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A FACTORIZATION FORMULA FOR SOME ENTROPY IDEALS
FERNANDO COBOS, IVAM RESINA ) and FERNANDQ SORIA

ABSTRACT: We establish a factorization theorem for entropy ideals generated by Lorentz-
Marcinkiewicz sequence spaces A*(y) .

0. INTRODUCTION

Entropy ideals generated by Lorentz-Marcinkiewicz sequence spaces A?/( ) have been con-
sidered in [2] and [3], where some of their properties have been derived. These ideals play an
important role in order to characterize the degree of compactness of weakly singular integral
operators (sec [4]). In this paper we obtain factorization formulae for entropy ideals of the
type A%(p) .

To establish such factorization, we shall use some techniques developed by A. Pietsch [10]
for the case of entropy ideals generated by Ep spaces (see also [6]) combined with the real
method of intepolaion with a function parameter (cf., €.g., [5] and [8]). In the process, we
will also obtain some information on the behaviour of entropy numbers under interpolation
with function parameter.

1. PRELIMINARIES

We will use throughout this paper standard operator ideal notation, as may be found for ex-
ample in [9]. Concerning intepolation theory, we refer to [1] and [5].

The class of all (bounded linear) operators between arbitrary Banach spaces 1s denoted by
L,while L(E, F) stands for the collection of those operators acting from E into F'. For
the closed unit ball of E we use the symbol Up,.

T eLl(F,F)andn=1,2,...,thenthe nth entropy number e_(7") 1s defined as
the infimum of all € > O such that thereare y, , y, , ..., y, € F with ¢ < 2™ and

: + .

Let (U, A] and [V, B] be quasi-normed operator ideals. The component U/ - V(E, F') of
the product U - V consists of all opertors T° € L( E, F') which can be factorized in the form
T=SRwithSelU(M,F)and Re€ V(F, M). Here, M is a suitable Banach space. We
put

A-B(T)=mf[A(S)B(R)],

where the infimum is taken over all possible factorizations as above. Then [U -V, A - B] 1s
a quasi-normed operator ideal (see [9], Thm. 7.1.2).

(*) The second named author was supported in part by FAPESP-BRASIL (Proc. 86-0964-0).



58 Femando Cobos, Ivam Resina, Femando Soria

2. FUNCTION PARAMETER AND INTERPOLATION

The function ¢: (0, co) — (0, co) belongs to the calss B if and only if ¢ is continuous,
w(1) =1 and

{
©(t) = sup (?-’J ° )) < oo, foreveryt>0.
a>0

If o € B then p 1s submultiplicative (i.e., P(ts) < ©(t)p(s)) and Lebesgue measur-
able. Moreover, the so called Boyd indices, a;; and S, of the function i are well defined
by

B;= sup

O<t<l

(log o(t)

They are real numbers, satisfying —oo < B < «

e dt
az < 0 if and only if f E(t)? < 00;
1

1
. . dt
Bz>0 Lfandanlylffﬁ(t)T{m.
0

Important examples of functions belonging to I3 are
p(t) = P14 |[log t])7, for0 <p<ooand — oo <7y < 00.

In this case,
B(1) = t'/P(1+ |logth,

its indices being G5 = a5 = 1 /p.
Two positive functions ¢ and p are referred to as equivalent if there are two positive
constants ¢, and ¢, such that

c;p(t) < p(t) <cp(t), t>0.

In order to prove the factorization formula, we shall need the two following essentially
known facts on function parameters. For the sake of completeness we give their proofs.
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Lemma 2.1. Let ¢, x € B with B > 0, and let p be the function defined by p(t) =

. Then p belongsto B.

Proof . Since B > 0, the function x is equivalent to an increasing function (see [8], Prop.
4). Hence, there exists a constant ¢ > 0, such that

E@]) < me-(t;’_)y if t, < 1,.

Consequently,
o x(w(s))@(ﬁs)>
P = (x(f.ﬂ(ts))f,ﬂ(s)
_ _ [ v(s) ))
SP(t) +>0 (x <w(ts)
—1
=7(1) sup (33 (‘G(St )))
350 [P(S)
<cp(D)x(B(t™)),
which shows that p belongs to B. o

Lemma 2.2. Let ¢ € B be an increasing function with B > 0. Then 1 = o~ also belongs
to B, and its indices are 55 = 1/, oy = 1/85.

Proof . Given € > 0, according to the definition of 3, we can find 6 > 0 such that for any

s >0 and any ¢t < 6 we have
p(st) < thp(s),

where p = (.- — €. Thus,

@
st <~ (tFp(s)).

Set u = thp(s) and v = t7#. It follows that forany v > 0 and any v > 67# we get

o~ (uv) < v P ().

Whence, we conclude that 9 = ¢~ belongs to B and that oy < 1/ G- By using a similar
argument, one can easily show that ;35 > 1/a. If we now interchange the roles of ¢ and
1 we shall have o < 1/ ‘85 and )85 > 1/ oy This, together with the above estimates, give

the desired results. !
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We close this section with some definitions from intepolation theory (see [1], [5] and [8]).

An interpolation couple ( E, , E;) consists of two Banach spaces E, and E, which are
continuously embedded into a Hausdorff topological vector space Z . We can endow E, + E,
with the norm K(1, x), where

K(t,z) =inf {||zo||g, +tllzillg : 2 =3 + 1.},
and E, N E; withthenorm J(1, z), where
J(t,z) = max{||z||g,, t||=l| g, }-

A Banach space E is called an intermediate space between E, and E; if E, N E, C
E C E, + E, and the corresponding embedding maps are continuous.

Definition 2.3. Let o € B and let (E,, E,) be aninterpolation couple. Suppose that E is

an intermediate space between E, and E, . Then, we say that
i) Eisof K-type p if K(, z) < cp(D)||z||g,.t >0,z € E;
ii) Eisof J-type pif ||zl|lp <cJ(t,z)/p(t),t>0,2€ E,NE,.

In order to give examples of such a spaces, we recall the definition of real intepolation
space with a function parameter. Let (E,, £,) be an intepolation couple, let 1 < ¢ <
and p € 3. The space (Ey, E,), .x consists of all z € E, + E; for which the following

functional 18 finite:
o /Kt z)\dt\ /" |
[ (Go?) %) nsese

K(t,m)) .
su , if ¢ = oo.
t}g ( (1) !

Example 24. Let ¢ € B with 0 < > < a; < 1 andlet (£, E;) be an interpolation
couple. Then, forevery 1 < ¢ < oo, (Ey, F; )w,q: x 1sof K-type p and J-type ¢ (see [5],
Lemma 2.1).

I[r‘“r”g:,q:ff =

3. ENTROPY IDEALS

Definition 3.1. Given p € B, we define

Epoo = {TeL: E, (T)= 5213(@(11)5:“(3”)) < 00}.

It is well known that the classes 5@ -, are quasi-normed operator 1deals (see [3], §2).
Observe that £ _(T) = [|(e, (T)]], > Where || - ||

Marcinkiewicz sequence space A>(yp) (see [2], §2).
We will also need the following two Propositions

is the quasi-norm in the Lorentz-

,00
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Proposition 3.2. Let p, x € Bwith 0 < By < ag < 1 andlet E be an intermediate space
between B and E, having K-type x. If T € &, (E,, F) andT € L(E,, F), then we

have T € €, (E, F),where p(t) = . (ﬁiz)) .

Proof . First we notice that Lemma 2.1 implies p € B. Denote by T the operator T° acting

from E; into F(1=0, 1). Taking into account that }m:-:'; tx(1/t) = 0 and proceeding as in

(9], Prop. 12.1.11, it is not hard to check that

€ (Tl)
(D €ty —1 (T: E— F) g?,cenn(TU);( (E:(T{])) .

Here, e, ., 1 = 0 if € (Ty) =0 or €, (7y) = 0.

From (1) and the fact p is bounded on every compact set contained in (0, co) (see [7],

p.241), we can easily see that there are two positive constants ¢; and ¢, (independent of T°)
such that

T
sup(p(n)e, (1)) < ¢, sup (p(n)ﬂﬂ(Tn)x (e“( 1) ))

n>1 n>1 En(Tﬂ)

. En(T1)
<c, il:_n.l? (ﬂﬂ(ﬂ)ﬁn(Tn)X (Mn)eﬂ(Tﬂ) ))

- - 1
<& xUIT 1D Sup (Nﬂ)ﬂn(Tﬂ)X (p(ﬂ)eﬂ(fﬂ) ))

This last expression is finite because the sequence (p(n)e (7)) 1s bounded and the function
t — tx(1/t) has lower Boyd index greater thant zero. .

Proposition 3.3. Let o, x € Bwith 0 < ,Bf <op< 1 and let F' be an intermediate space
between Fy and F\ having J-type x. If T € L(E, Fy) andT € &, (E, F.), then we
have T € €. (E, F),where 1(1) = x(p(1)) .

Proof . Let T; denote the operator T' acting from F into F;(¢ = 0, 1) . A similar reasoning
to that 1n [9], Prop. 12.1.12, allows us to obtain

(2)

E’nn+n1—l

- - -1
T
(T:E— F) < 2ce, (Ty) X(Eno( ﬂ)) .

Here, e = () ifeﬂa(Tﬂ)=0 or Enl(Tl)=0'.

g+ —1



62 Fermando Cobos, Ivam Resina, Fernando Soria

Consequently, we have

-1
SUpP 51 (T(m)e (T)) < cySup (ﬁ“)EH(Tn) [X (EH(TG) ):| )

n>1 e, (T})
i _[e(nye (Ty)
<ci s |6 (To)x (£ 2003 )|
i 1
< |+ T% (S )| pRCpe o <o “

Now we are in a position to state the factorization formula.

Theorem 3.4. Let p; € B with ﬁﬁ- >0(z=0,1) and “En_ﬁa‘au < ﬁg—gl or o _ﬁﬁl < ﬁﬁ .

¥1 0
If o = pypy . then
¢ & =&

"i'-'": OO "F[I OO "P:':'ﬂ*

Proof . Supposefirst a; —fB5 < B andletT € &, (E, F). Since Bz > = + 65 >0,
we may assume without loss of generality that ¢ is increasing (see [8], Prop. 4). In order to
factorize T', we proceed similarly as in [10], Thm. 3. Let E, = E/ker(T) and F, = T(E).
Then, the following diagram commutes

i

B ————

Here () denotes the canonical surjection form E into E,, J denotes the canonical in-
jection form F, into F', and 7}, 1s a one-to-one operator. Moreover, ( E,, F,) forms an
interpolation couple, the embedding being T, .

Write x(t) = p,(p~"(t)). According to Lemma 2.2 and the assumption on the indices
of p, and p, , we have

— Y—
ﬂ#’u o

o< 0= -Oo—F = < < 1
TR e By T (B, + )
and
B
. Yo
ﬁfkﬁaﬂ'ﬁw—& > > 0.

5 (og, *ag)
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Hence, we can find an intermediate space M between E;, and F,, which has K -type x and
J-type x. (Take, for example, M = (£, Fp), 1) -

Letus denote by Ry, € L(E,, M) and S, € L(M , F,) the corresponding embedding
maps.

Next, consider the diagram

E{]
Q

Rﬂ

R, Q

F = = L.

Sﬂ

S, R,Q
F

The operator S, R Q belongs to €,  (E, Fy) because ' = J S, Ry Q and J is a
metric injection. Therefore, Proposition 3.3 yields that R= R, Q €&, ., (£, M).

On the other hand, since (@ is a metric surjection we have that /.Sy Ry € &, , (Ep, F).
Whence, we can use the following diagram

Eﬂ
JS,R,

Rﬂ

JS,
M > F

So
J

Fﬂ

and Proposition 3.2 to get that § = JSy € &, (M, F).
This shows that
T=SR€E, o &, olE F).

t

Thecase - —f—- < can be treated in the same way, now setting x(t) = :
P < P PNO=IO)

¥
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Finally, the inclusion &

¥1.,00 .

of entropy numbers and the fact that © 1s bounded on every compact subset of (0, co). ©

€y 00 C &y o fOllows by using the multiplicativity property

We end the paper with a conseguence of Theorem 3.4. Let us first recall that given
0 < p<ooand —oc0o < v < o0, the Lorentz-Zygmund entropy ideal Ep ooy 15 formed
by all 7" € L such that

(T) = Sup[nlfp(l +logn)7e (T)] < oo.

E
P00, >

This 1s nothing else but the ideal £,  with ¢(1) = t1/P(1+ |log t])7.

As we mentioned before, we have in this case a5 = 35 = 1 /p and, therefore, according
to the preceding theorem we obtain the following

1 1 1
Corollary 3.5. Assume that 0 < py, p; < 00, —00 < Yy, Yy < 00, — = — + — and
P 14 Do
Y=+ . Then
8?1 00Ty 'gpn.mnﬂ = ‘SF-W-’T‘
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