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INTERPOLATIVE CONSTRUCTIONS FOR OPERATOR IDEALS
HANS JARCHOW and URS MATTER

The problem from which this article originated is the following: given an operator 7'
E — F between Banach spaces belonging simultaneously to two operator ideals, A and B
say, when is it possible to find a decomposition "= A - B, where A € A and B € B, orat
least A € A and B € B, with A and B being associated with A and B in a specific sense?
It was shown by S. Heinrich [2] that such a decomposition is always possible, with A = A
and B = B, if A and B are uniformly closed, A is surjective, and B is injective.

Heinrich’s arguments are based on a simple interpolation technique which appears to be
strongy related to certain general constructions with opertor ideals that were successfully ap-
plied in a seemingly different context in recent years (ref. [8], [5], and [4]-[7], [1]). We
intend to investigate the fundamentals of such constructions and their interpolation-theoretic
background in this paper, with emphasis on the impact to the factorization problem. Appli-

cations will be given for 1deals generated by s-number sequences and to type p and cotype ¢
operators.

1. PRELIMINARIES

We shall use standard notation and terminology for Banach spaces. As for the theory of
operator 1deals, we shall essentially follow A. Pietsch’s monograph [9].

A, B ... willalways denote operator ideals,and ¥, F', G, ... are used to denote Banach
spaces. If F/ is a Banach space, then E* will be its dual, and B, will be the unit ball of E.
Given an ideal A, its injective hull , A*, is defined via

T € A(E,F) ¢ J,T € A(E,F);

here F_ is the (injective) Banach space £_(Bpg.), and Jp: F — F_ 1s the canonical
1Isometric embedding. Dually, the surjective hull, A®, of A 1s defined via

T € A%(E,F) & TQp € A(E,, F);

here E, 1s the (surjective) Banach space £,( Bg) ,and Qz: E, — FE is the canonical metric
surjection. A is said to be injective (surjective) if A = A* (if A = A®) holds.
Finally, we write A for the ideal of all operators 7 : E — F which satisfy

im ||T"— T || = 0 for some sequence (T) in A(E, F). If A= A, then A is said to
be closed . More generally, if A and B are quasi-normed ideals such that (component-wise)

A C B, then A" is used to denote the ideal of all operators 1n 3 which can be obtained as
limits of sequences from A in the quasi-norm of .

Let us start by recalling a simple and well-known characterization of the injective resp.
surjective hull of an ideal (cfr. e.g. [9]):
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(1) Let T € L(F, F) be given.
(a) T belongsto A' if and only if there exist G and § € A(E, G) such that ||Tz|| <
|Sz||Vz € E.
(b) T belongs to A® 1if and only if there exist G and S € A(G, F) such that
T(Bg) C S(Bg) .
Less known, but equally simple to verify, is the following:
(2) Let T € L(E, F) be given.

(a) T belongs to T if and only 1f, for every € > 0 , thereare GG, and S, € A(E,G)
such that ||T'z|| < ||S.z|| + € - |[|z]|Vz € E.

(b) T belongsto A" if and only if, for every € > 0, thereare G, and S, € A(G,, F)
such that T(Bg) C S(Bg ) + € Bp.

The presence of a complete (ideal) quasi-norm yields a considerable simplification:

(3) Suppose A admits a complete quasi-norm. Let T € L(E, F') be given.

Ll

(a) T belongs to A’ if and only if there are G, S € A(E, @), and a function
N :R, — R, suchthat ||Tz|| < N(e¢) -||Sz||+ € ||z]|Vz € E, Ve > 0.

(b) T belongs to A if and only if there are G, S € A(G, F), and a function
N:R, - R, suchthat T(Bg) C N(€) -S(Bg) +€-B,Ve> 0.

(a) of (2) and (3) 1s proved in [3], the corresponding statements (b) are due to T. Terzioglu

(unpublished) and can be proved in a dual fashion. Of course, (3) can be generalized as

follows:
(4) Let A an B be complete quasi-normed ideals suchthat A C B. Let T € L(E, F)

be given.

(a) T belongsto (A") ifandonlyifthereare G, H, S € A(E.G), R € B(E, H),
and a function N: R, — R, suchthat, Vz € E, Ve > 0: ||Tz|] < N(e) -
|Sz]] + € - || Rz]].

(b) T belongs to (EH)E ifandonlyifthercare G, H,S € A(G,F), Re B(H,F),
and a function N : R, — R, suchthat, Ve > 0: T(By) C N(e¢) - S(Bp) +

€ R(By) .
It 1s not our intention to strive for still more generality. However, starting from (4), we
shall study in some detail 1n the next section the effect of imposing certain growth conditions

on our function N (e) .
The above concepts have been gradually developed 1n the context of weakly compact
operators on C( K') -space in particular. About 1977 itbecame clear that if X isan L__-space

(or the disk algebra, ...), then W(X,-) = H_;(X,’) = _I:;(X,-) (cfr. [8], [3]). Here
we denote (as usual) by W, HP, and 1, the 1deals of all weakly compact operators, of all
p-summing operators (1 < p < oco), and of all L, -factorable operators, respectively. More
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recently, it was shown that W( X, ) = ii(X ,-) even holds if X is a C*-algebra, or only
a JB*-triple. As a consequence, one gets for example that every reflexive quotient of such a
space is automatically super-reflexive and of type 2, which not only gives another proof but
also a considerable generalization of a well-known theorem of Rosenthal [13] about quotients
of L resp. subspaces of L, . See[5], [4], and [1] for further details. Furtheron, it was shown
in [6] that among the Banach spaces Y~ with (GL-local unconditional structure, the condition

L(L,,Y) = 'IT(LI . Y') characterizes precisely the super-reflexive ones.

2. INTERPOLATIVE CONSTRUCTIONS

One way of quantifying the results mentioned at the end of the preceding section 1s by ana-
lyzing the effect of assuming that the function N(¢€) appearing in (3) and (4) is majorized by
a function of the form C - €77, for fixed C, » > 0. This leads to the following corncepts.

0
Let A and B be operator ideals. Fix 0 < # < 1, and put r = —— . Given an operator

1—-6
T: E— F, write
T e(ADB),(E,F)

if thereare G, H, Se€ A(FE, G),and R € B(FE, H) such that
(%) ITz|| € € -||Sz|| + € [|Rz|]| Vz €E, Ve>0.

Similarly, we write
T € (A,B)YE, F)

if thereare G, H, S € A(G, F'),and R € B(H, F) such that

(**) T(BE) CE_T'S(Bcg)+E'R(BH) Ve > 0.

It 15 easily seen that (*) 1s equivalent with
(+) |7z < c-|ISz|~7 - ||Rs]|” Vz € E,

1—0\" 0

where ¢ is a constant depending only on € (c = (T) + (ﬂ

reminds of what is called «intermediate space of J-type 6 » in interpolation theory. Similarly,

(**) bears features reminiscent of the so-called «intermediate spaces of K -type 0». We refer
to [14] for this and for further results from interpolation theory to be used later.

It is easily seen that (A, B), and (A, B)Y are operator ideals. If A and B are given

(ideal) quasi-norms « and S, respectively, then we obtain quasi-norms on (A, ), and

(A, B)? by taking the infimum over all expressions of the form «(S)'~?-A(R)?, with S and
R admissible in (*) resp. in (¥¥*). It is to these quasi-norms we refer in the next proposition:

1-8
) 1n fact). This



48 Hans Jarchow, Urs Matier

(5) Let A and B be operator ideals,andlet 0 < 0 <n < 1.
(@) (A, B), is injective, and (A, B)? is surjective.

b) (ANB) C(A,B), C(A,B), C(A+B)iand (ANB)* C (A, B C
(A,B)"C (A+B)°.

(c) If A C B,then (A, B), C (A") and (A, B)? c (A°)®.

(d) If A and B admit complete quasi-norms, then the same is true for the ideals
(A, B), and (A, B)?, and all the inclusions in (b) and (c) become contractive
embeddings with respect to these canonical quasi-norms.

(e) If A and B are ultra-stable (power-stable), then so are (A, B), and (A, B)?.

See [9] for the definition of ultra-stability. Power-stability refers in the same manner to
stability with respect to ultra-powers of the operators in question.
In an obvious way, the two types of ideals introduced above are essentially dual to each

other. Possible obstructions are due to the usual problems which one encounters when one
passes to second adjoints. Recall from [9], that given any ideal A, the dual ideal, A¢, is
defined via T € AYE, F): & T* € A(F*, E*). Similarly, we write A" for the ideal de-
finedviaT € A™(F, F): < e,T € A(E, F*); here e, denotes the canonical embedding
F—

(6) Suppose A C A® and B ¢ B* (so § € A implies S** € A, etc.). Then

(A4, B, = [(A, B)?1¢ and [(A%, BHY)™ = [(A, B),]°.

Proof . We only prove the second statement, the first one can be settled similarly. Let T €
[(A%, BHY)"(E, F) be given, and let S € AYG, F**) and R € BY H, F**) be such

that e, T'(Bg) C €7 -S(Bg) +€-R(By), Ve > 0, where r = —1-—?—— By polarization,

we get [IT°y*]| < € - [|S*epy’| + € [|IR%epy’|| Vy* € F*, Ve > 0. As S*ep. € A and
R'ep, € Bweconclude T* € (A, B),(F*, E*) ,that1s, T € [ (A, B)E]d(E, FY.
Suppose conversely that 7* belongsto (A, B),. Let S € A(F*,G) and R € B(F*, H)
be such that ||T*y*|| < €77 - ||Sy*|| + € - ||Ry*]| Vy* € F*, Ye > 0. By our hypothesis,
S* € A and R € B, sothat S* € A% and R* € B%. Again polarization leads to
e, T € (A%, BY)?,sothat T € [( A%, BY))". ;

An interesting case occurs when B3 1s the ideal L of all operators. We shall simplify our
notation in this case and write

Ay = (A, L), and A%:=(A,L)°
So, if in addition A C A%, we get from (6)
(A, = (ADY and [(ADY]" = (A%

Another result to be used later 1s the following one:
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(7) Forallideals A and B andall 0 < @ < 1 we have
[(A,B),1° =[(A,B)]".

Proof .(a)Let T € (A, B)’(E, F) be given. Then TQp(Bg) Ce7-S(Bg)+e-R(By)
for all € > O, with suitably chosen operators S € A(G, F) and Re€ B(H, F).

Letnow ¢ > O be fixed. Given x € By, let e, be the corresponding standard unit
vector in B, = £,(Bg). We may choose g, € B, and h, € By such that TQe, =
e’ -Sg.+¢€¢-Rh_. Now e_ — g_and e, — h_ define operators U : E;, — G resp.
V:E, — H suchthat ||U|[, ||V|| <1 and TQg =€ -SU +¢e- RV . Itfollows that Q) ¢
belongs to (A, B),(E,, F),sothat T € [(A, B),1°(E, F).

(b) Using the extension property of the space £__ () , one proves in a similar manner that
(A, B), is contained in [ (A, B)‘]’.

(c) The rest is by manipulating properly with injective and surjective hulls. In fact, from
(a) and (b) we get

[(A,B),]* =[(A,B),]* = [(A,B)]* C [(A,B)1" =

=[(4,B)°)’ = [(A,B)"]* =
=[(A,B)°1* C [(A,B),]"* = [(A,B),]". g

We mention in passing that U A, and U .A? will in general not coincide with A
0<b<1 0<o<]

resp. A ,evenif A admits a complete quasi-norm. ) LéJ A, carries a complete quasi-norm
<f<1

if and only if A, = A7 for some 0 < 0 < 1 andall < 0 < 1 (independent of components)

if and only if A, = A’ forall § < 0 < 1;see[7]. Analogously for U A°.

0<h<1
More concrete examples are as follows: suppose X is a reflexive Banch space having no

finite cotype. Then we get, using [6],

Ly X) = T (Lgq, X) # U )g(Lq, X) = U TT (L, X),

p<oo

and for the Schatten-von Neumann classes Sp on a Hilbert space H one has

C(H,H) =T0L"(H, H) # Lé;(nz)ﬂ(H,'H) = U S,(H,H),

p<co

K being the ideal of all compact operators.
We pass now to extensions of the classes S, to operator ideals defined by various s-number
sequences in the sense of Pictsch [9]. Given any (pseudo) s-number sequence s = (s,.(-))

for operators, we denote by SI(f) the class of all operators T° between Banach spaces such

that (s,(T)), € £,, 0 < p < co. For convenience, we shall also put S{ = L.
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(8) Suppose s 15 additive, or equivalent to an additive (pseudo) s-number sequence. Let

. 1 1—-80 ¢
0 <p,g<oocand 0 < 6 < 1 be given. Define r by — = + —. Then

r P q
(S$),8(), C 8 if s is injective, and (S¢, S{2)¢ C S if s is surject
g /0 r ) : p > O C o, s 18 surjective.

We recall that our terminology is as in [9].
Proof . We restrict ourselves to proving the first statement, the proof for the second one is
even slightly simpler.

Letthen T € (S{¥, S{")y( E, F) begiven. Let S € S{¥(E, G) and R € S{*'(E, H)
be such that

(%) |Tx|| < e ||Sal| + ¢ ||Rall Vz€E, Ve>0,

where o = 0 - (1 — 0)~!. Since we are dealing with injective ideals, we may suppose
F=2¢_(I),I asuitably chosen set. We proceed as in [3], §20, 7.

Fix e >0 anddefine A: X - G&®, H: x— (e“ Sz, ¢e- Rx), G &, H being the
£, -direct sum of G and H . A is linear and continuos. By virtue of (*), a well-defined map
B: A(E) — F isobtained by setting B(Az): = Tx, Vx € E. B is linear and continuous,
with ||B]| < 1. Since F' = £_(I), B is the restriction of some B € L(G &, H, F) with
IB|| < 1. Define now operators U: E — F: z + (¢*-8z,0) and V: E — F:
T E(O , € - Hz). Note that U 1s in S;*’} , V 1s1n Séf} ,and T = U + V. Further, since s
is additive, s, (T) < s,_(U) +s,,(V),sothats,, _(T) <5, (8)'~%-5s,_(R)? forall
m . But this implies T' € S'® , because of

S5, (T)7" <2 -Es,, (1) <2 -Zs5,(8) 0.5 (R

<2 .(zsm(g):?)ril-ﬁ)fp_(zsm(R)q)fﬂfq_ .

Similar inclusions can be established for other types of ideals, notably those of p-summing
operators, or for operators with certain type and cotype properties. See [6] and [7] for the first
case, and the next section for type and cotype.

For operators on Hilbert spaces, all s-number sequences coincide and the corresponding
ideals S;‘f] justyield the Schatten-von Neumann classes S,,. In that case, (8) can be improved:

(9) Let H be a Hilbert space. Given 0 < p, ¢ < oo and 0 < 8 < 1, define r again by

1 1—6 0
= + —. Then
T D q

S.(H,H) = (S,,8)(H,H) = (S,,S)°(H, H).
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Proof . One inclusion follows from (8), the other from Holder’s inequality. LetT € S ( H, H)
be given. Then 7" = Xz, ® y,, where (A ) € £ and (z, ) and (y,) are orthonor-

mal sequences in H. We may assume A, > 0 Vn € N. By § := Ek;fpmﬂ ® y, and

R:=Z)\/%z ®y,,weobtainoperators S € S (H, H) and R € S (H, H) . Since for each
t€ H
1T=|* =ZX5|(zlz,)* =

=y kir(l—ﬂ)fﬂ ) |($l$ﬂ) lZ(I—E] _ Airﬁfq ) |(I|I“) |2E? <
SCEXTP (2|2 ) )0 (2N (]2, ) )P <
<([IS=l|'~? - [|R=]|)?,

we conlcude that 7" isin (S, S )(H , H).

Our hypothesis also gives 7" € S, (H, H), hence T™* € (Sp, S)e(H , H). Since we
are working in a Hilbert space, T € [(S,, S )X H, H) = (S,, S,)°(H, H) follows,
by (6). o

Remark: Interpolation between operator 1deals can also be defined component-wise: given
two complete quasi-normed ideals A and B, one may define e.g. (A, B), , (real method)
via

(A,B)y (E,F) := (A(E, F),B(E,F)),,(0 <0< 1,1 < g < 00)

forall £ and F'. It can be shown that

(A,B)j; C (A,B), C (A,B);

and
(A,B)s, C(A,B)Y C(A,B),,

hold.

3. THE PRODUCT PROBLEM

If A and B areideals,then 7" € L(FE, F) issaidtobelongto A - B(F, F) if there are G
and S € A(G, F), ReB(FE,G) suchthat T =S - R. A - B is again an ideal, called the
product of A and B.

It was shown by S. Heinrich [2] that

ANB=A" B

holds whenever A and B are closed, A is surjective, and B is injective. It is open if and
how these requirements can be relaxed. We may generalize, however, Heinrich’s result in a



52 | Hans Jarchow, Urs Matter

somewhat different direction. His arguments, which are based on elementary interpolation
techniques, fit quite nicely with the concepts developed in the previous sections.
Let T': E — F beany operator. Put X: = E/ker T, and denote by Q: F — X the

canonical quotient map and by T: X — F the unique map such that T . Q=T.AsT
is an injective bounded operator, we may consider (X , ') as an interpolation couple. Let
0 < 0 < 1 be given, and let G be any intermediate space of (X, F') which is simultane-
ously of J-type 6 and of K-type §. Examples are provided by the real interpolation spaces,
(X, F),,» or by the complex interpolation spaces, [ X, Flg; cf. [14]. Let § : X — G and

—

R : G — F be the corresponding canonical operators, so that B -S = T'.
Letnow A and B be again any ideals, and suppose that 7" belongs to .A® N B3¢ Ttis then
easily checked that SQ is in (B*),_, = B,_,, because G is of J—type @, and that R is in

(A% = A%, because G is of K—type 6. So we have:

(10) For all ideals A and B, we have
ANBcCc n AY-B_,

0<i<l

The latter intersection is in turn contained in A - B, so that Heinrich’s result appears if
1_3 .

werequire A = A and B= B . According to what was remarked after the proof of (7), the
formally weaker condition A = A’ and B = B, for some 0 < 6,1 < 1 suffices.

There are cases 1n which we have equality in (10), even in a stronger sense. Entropy
numbers (cf. [9]) yield a pseudo s-number sequence which 1s injective (up to equivalence),
surjective, and addiuve. Let us write Srf_f’) for the corresponding 1deals, 0 < p < oo. Then
we get

S;‘;E} C(SI(;E))& ) (S;EE})I-—E — (SIEE),S:))Q _ (S;E), Sé;))l—{?

(e) | gle) (e)
cs} sy cs;

=7

(with S,:Eg) = [ ), where the last inclusion 1s due to the so-called multiplicativity of entropy
numbers. Hence

S8 = (S§N?-(S8),y VO <p<oo, YO<O<I.

See [10] for a corresponding multiplication formula for the ideals S{° .
But for other injective and surjective ideals the situation may just be the opposite. It

2 2
follows from [6] that if we choose 0 < @ < 1 and p# 2 with max{l+9,2 G} <p<

6’'1—-0
an isomorphic embedding, then J@Q belongs to (I,)%(T,),_,. But of course, JQ does

2 2 L
min { } and if we let Q: £, — £ be a surjective operator and J: EP — £
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not belong to I', , by our choice of p. So we get I', # (I,)7 . (I',);_4- A closed graph
argument which goes back to Grothendieck shows that from this even follows that I, 1s

roperly contained in ). (T .
properly 1 ﬂ{gﬂ( )" (13

Let us return to the situation of (10). If we put

A== u Af
0<f<l
and
O<i<l

then A isa surjective ideal, and B is an injective ideal. But in general, neither of these ideals
will carry a complete ideal quasi-norm. We have

(11) Forall A and Bandall 0 <0 < 1,

A=AE and Bzﬁg,
hence

P

ANB=A-B

Proof . Given T € B,(E, F),let G and S € B(E, G) be such that ||Tz|| < ||Sz||'~?
Vi € Bp. Let 0 < < 1 besuchthat S € B (£, G). Correspondingly, for some H

and R € B(E, H) we get ||Sz|| < ||Rz||'~" Vz € By. Thus ||T'z|| < ||Rz||!—¢-(1-0n

Vi € Bg,1e.,T € By, (1_gy C B3. Similarly for A, and the claim follows. -
Similarly, if weput A: = N A%and B: = n B, then we obtain a surjective
A 0<b<l ~ 0<b<«]

resp. injective 1deal, and by the same kind of arguments one is led to a relation like Jil - B=
. r; ] éﬂ- B1 . Again, neither .,;‘1 nor I3 will in general carry a complete ideal quasi-norm.
<< - ~
We like to conclude by an application to operators which are of certain type and cotype.
Recall that 7': E — F' 1s said to be of (Rademacher) type p, 1 < p < 2, if there 1s a
constant K > 0 such that

1
2 2

1
1| = n P
[ 1o 7a a s:ff*(zum,-np)
0 i=1

=1

for all finite collections of vectors z, , ..., z, € X . Here r; 1s the ¢-th Rademacher function.
These operators form an injective and surjective ideal, 7. We alsoput 7, @ = L.
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Similarly, 7" 1s said to be of cotype ¢, 2 < ¢ < o0, if there i1s a constant K > O such

that

1
2 2

1
T q 1 n
(ZHTIJF) <K- f > ri(t) -zl dt
i=1 0 =1

forall n € N andall z,, ..., z, € X. These operators also form an ideal, C_, which is
injective, but not surjective. Againweput C_: = L.
Details on these notions can be found in [12] and [9].

. 1 1-6 0
(12) Given0 <@ < land1 <p,,py <2 <gq;,9, <oo,define pby — = + —.

g d p)

Let F and F' be Banach spaces.
(@) (C,,C,)o(E, F) CC/(E, F).

(b) If F is K-convex,then (T, -7, )'(E, F) C T(E, F).

Proof . We omit the proof of (a) which is hardly more than hitting properly the definitions by
Holder’s inequality. Let us pass to the proof of (b), and let T" € (1;1 , Z;z)ﬁ(E, F') be given.
Well-known results on type and cotype together with (6) yield T € (CP; -Cp5 Yo(F™, EY).

. T
Here we write r* =

1 for 1 < r < oo. Now (a) implies T™* € C,.(F*, E*), which
T —

yields T" € '.I;(E, F),see [11], since F' is K -convex. ¥

To reach the conclusion in (b), it would have been sufficient to require that T° is of the
form T'= T, -T, with T, € (T, , T, )°(E, G) and T a K -convex operator from &' into

F'; see again [11].
In particular, we get

C((E,F) C(Cy_o(E,F) CCq(E,F)

for 2 <g<ooand 0 < 0 < 1, and similarly

T(E,F) C(T)E,F)CcT_»p (E,F)
P P T¥0(p—1)

for0 < 0<2,1<p<2,and K-convex spaces F'. Therefore we get from an application

of (10):

(13) If E and F' are Banach spaces, F' K-convex,andT € L(E, F)isoftypel < p< 2
and of cotype 2 < g < oo, then there are, for every 0 < € < 1, a Banach space G

P and § € L(F, G) chmype%

and operators K € L(G, F') of type T+ 0(p — 1)

suchthat 7= K- S.



Interpolative constructions for operator 1deals 55

Of particular interest is the case p = ¢ = 2, where we get

(T,NCYE,F)C N (T2 -C2)(EF),
0<i<l 140 é

atleastif F' is K-convex.
We do not know if the resulting inclusions can be improved further. Is T, NC, C T%_ -Cy,

for example, best possible?
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