, §,} and Dy = vect.{h;r=m+2 —1, ..., m}

and Dp; (respectively D;} ) 1s called the horizontal (respectively the vertical ) distribution of
M;. Denote by

(4.5) V1=l =) W Aw 4o

the restriction of the conformal symplectic form 1 on M ;. Then (up to sign) the simple unito
form corresponding to the horizontal distribution D, 1s expressed by

— m=l+1
G-I - ¢I w

Obviously by (2.23) o; is exterior recurrent and since it annihilates the vertical distribution
Dy, it follows that the DT_{; it follows that the D;; is involutive. One refinds in this manner a

general property of CIC R-submanifolds (see [28], [24] and also [4]) and C R-submanifolds
(see [2]).
Denote by M;- the maximal leaf of D;I . By (2.12), (2.16), (5.4) and making use of (2.10),

it follows that «: M; — MU, Q, &, n%, g) 1s atotally geodesic improper immersion

(see also [12]).
Similar discussion to that of [21] can be developed.

Theorem 4.1. Let M(U, Q, &, 1%, g) be the manifold defined in Section 2. Any such
manifold may be also regarded as foliated by M, and M., where M, and M, are
(m + 1)-dimensional coisotropic and of defect m submanifolds of M . In addition, the
anisotropic vector field on each of these submanifolds is exterior concurrent. If M; is a
general coisotropic submanifold of M , then itis CI1C R-submanifold and the corresponding
vertical distribution of M; is involutive.
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