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ON NATURAL REDUCTIVITY OF FIVE-DIMENSIONAL COMMUTATIVE
SPACES

LEON BIESZK

INTRODUCTION. The naturally reductive homogeneous spaces have been studied by a
number of authors as a natural generalization of Riemannian symmetric spaces.

O. Kowalski and L. Vanhecke drew their attention to the relationship between the natu-
rally reductive spaces and the commutative spaces which are known to generalize symmetric
spaces, as well. In this context they suppose that the Riemannian manifolds under considera-
tion are conected, simply connected and complete.

The three-dimensional naturally reductive spaces have been classified by F. Tricerriand L.
Vanhecke [14]. O. Kowalski found the same classification in a different context, and he also
proved that the naturally reductive spaces and the commutative spaces form the same class in
dimension three [9].

In the papers ([11], [12]) O. Kowalski and L. Vanhecke gave the complete classification
for naturally reductive spaces as well as for the commutative spaces in dimension four. Once
again, they proved that both classes coincide.

In the paper [13] O. Kowalski and L. Vanhecke gave the complete classification for the
naturally reductive spaces in dimension five and they have also proved the commutativity of
these spaces.

The purpose of this paper 1s to prove the converse: all five-dimensional commutative
spaces are naturally reductve.,

In this way we prove that, in dimensions three, four and five the class of naturally reductive
spaces coincides with that of commutative spaces.

In dimension n = 6, the coincidence of naturally reductive spaces 1s not true any more.
The six-dimensional generalized Heisenberg group with two-dimensional center 1S a comimu-
tative space, but it is not naturally reductive [5]. On the other hand, the homogeneous space of
the type SU(3) /T, where T' 1s a maximal torus, being endowed with an arbitrary invariant
Riemannian metric, i naturally reductive but not commutative [4].

The paper is organized as follows: in the first section we give some necessary defini-
tions and known facts concerning naturally reductive spaces and commutative spaces; 1n the
second section, divided in some subsections, we shall prove the natural reductivity of five-
dimensional spaces.

I wish to thank to Professor O. Kowalski from the Charles University of Prague for propos-
ing me to work on this problem, and for the helpful suggestions made during the preparation
of the paper.
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1. BASIC FACTS ABOUT NATURALLY REDUCTIVE SPACES AND COMMUTA-
TIVE SPACES

In the first place we present some basic facts on naturally reductive spaces ([11], [12]).

Let (M, g) be an n-dimensional homogeneous Riemannian manifold in the sense that the
full group 1( M) of isometries acts transitively on M . The isotropy subgroup H of (M) at
any fixed point o € M 1s compact. Thus ( M, g) has at least one representation in the form
G/ H , where (G is a connected Lie subgroup of I( M) acting transitively and effectively on
M , H 1s aconmpact subgroup of G, and g is a GG-invariant Riemannian metric on the coset
space G/ H .

The Lie algebra g of G admits an Ad ( H)-invariants positve mner product (,). Let

us take the orthogonal decomposition g = m @ h, where A 1s the Lie algebra of H and

W

m = (h)* is the orthogonal complement in g. This decomposition is reductive in the sense

that Ad ,(H)m C m. G/H is called a reductive homogeneous space with respect to the
above decomposition. In general we may have more than one representation of (M, g) inthe
form G/ H ,and afixed coset space GG/ H may admits more than one reductive decomposition.

Definition 1. The homogeneous Riemannian space ( M , g) is said to be naturally reductive
if there exists a representation (M , g) = G/ H as above and a reductive decomposition

(1) g=m®h, Adg(H)m Cm
with the following property

(2) ([X,Y),,Z)+([X,Z]m,Y) =0,

holds for every X, Y , Z € m,where ( , ) denotes the scalar product on m induced by the
Riemannian metric g via the natural identification m =Ty M , [6].

It is sometimes difficult to decide whether a homogeneous space (M, g) 1s naturally
reductive or not. One has to consider all subgroups G C I( M) acting transitively on M , all
reductive decomposition (1) and then the condition (2).

From the condition (1) it follows that the Lie group Ad , H acts as a group of automor-
phisms of the Lie algebra g, and as a group of orthogonal transformation of the subspace m.
Hence the Lie algebra ad o h acts on g as an algebra of derivations, and on m as an algebra

of skew-symmetric endomorphisms.
In the sequel, we shall write briefly AX instead of ad(A)X for A€ h, X € m.

Let ¥ be the canonical connection of the fixed reductive homogeneous space (M, g) =
G/H with the Ad (H)-invariant decomposition g = m @ h ([6], p. 150).
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Then, at the origin o € M , we have the following formulas for the torsion tensor T and

the curvature tensor K of:

(T(X,Y) = —[X,Y],

3 —
(3) iR(X,Y)g=-*3d([X=Y]Q= forevery X,Y € m,

where we use the canonical identification m = T, M via the projection 7 : G — G/H , i.e.,
via the linear map dm, : T,(G) — T, (G/H).

Because any G-invariant tensor field on M 1s parallel with respect to the connection v,
we have

(4) Vg=VT=VR=0.
From (4) we see that if A € h acts as a derivation on the tensor algebra 7(m) of m,

thenweget(inm =T, M)

— prm—

(5) A-g=A-T=A-R=0, forevery Ac€h.

Now, using (3), the Jacobi identity on g, and (4), we get the following reduced Bianchi
identities:

6) O(R(X,Y),Z)=0(T(T(X,Y),2)), (first Bianchi identity),
(7) O(R(T(X,Y),Z)) =0, (second Bianchi identity),
forevery X, Y, Z € m, where the symbol O denotes the cyclic sum with respect to X,
Y, Z.

In terms of the canonical connection ¥, we can also write the condition (2) of natural
reductivity in the form

(8) o(T(X,Y),Z)+g(T(X,2),Y)=0, VX,Y,Z€cm

Let us now have a simply connected Riemannian manifold (M, g) with a reductive rep-
resentation M = G/H, g = m @ h. Then the isotropy subgroup H is connected because
M is simply connected and the condition Ad( H)m C m is equivalent to the following
condition ([6], p. 178)

(9) [h,m] C m.

Let us notice that the curvature operators ﬁo (X,Y) given in (3) generate a subalgebra
of the algebra adg(h) :

We shall also need the following theorem from linear algebra:
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Proposition 1.1. Let V be an n-dimensional vector space with a positive inner product,
and let A : V — V be a skew-symmeltric endomorphism. Then the rank of A is an even
number 2k < m, and there is an orthonormal basis {X,, ..., X, } C V and real numbers
Aiy..., AL SUch that

(AX, = MX,, AX, = =)\ X,

lllllllllllllllllllllllllllllllll

(10) A
AXqgp 1 = MKy AXy = =2 Xk,
AKXy == AX, =0,
Here the numbers 41 i 7 =1, ..., k,are non-zero eigenvalues of the endomorphisms
A,and U; = X, | +1X,;, U; = X,;_; —iX,; are the corresponding eigenvector of A.

Now, we present the basic facts on commutative spaces ([12], pp. 30-31, [13], pp. 5-6).
Let M be a smooth manifold, C*°( M) the algebra of all smooth functions on M, and
(G a Lie transformation group acting effectively on M, [3].

Definition 2. A differential operator D : C®(M) — C®( M) is said to be G-invariant
with respect to the group GG if for any f € C(M) and any g € G the following relation
holds:

(11) D(f-@)=(Df) @, feCT(M),geaq,
where ®  denotes the actionof g € G on M .

Definition 3. A homogeneous Riemannian space (M , g) is said to be a commutative space if
the algebra of all G-invariant differential operators on M is commutative for G = I°( M) .

Remark. If M is written in the form M = G/ H , then the corresponding algebra of G-inva-
riant differential operators is usually denoted by D(G/ H) , (see [3]).

Proposition 1.2. Let (M, g) be a homogeneous Riemannian space. Then (M, g) isa
commutative space if and only if there i s a subgroup G C I°( M) acting transitively on M
such that the corresponding algebra D(G/H) is commutative.

Proof . Denoting G = I°(M) we get D(G/H) ¢ D(G/H).

Proposition 1.3. Let G/H be a reductive homogeneous manifold, where H is connected
and compact, and G actson G/ H to the left. Then the algebra D(G [ H) of all G-invariant
differential operators has a finite number of generators.

A finite set of generators for D(G/H) can be found by a purely algebraic method, which
we shall describe also briefly [12].
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Let g = m ©® h be a reductive decomposition of the Lie algebra of G. Let S(m) be the

algebra of all polynomial functions on the dual space m*. Forany basis {X,, ..., X_} of m,
S(m) can be identified with the polynomial ring R[ X, , ..., X_], i.e., with the symmetric
subalgebra of the tensor algebra 7 (m) of the vector space m.

Denote by U(g) the universal enveloping algebra of g, i.e., U(g) is the factor algebra

T(g)/N(g), where T(g) is the tensor algebra over g and N(g) C T(g), is the ideal
generated by all elements of the form X Q Y - Y X —[X,Y], X.,Y € g. There is a
canonical mjection j : g — U(g),and U(g) can be identified with the algebra D(G) of all
G -invariant differential operators on GG, where G, is the group of the left translation on G'.

Now, we introduce the «symmetrization map» A : §(m) — U( g) as follows. We choose

a basis {X;, ..., X} of m,and for any finite sequence Y7, ..., Y} selected from the set
{X,,.... X, } put

1
(12) MY Y, . V) = 17 0 Yoy Yoy oo - Yoy €U(9).
OES,

where the dots mark the multiplication in the algebra U(g) .

Then extending this map A by lineartiy to the whole S(m), it can be proved that the
map XA does not depend on the choise of the basis in m, and A is not homomorphism of the
algebras, in general.

Forany A € S(m), AM(4) is G -invariant differential operators on G, and A deter-
mines also a differential operator on GG/ H , if we restrict ourselves to the functions from
C*°( M) which are constant along the fibres of the bundle G — G/ H . The last operator is
not necessarily GG-invariant.

Next, let I(m) C S(m) denote the subring of all Ad( H)-invariant polynomials in
S(m) . Then A gives a biyjection between I(m) and D(G/ H) . Using the Hilberts «Basis-
satz» and the Haar measure on H , one can see that there is a finite number of generators in
I(m),say P, ..., P, . Then the corresponding elements A(P;) , ..., A(P,) € U(g) inter-
preted as differential operators on G/ H form a complete system of generators of D(G/H) .

For our calculations in the sequel we need the following algebraic criterion for the com-
mutativity or non-commutativity of the algebra D(G/ H) , ([3], pp. 389-396).

Proposition 1.4, Let {X,, ..., X} Cm and {A,, ..., A,} C h be vector bases. Each

element of U(g) can be expressed in a unique way as a «polynomial» with real coefficients:

(13) D i i (XDP (X)) (AN L (A

Further, an element D € A(I(m)) C U(g) defines a non-zero differential operator in

D(G/H) if and only if, when expressed in the form (13) it possesse at least one non-zero
coefficient ¢;
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Finally, the algebra D(G/H) is commutative if and only if, given a set of generators
Py,...,P.C I(m),all commutators [A( P;), k(PJ-)] € U(g) vanish as differential opera-

torson G/ H .

2. THE NATURAL REDUCTIVITY OF FIVE-DIMENSIONAL COMMUTATIVE
SPACE

In this section we shall prove our main theorem.

Theorem 2.1. Let (M, g) be a simply connected five-dimensional Riemannian homoge-
neous space. If (M, g) is commmutative, then it is also naturally reductive.

Proof . Letus write (M, g) = G/H, where G C I°(M) and let us have a reductive
decomposition

(14) g=m@h, Ad(H)mCm.

—

Here h can be identified with the Lie algebra h™ = ad g( h) of skew-symmetric endomorphism

ﬂf _.?T_l‘r i-e'-r .h'.* C EE(S)'
From ([12], Proposition 3) it follows that, if G C I°( M) is big enough, then

(15) dimh > 1.

From ([15], p. 137) it follows that if
(A) m is Ad( H)-irreducible, (i.e., if G/ H isisotropy irreducible), then ( M, g) is naturally
reductive.
Suppose now that there is given an orthonormal basis {X,, ..., X<} C m. Then any
skew-symmeftric endomorphism of m is a linear combination of the elementary endomor-
phisms A;:,1,7=1,...,5 definied as follows

foreveryi,7,k=1,...,5,1<J,k#1,].
Choosing properly the basis of m, we have the following remaining possibilities for the
action of Ad(H) on m.
(B) There 1s a 4-dimensional Ad( /1) -1irreducible subspace Span(X,, ..., X,) C m, and
Ad(H) acts trivially on Xs.
(C) There is a 3-dimensional Ad ( H)-irreducible subspace Span(X,;, X,, X3) C m. In
this case there are two subcases:
(C;) Ad(H) acts trivially on Span(X,, Xs);
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(C,) Ad(H) acts non-trivially on Span(X,, Xs).

(D) There are two 2-dimensional Ad ( [) -irreducible subspaces Span( X,, X,), Span(X,,

X4) C m,and Ad( H) acts trivially on X . We have again two subcases:

(D,) Ad(H) is 2-dimensional;

(D,) Ad(H) 1s 1-dimensional.

(E) There 1s a 2-dimensional Ad ( /) -urreducible subspace Span(X,, X,) C m, and

Ad (H) acts triavially on Span (X, , X, , X<) C m.

We shall now make the proof of Theorem 2.1. for all cases (B)-(E), step by step.

Case B. From Lemma 3.2. of the paper [10] (see also [2], p. 31) it follows that Ad( H)
which is 1somorphic to a subgroup of SO(4) contains a subgroup H which is equivalent as
transformation group to the group Sp(1) of the unit quaternions acting on Q ~ R*.

Here H acts transitively on sphere S° ¢ Span(X,, ..., X;) andhence each Ad ( H)-1n-
variant polynomial on Span(X,, ..., X,) is of the form P(X? + X2 + X7 + X?), where
P = P(t) is a polynomial of one variable. The other Ad ( /) -invariant polynomial on m is
X . Thus X2+ X%+ X%+ XZ? ,and X, form a set of generators of I(m) . Further D(G/ H)
is generated as algebra by the differential operators X, - X, + X, - X, + X5 - X5+ X, - X,
X (see Formula (12)).

Further, we have

(17) h™ C Span(Ayy, A3, A1, A,A,A3),

and /I C H is equivalent to Sp(1) C SO(4).
Then, for a proper choice of the orthonormal basis {X,, ..., X_} the Lie subalgebra

E C h™ can be written in the form

F ]

h = Span( Ay + Az, Ajg + Ay, Az — Apa),
and either ™ = A,
or h* = Span(A,,, Au, Ay + Ay Ay — Asy),

or h™ = so(4).

(18)

Let us consider the subcase By: h* = h.

For the torsion tensor 7" at the origin o € M we have from (5):

(19) P-T=0 forcveryPEE,

)

or equivalently

(20) P(T(X;,X;)) = T(PX;, X;) + T(X;,PX;), i,j = 1,...,5.
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Let us put

5
(21) T(X;,X,) =) t5hX,, th=—tf, 4,7=1,...,5.
k=1

From (20) we get, after a lengthy but routine calculations, for P = A, + A, :

T(Xy,X;) =t Xs, T(Xy,Xy) = —t5, X5,
T'(Xy,X3) = thXs, T(X,,X,) = 133Xs,
E(Xlixrl) = t?-aXS: T(-XSIXd) = tga;XS:
(22) T(X,, Xs) = t]e X + 15 X, + 3. X, + t5: X,
T(X,,Xs) = =t X, + t]s X, — 135X5 + 35X,
T(X3,Xs) = ths X, + 835 X, + 35 X3 + 135X,
T(X4,Xs) = —ths X + t3s X, — 135 X5 + 135 X,

In the formulas (22) there are 12 independent parameters t:-;E € R.
Acting by P = A,, + A,y on the both sides of the formulas (22), and using also (16) and

(20), we obtain the following relations for the coefficients T}, *:

( tgd = “‘t%s

t3s = —tis,
(23) § t3s = tis,
t%ﬁ = tis:

\ 325 = ”3%5:

On the basis of (22) and (23), and introducing new notations for tfj , we obtain finally for

T(X;, X,):

T(X,,X,) =aXs, T(X,,X3)=—cXs,
T(X,,X;) =bXs, T(X, X,)= bXs,
T(X,,X,) =cXs, T(X4,X,)=—aXs,
(24) T(X,,Xs) =dX, + fX, + 9gXs + hX,,
T(X,,Xs) = —fX, + dX, — hXs + gX,,
T(X,,Xs) = —gX, + hX, + dX, — fX,,
T(X4, Xs) = —hX, —gX, + fX, +dX,,
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Now, we shall use the commutativity of the algebra D( H/G) which is generated by the
differential operators X, - X, + X, - X, + X5 - X5 + X, - X, , X5. We shall calculate the

corresponding commutators in U(g) , and we shall express this commutator in the form of
Proposition 1.4.

We see easily that

4
= {X, - [ X, Xs] + [ X, Xs] - X, )
k=1

and due to (3) we have
(26) [ X}, Xs] = —=T(X,,Xs) — By,

whereBkeﬁfork= 1,...,4.
On the basis of (24)-(26), and (9) we get finally

(D =X, - X1+ X)Xy + Xy - X+ Xy - Xy, Xs5] =
= —2d(X) - Xy + Xy - Xy + Xy - X3+ Xy - Xy)+
4
+)) [B,,X,]=
(27) ~= 2 [Be X
=—2d(X) - Xy + Xy - Xy + X3 - Xy + Xy - Xy)+

4
l + > o X,.
k=1

From our assumption about the commutativity of the algebra D(G/H) wegetd= 0.
Then (24) reduce to

T(X,,X,) = aXs, T(X,,X3)=—cXs,
T(X,X3) =bXs, T(X,,X;)= bXs,
T(X,,X4) = cXs, T(X4,X,)=—aXs,
(28) T(X,,Xs) = FX, + gX5 + hX,,
:zf(xz,xs) = —fX, — hX, + gX,,
T(X3,Xs) = —gX; + hX, — fX,,
T(X,,Xs) = —hX, —gX, + fX,,

The formula (28) contains 6 independent parameters a, b ¢, f, g, h € K.
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In order to simphity (28) we use the following skew-symmetric transformation of the sub-
space Span(X,, ..., X ):

(29) FX,=T(X,Xs), i=1,...,4,

with the matrix

(30) F

The corresponding eigenvalues of F' are

( A3 =1p, Ay = —ip, where p = \/f2 + g% + h?
Then there is an orthonormal basis {X, ..., X} of Span(X,, ..., X,) such that
- F(X} +iX3) = ip(X] + iX}),
( F(X} + X)) = ip( X} + iXL).

With respect to the new orthogonal basis { X, ..., X, , X5} of m (where we write again
X, instead of X) we have

( 'f(Xqu) = aXs, T(XE,X-_;) = —cXs,
| T(X,,X,) = bXs, T(X,,X,) = bXs,

(33) T(X,,X,) = €Xs, T(X,,X,) = —aXs,
T(X,,Xs) = —pX,, T(X,, Xs)=pX,,

T(X5,Xs) = pXg, T(X,,Xs) = —pX,.

In the sequel we shall omit the tilda ~. Because our new orthonormal basis 1s equally
oriented with the old one, we still have

(34) {ﬂ = Span(A4, B, C),

where A=Ay + Ay, B=A,+ Ay, C=A;3 — Ay,

Recall that the following relations hold:
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In that follows we shall use the reduced first and second Bianchi identity (6), (7), and also
the third identity from (5).

The third identity in formula (5), ic., P- R = 0, P € h, is equivalent to the following
relation:

P(R(X,Y)Z) =
(36) = R(PX,Y)Z+ R(X,PY)Z + R(X,Y)PZ,
for every X,Y,Z € m, and every P € h.

Thus, for X = X,,Y =X,,Z2=X,,t=1,...,5,and P = A we get from (36)
and (16) that A(R(X,,X,)X,) = R(AX,, X,) X+ R(X,,AX,) X, + R(X,, X,)AX, =
R(X,,X,)AX,,i=1,...,5,hence [R(X,,X,), Al = 0. Because R(X,,X,) € h*,it

follows that R(X,, X,) = A\ 4, Ay € R.
Proceeding analogously with the other cases we obtain finally the following relations:

(37) 3% = -
R(X3,X4) = Mg A, B(Xy,X,) = 20, R(X,,X3) = My B,

where Ayy, ..., A3g € R.
The remaining ﬁ( X,;, Xs) are of the form

(38) R(X;,Xs)=asA+bsB+csC, i=1,...,4

where a5, b5, c;s € R.

Now, substituting in (36) different values X = X, ¥V = X, 2= X, ,1,5,k=1,...,4
and acting successively on both sides of (36) by P = A, P = B or P = (C we obtain easily
(omitting the long elementary calculations):

(2)\12+}\24-——,\13=0, 2004 + Ajp + Ay =0,
2010 = A3 — A =0, Ayt App + A3 =0,
2h34 ¥ Agy — A3 =0, 2A14F Agq — A3 =0,
{ 2A34 — Mg — A3 =, 2A1q = Ay — Az =0,
2013 = Ay =23 =0, 273 — A3 — A =0,
L2A53 = A — A =0, 2A3 = Ay — A3 = 0.

(39)
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Solving this system we get that all kl.j =0,1,7=1,...,4,hence from (37) we have

(40) R(X;,X)=0, fori,j=1,...,4.

Now, we shall prove that R(X,, Xs) =0,fori=1,...,4.
Substituting into the first Bianchi identity (6) f(Xi , X;) and ﬁ(X‘-, X ;) from the for-

mula (33)and (38) for X = X, Y = XJ., Z =X, 1< )]<k,1,j,k=1,...,5 and after
tedious but routine calculations (which we omit) we get the following relations:

(41) {aiS:biS:Cﬁ:U, i=1,...,4,
pa=pb=pc=0.

Thus, we have that
(42) R(X;,Xs)=0, fori,j=1,...,4.

On the basis of (40) and (42) we see that all the curvature transformations ﬁ( X, X;)
vanish,1,7=1,...,5

Hence, according to (3), m C g is a Lie subalgebra.

In that follows we shall distinguish to subcases with respect to p:

(43) Dp=0, IDp#0.

In the first subcase I(p = 0), the formula (33) reduces to

T(X,,X,) =aXs, T(X,,X,)=—cXs,
T(X,,X;) =bXs, T(X,,X;)=bXs,
T(X;,X4) =cXs, T(Xs3,X,)=—aXs,
T(X;,Xs) =0, fori=1,...,4.

(44)

Now, if @ = b= ¢ = 0 in the formula (44), then T(X;, X;) = 0 i,j =1, ..., 5,

the condition (8) 1s satisfied identically, and hence our space (M, g) = G/H is naturally
reductive.
In that follows we suppose that

(45) al+ b2+t >0.



On natural reductivity of five-dimensional commutative spaces 25

Using a symplectic transformation of Span( X, , ..., X,) we can find a new orthonormal
basis for which a#0,and b=c=0.

Then the Lie algebra multiplication on m is given (see (3)) by

Xllxz: =HE’X51 :-XZ.',XE]:U:E':IE{]:
» K120, K =0,

(X1,X4]1 =0, (X3,X4] = aXs,

X, Xs1=0, fori=1,...,4.

According to ([13], p.455) our space (M, g) 1s a group space and it can be identified with
the Heisenberg group H> which can be also identified the Cartesian space R’ (z, v, z, u, v) :

(47) G =

e

O e O D
L B~

O 2 = O

The Heisenberg group H> is naturally reductive space and has a left-invariant Riemannian
metric with one parameter p:

1
(48) g= —(dz? +dy? +duv® +dv®) + (udz+vdy —d2)?, p#0.
P

Now, we shall consider the second subcase II(p#0).
Then (41) implies

|
=
[l
0y
]
-

(49) a

Thus, using (32), (42) and (49) we have

{__EE(X{,X;) =0,4,7=1,...,5,

T(X;,X;) =0, for (i,/)# (k,5), k=1,...,4,
T(X,,Xs5) = —pX,, T(Xy,X5) = pXy, p70,
T( Xy, Xs) = pXy, T( Xy, Xs) = —pXs.

(50)

Now, A,,, A;, are skew-symmetric derivations of the corresponding Lie algebra m.
This means that (M, g) admits an isometry group G O @G such that the Lie algebra of
Ad(H) D Ad(H) is isomorphic to h = Span(A,, , Ay, B, C). The Lie algebra of G
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1$ then 1somorphic to g = m @ h, which gives a reductive decomposition with respect to
Ad(H).

In order to prove that our space (M, g) = G/H is naturally reductive we shall replace
our reductive decomposition g = m @ h by a new reductive decomposition

(51) §=ﬂ’$ﬁ, m' = Span(X3,..., X{),
where

X'=X. i=1,....4
(52) { e

Xs=Xs+ p(Apy — Azy).

Here, m' C g is an abelian subalgebra.

We identify again canonically m' = T, M via the linear isomorphism:

w:m — m,

S 5
(53) v (2 ﬂ:"Xi) =) a.X].
i=1

i=1
Then the canonical scalar product {, )" on m' is defined by the formula
(54) (X', YY=(X,Y), XYem X,V emn

Now, using formula (2) for the new reductive decomposition, we see that our space ( M, g)
is naturally reductive. (In fact, it appears that our space is the Euclidean space E°).

Let us consider the subspace B,: h™ D h and, h* = Span(A4,,, Ay, B, C).
We can use now the formulas

(55) P-T=0, Pech*

We can start again with the formulas (24), and in addition, we can act by P = A, on all
these formulas, using (20).

After elementary calculations we obtain the following conditions for the unknown coeffi-
cients:

(56) b=c=h=g=0.

Next, using the commutativity condition for the algebra D(G/ H) , as before, we shall
abtain the same condition ¢ = 0.
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Hence, in the considering subscase ( B,) we have now the following form of the tensor
T(X;, X))

(T(X,,X,) =aXs, T(X,,X;)=0,

T(X,,X3) =0, T(X,,X,) =0,
T(X1,X4) = 0} T(X3]X4) — "—‘ﬂr.Xj,
(57) T(X,,Xs) = X5,

:E(XZ‘JXS) = _f‘Xl;l
Z(Xa:.xj) - —fX.:;:
T(X4,Xs) = f X3,

We see that (57) is a special case of (33), but now E(Xi, XJ-) €h'D E_ 1,7=1,...,5.
We shall prove again that ﬁ(Xi, Xj) =0,foralls, =1, ...,5. From the basic formula

(36) we obtain first the following relations for E(X ;» X ;) , which are analogous to (37):

E(anz) = a1 Ajp + by Bag,
R(X3,X4) = a34A1p + b3y By,
E(Xl ,X3) = a13(Ap — Azg) + €130,
E(Xzaxa.) =y (Ayy — Aszy) + €4 C,
IE(XI,Xq) = a14(A)y — Azy) + ¢y B,
R(X;,X3) = ap(Ajy — Asg) + 35,

(38)

By the further use of (36) we obtain finally

E(XI!X?.) =a1( A — Aszg),

E(Xaale) = :‘112(4412 — Az),

E(tha) = R(}zsxﬁ = a13( A1y — Azg),
R(X,,X,) = —R(X,,X3) = a1,(A);, — Azy),

(59)

where oy, , ay5, ;4 are arbitrary real parmeters.

The remaining operators ﬁ( X,;, Xs) are of the form

(60) R(X,Xs)=a5Ap, +bsAy +csB+dsC, i=1,...,4.

Now, we shall use the first Bianchi identity (6). Substituting (57) nto (6) we see that
T(T(X;, X,), Xs) = 0,and hence

(61) R(X;,X)Xs=0, forij=1,...,4.
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Next, we substitute (60) into (61), then we obtain, after some lengthy calculations, that

(62) R(X;,X)=0, i=1,...,4.
Finally, using (6), (57) and (59) for X;, X, X, # X5 we gel

(63) fa=ay, =a3 =014 =0.

Then, from (59), (62) and (63) we have

(64) {R(Xi,Xj)—-—-U, fori,7=1,...,5,
fa=0.

Now, we shall consider two subcases.
For f = 0 we have from (57) and (64) the following situation

T(X,,X,) =aXs, T(X;,X,)=—-aXs,a€R,
(65) T(X;,X,;) =0, for (i, 7) # (1,2), (3,4),
T(X,, X)) =0, fork,l=1,...,5.

This coincides with the case (46), which is naturally reductive.
For f#0 , we have from (64) that a = 0, and taking also into account (57) we get finally

[:‘f(xl,xg) = fX,,
T(X,,Xs) = —fX,
T(X;3,Xs) = =Xy,

(66) J
j:(-xdl'xﬂ) - f—X?,:
T(XﬁXJ‘):O: for(iij)?’:(khs)ik:1:*-*341
\T(X,,X) =0, fork,l=1,...,5.

This is the same case as (50), which proves that the corresponding commutative space
(M, g) is naturally reductive (and, in fact, equal to the Euclidean space EP ).

Let us consider the subcase B, : E C h*,and h™ = so(4).

Having the tensor f(X o X j) ,1,7=1,...,5 inthe form (57) we can now act on both
sides by A3 € so(4),and we get

(67) a=f=0.
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Thus, we have from (57)
(68) T(X;,X;) =0, fori,j=1,...,5.

Hence, we see from (8) that our commutative space (M, g) 18 naturally reductive.
Case (C). In the subcase (C,) the group Ad( H) isequivalentto SO (3) as a transformation

group. Here Ad ( H) acts transitively on the sphere S? C Span (X 1 » X5, X4) and hence
each Ad ( H)-invariant polynomial on Span (X, , X,, X3) 1s of the form J_E"'(Xl2 + X% +
X3%),where P = P(t) is a polynomial of one variable. The other Ad ( H)-invariant poly-

nomial are X, , X . Thus, X? + X2 + X2 ,and X, , X form a set of generators of I(m) .
Further, D(G/ H) is generated by the differential operators X; - X; + X, - X, + X5 - X3,
X, X

The Lie algebra h of Ad(H) is given by
(69) h* = Span(A,, Ay, Az ).

Now, we shall prove, as before, that in the subcase (C;) our commutative space ( M, g) =
G/ H is naturally reductive.

Acting successively by P = A, , A,y , Ay on (20), we get, after routine calculations,
the following form of the tensor T'(X;, X )

T(X,,X,) =aX,, T(X,,Xs)=—-0X,, T(X,,X;)=0aX,,
T(X,,X,) =bX,, T(X, X,)=bX,, T(X;,X,)=0bX,,
T(X(,Xs) =cX,, T(X,,Xs)=cX,, T(X5,Xs)=cX,,
T(X,,Xs) =dX, + eXs.

(70)

Now, we shall use the commutativity of the algebra D(G/H) which is generated by the
differential operators X -X;+ X, - X, + X5 - X5, X, , X5 . Thus, we check their commutators
in U(g) using Proposition 1.4.

We introduce the following notations:

E, = —R(X;,X,), i=1,2,3,
(71) Es=—R(X;,Xs),
E45 - '—R(X4,.X5).

Hence, from (3), (70) and (71) we abtain

[ X, X1 = —=bX;+ By, 1=1,2,3,
(72) [X;, Xs] = —cX;+ Egs,
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Now, we get, after routine calculations, the following form of the main commutators:

"'Dl :[XI'X1+X2'X2+X3*X31X4]=
3
= {X, [ X, - X 0+ [X;,, X4]-X;}=

1=1

3
=Y {-2b(X; - X;) + [Ey, X;1 + 2X; - Ey) };
1=1

(73)

3
4=

3
= {—2c(X; - X))+ [Eys5, X1+ 2X;-Es)}s
i=1

Applying Proposition 1.4. to (72)-(73), the commutativity of D(G/ H) implies
(74) b=c=d=e=0.

In this way we get from (70) that

r. T(X]}XZ) = ﬂXEE%(X1,X3) — ‘ﬂXz,f(Xz,X?’) - {I.Xl,

(75) if;(xizxj):gi fﬂr(i:j)%(liz):(]-:S):(z:a)

The condition (8) is easily verified and hence our commutative space (M, g) 1S naturally
reductive.

We can show in this case that (M, g) ~ S° x R*.

In the subcase (C,) the group Ad (H) is equivalent to SO(3) x SO(2) as a transfor-
mation group.

Here SO(3) acts transitively on the sphere S* C Span(X,, X, , X;) and SO(2) acts
transitively on the circle §' C Span(X,, Xs).

The corresponding Lie algebra h* = so(3) @ so(2) has the form

(76) h™ = Span( Ay, Ay, Az, Ays) .

Comparing the form of algebra A™ presented in (69) with (76) we see that we can start

from the tensor Z:(X,; , X j) presented by formula (70).
Acting on both sides of (70) by A,s and using (20) we get after simple calculations, that

(77) b=c=d=e=0.
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Hence, the tensor T'( X i X j} takes the form (75), and our commutative space (M, g) =

GG/ H is again naturally reductive. In this subcase the commutativity condition was not needed
to prove the natural reductivity. We note that in this case (M, ¢g) ~ S? x M, , where M, is

a 2-dimensional space form ( R?,or §2,or SL(2,R) /SO (2)).

Case (D;). Here the group Ad( H) is equivalent to SO(2) x SO(2) as a transformation
group. Hence, Ad ( H) acts transitively on the circle S* C Span(X,, X,), and indepen-
dently on the circle S' C Span(X,, X,).

Obviously, X7+ X5, X5+ X2, X formasetof generators of I(m) . Further, D(G/ H)
15 generated by the differential operators X, - X; + X, - Xy + X3 - X3 + X, - Xy, X5
The Lie algebra of Ad( H) acting on m has the form

(78) h* = Span(A,,,A3,).

Using the identities A,, -T = 0, As, - T = 0 we get, after elementary culculation, that
the tensor ZZ:(X,;, XJ-) has the following form:

ri(xhxz) =t?2-X51 ij(Xz:Xz) =0,
T(X]:-XE):O: T(X21X4) =01
T(Xy,X4) =0, T(X3,X4) = 134 Xs,
(79) T('XliXS) — t%ﬁxl + t%ng,

T(Xy,Xs) = —t}s X, + t1s X,,
T(X3,Xs) = t35 X5 + t35.X,,
T(X4, Xs) = —t3: X, + 13 X,

Now, we shall use the commutativity of the algebra D(G/H), and we shall calculate
successively the three commutators:

D =[X, X +X, -X,,Xs],
(80) Dy =Xy - X3+ X, -Xy,Xs],

Realizing the same calculations as for obtaining the formulas (25)-(27) we can write mod-
ulo h

D; =0.
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From the commutativity it follows that D; = D, = 0, hence

(82) tis = t35 = 0
Taking into account (82), the formulas (79) reduce to the following ones:

(T(X,,X,) =aXs, T(X,,X;)=0,

| T(X,,X3) =0, T(X;,X4) =0,
(83) 1 ?_:(Xlaxzp) =0, T:(X3,X4) = b}{5,
T(X,,Xs) =cX,, T(X5,Xs)=dX,,
\T(X,, Xs) = —cX,, T(X; Xs)=—dX,.

The curvature transformations have the following forms (see (78))

(84) R(X;,X;) = a A +bjAs, i<j, i,j=1,...,5.
From (36) and (84) we obtain easily
(85) R(PX,Y)+ R(X,PY)=0, forP=A,,and P=A,,.

In particular R(A, X, Xs) = R(A3 X, Xs) = 0 whichimplies R(X,, Xs) = 0, for
1=1,...,4.
Hence, from (85) we get easily that E(Xk, X)) =0,for (k, 1) #(1,2),(3,4), k,l =
o4
Thus, we have obtained finally

1

-EE(X] ,X2) = appApy + by By,
(86) E(XB'-'X‘:L) — ﬂ-34..412 + b34 B34, ﬂ'kl’ bkl - R}
R(X*J:!Xj):o: fOI' (11})#(1:2’):(3:4)

Now, we shall replace the old reductive decomosition g=m®h, [h, m] C m bythe
new reductive decomposition

(87) g=m'@®h, [hm'Cm

where
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m' = Span(X{,...,X§),
(88) X;=X, fori=1,...,4
X5 = X5 —cAp — dAs,.

b

We can calculate the Lie brackets in g using (3), (83) and (36). We obtain easily

(X{,X}). = —aXi,
(89) (X3,X41, = —bX§,

m'

(X}, X;] =0 otherwise.

According to formula (32) from (13) this gives the Heisenberg group H> with a left-
invariant metric (see the case (B,))

1 1
(90) g=—(du?+dz?) + E(d»u2 +dy?) + (vdz+vdy —dz)? a,b#0.
9

Thus, our commutative space ( M, g) is naturally reductive.
Remark. If only one of the parameters a, b is different from zero, then our space (M, g) 1S
the direct product of the Heisenberg group 3 and R?, hence on the basis of (Lemma 1.2, [13])
our space 1s naturally reductive, as well.
Case (D, ). In this case we can suppose that

(91) h* = Span(A;, + M), where X > 1.

We shall distinguish later three subcases:

a) For \ = 1, the generators for J(m) are exactly Ad ( H)-invariant polynomials X7 +
X2, X2+ X2, X Xs+ X, Xy, X1 Xy — X X5, Xs

b) For A = 2, the generators for I{ m°) (the complexificationof /(m) ) are the Ad ( H ) -1n-
variant polynomials U, U, , U,U,, U?U,, U,U,, Xs, where U, = X, + iX,, U, =
Xy +1X,.

c)For 1 < A\ < 2,o0r A > 2, wealways have Ad ( H)-invariant polynomials X7 + X%,
X3 + X%, X<, and possibly other Ad ( H)-invariant polynomials, as generators for I(m) .

The corresponding calculations can be made easily using the complexification of the space

m and the complex form of the action exp{t( A, + A34)].
At first we shall present some common fact for a general A > 1.

Using the identity (A4,, + MA,,) - T = 0, we get as before, the following form for
’f(X{,Xj):
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(T(Xy, X)) = 15, X5, T(X3,X,) =13, Xs,
T(X{,X3) =t X, + 15X, + 133 X<,
f(XI:-X4) = —th X; + 53X, + 17, X5,
T(Xy,X3) = th X, —t3X2wt4X5,

(92) y T(Xzsxat)"tlzxi + 17 Xz‘” 3 X5,
T(XI,XS) = 1] SX + tZSXZ + 13 X3 + t‘;‘s}{4,
T('X?.!Xﬂ) = —t .X +t X t 5X4,

T(meﬁ) = 135 X +t25X +t35X +t5X4,
T(X,,Xs) = =3 X, + 113X, — 35 X5 + 135 X,

with the additional relations:

(A= Dt33 =0, (,\—l)t?_qz
M — Ditde = A — Ditfe =
(}c. — ..)t35 —_ 0, (}\ — 1)t35 —_

(A=2t3 =0, (A=2)t5, = 0.

Subcases (D, ) a) For A = 1 we get from (93):
(94) tiz =113 = 0.

Thus, the tensor f( X, X j) has the form

(T(X,,Xp) =thXs, T(X;,X3) = 13, Xs,

| '{(Xlaxs) =1 3X5: T(X,,X4) = 113X,
T(X;, X, ) = 13, Xs, T(X3,X4) = 13, Xs,

(95) 3 T(XI}XS) =tle X, + 15 X, + 83 X, + ths X,

1 E(—XZJXS) = —t{s X + 415 X, — 115 X5 + 135 X,

T(X3, Xs) =t X, + 12 X, + t§5x + t35 X,

|
\T( Xy, Xs) = —t3s X, + 135 X, — 135 X5 + 135 X4

The symmetrization mapA: I(m) — U(g) gives the generators X, - X, + X, - X,

Xo Xa+ X, Xy, Xy Xo+ Xy X422, X, - Xy—X, X5+ 2Z,, Xs of D(G/H),
where Z,, Z, € m.
Now, we shall calculate the corresponding commutators of algebra U(g) .
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We 1ntroduce the following short notations:
(96) R(X;,X;)=1;P, P=Ap+A4sy,, ij=1,...,5

Thus, we get modulo h:

—245( X, - Xy + X, - Xp) -

28Xy - X + X - Xg)+

—2t5( X - Xy — Xy - X3) + 15 Xy — 15X+
\ —2(t33t7s + 134115) Xs.

Il

JDI = [X,- X, +X, X,,X]=

(97)

From the commutativity of the algebra D(G/H) we get immediately
1
(98) tis =ts =t3s = 0.
Next, we have

Dy= [X3 -Xs+X, X, Xs] =

—2835( X3 - X3 + Xy - X4)—

(99) —2836( Xy - X3+ X, - X )+
215 (X, - Xy — Xy - X3) + 146 Xy — 1ag X+
—2(t33t35 — 134135) Xs.

Hence, we obtain the relations
(100) tys = t3s = 35 = 0.

In that follows we shall calculate explicitly only the leading terms (of the highest degree)
of our commutators.
First, we have

— 1, (X - Xy + X, - X)) - X+

+ lower terms.
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Thus, we get the relations
(101) 2, =13, =0.
Thus, we have

= —213,(X, - X, + X, - X,) - X5 + lower terms.
Thus, we obtain
(102) t3, = 0.
Furhter, we have

DS =[X1 '.Xl +X2 .’XZI‘X]. 'X4 —X2 X3 +Zz] —

=—-21,(X; - X; + X, - X,) - X5 + lower terms.
and hence
5
Finally, we calculate

Dﬁ Z[Xl '.X3+.X2 'X4+ZI,X5] ——

=(t% + t35)(X, - X5 + X, - X)) + lower terms.
and hence

From the formulas (98) and (100)-(104) we obtain the following form of the tensor
T(X;, X;):

r T(Xy,Xs5) = t1s Xy, f(XZ,XS) = —t{s X,
T(X5,Xs5) = ~115 Xy, T(X,,Xs) = 15 X3,
[T(Xi.,Xj) = 0 otherwise.

(105)

A
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We can easily prove from the Bianchi identity (6) that

(106) ﬁ(){i,Xj)z{), fori,7=1,...,5.

Thus, we have the same case as in (50), and our space is naturally reductive.
Subcase (D,) b) For A = 2 we get from (93):

(107) ts = t1s = ts = 35 = 13-
Thus, it follows from (93) and (107) that the tensor f(Xi, X j) has the following form:

[E(Xl X3) = 15, Xs,
T(Xy,X3) =t]3X; + 113X,
T(Xy,X4) = —153. X + tj3.X,,
T(Xy,Xs) = tis X, + tis X,,
'E(XZ,X;,,) = 153X, — t13X5,
<l T(Xp,X4) = 113X, + 13X,
T(Xp,Xs) = —tis X, + 15X,
F(Xy ) = B, s,
T(X3,Xs) =135 X3 + t35.X,,

| T(Xy, X5) = —t35 X5 + 135X,

(108)

In order to sumplify the calculations we shall use the complexification m® of m and the
complex form of the action of exp[t(A,, + 24,,)],t € R.
We put

(109) U =X, +1X,, U,=X;3+1X,.
For the operator A = A}, + 2A4,, we get

(110) AU, = —iU,, AU, = —2iU,, AX.=0.

With respect to the basis {U,, U,, U, , U, , X« }, the representation of Ad (H) on m®
is given by the formulas:
111) {Ad(h)Ul =ey,, forhc H, t€R,
Ad(R)U, = e *"U,, Ad(h)Xs = X..
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From (111) we see easily that the Ad ( H)-invariant polynomials U, U, , U,U, , U?U,
_ff? U,, Xs on I(m°) form a set of generators, and the symmetrization map gives the fol-
lowing generators for D(G/H) the complexification of D(G/H): U, -U, + U, - Uy,
u,-U,+U,-U,,U,-U,-U,+U,-U,-U+U,-U,-U,,U,-U,-U,+U,-U, - U;+U, -U,-U, ,

Xs.

In the complex form, the formulas (108) can be rewritten as follows:

(112)

(T(U;,Uy) = —2it3, Xs,

| T(Uy,0p) =0,

T(U,,U,) = —2(tl, + it3) U,
T(Uy, Xs) = (t}s — ith) U,
T(U,,U,) = —2it}, Xs,
T(U,,Xs) = (85 — it3s) Uy,

(we omit the relations obtained by the complex conjugation).

Now, we obtain, after routine calculations, the following form of the Lie brackets in

D(G/H)*° modulo the subalgebra h°:

D, =

(113) D,

D3=

(U, - U, +U, -U;, Xs] =

—4 11 (U, -ﬁl) + lower terms;

(U, - U, +ﬁ_2 Uy, X5l =

—413(U, - U,) + lower terms;

~8(tl; + it%) (U, - U, - U) + lower terms.

Thus, from the commutativity of the algebra D(G/H)°© we get the relations:

(114)

1 2 1 3
3 =13 =15 =135 = 0.

The last commutators have the form

qu,: [Ul'Ul'ﬁl—l-Ul'ﬁl'Ul-l-ﬁZ'Ul'U]!XS]E
= 3i(2tk —t35)(U, - U, - U, )+ lower terms;
Ds= (U, -U -U,+U, U, -U+U, U -Uy,

(115)

Il

—181t3, (U, U, Uy Uy - X)+

+364t3, (U, - U, - U, - U, - Xs)+ lower terms;

From the commutativity condition we get the relations:

(116)

t, =13 =0, and 3 = 2ti.

Leon Bieszk
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The remaining commutators give not any conditions for tf}- :

Thus, on the basis of (108), (112) and (116) the tensor T has the following form (in real
domain):

T(X,,Xs) = aX,, T(X,,Xs) = —aX,,
(117) T(Xy,Xs) =2aX,, T(X,,Xs)=—-2aX,,
ZI':(X,.,Xj) =0 otherwise, a € K.

We can easily prove from the Bianchi identity (6) that

(118) R(X;,X;)=0, fori,j=1,...,5.

Thus, we have a special case of (83) and (86), and our space is naturally reductive.

Subcase (D,) ¢) For 1 < A <2 or A > 2 we see from (93) that the tensor f(X{, X;)
has the following form:

(T(X,,X,) =13,Xs, T(X,,X,) =0,
T(X,,X3) =0, T(X,,X,) =0,
T(X,,Xs) =0, T(Xq,X,) = t5, X,
(119) S T(X,Xs) = the X, + 15 X,,
T(X,,Xs) = —t}s X, + 15X,

T(X3,Xs) = t35X3 + 135Xy,
lT(thXs) = —135. X3 + 135 X4,

from D(G/H) .
The commutators have the following form (modulo the subalgebra h):

—2t (X, - X, + X, - X,)+ lower terms;

Il

(120) D2 - [.X3 ‘X3 + X4 '.X4,.X5] —
= 2t3:(X; - X3 + X, - X4)+ lower terms;
Daz (Xl',X1+X2'X2,X3'X3+.X4'X4]EO.

Hence, from the commutativity condition we have the relations:
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Thus, the tensor f{ X,, XJ.) has the form:

E(anz) = 7, X, f(XmXa) =0,
T(X,,X3) =0, T(X,,X4) =0,
(122) T(X,,X,) =0, T(X3,X,) = 134 Xs,
T(X1,Xs) =t]sX,,  T(X3,Xs) = tisX,,
T(Xy,Xs) = —t5X, T(X4,Xs) = —thsXs.

We can easily prove from the Bianchi identity (6) that

(123) R(X;,X;)=0, fori,j=1,...,5.

Thus, we have a special case of (83), and our space is naturally reductive.
Case (E). In this case the group Ad( H) is equivalent to SO(2) as a transformation group.
Here our group SO(2) acts transitively on the circle S' C Span( X, , X, ) ,and acts trivially
on Span( X, , X, , Xs).

Obviously, X + X2, X5, X, , X5 form a set of generators, of I(m).

Further, D(G/ H) is generated by the differential operators X, - X, + X, - X, , X5, X,,
Xs.

The Lie algebra of Ad( H) acting on m is

(124) h* = Span(A,,).

——

Using the identity Ay, - T = 0 we get after elementary calculations, that the tensor
T(X;,X;) has the following form:

(T(X),X;) = ], X3 + 1], Xy + 13, X5,

T(X),X3) = 13X, + th X,,

| T(X,,X,) =t} X, + th X,,

T(X,,Xs) = t}s X, + t}s X,

f(xzsxz) = _t%E-Xl + t}SXZI

T(X;,X,) = =13, X, + t]4 X,,

T(XZIXS) = _t%S-Xl + t%SXEI

| T(X,,X,) =13, X, + t3, X, + 13, Xs,
T(X3,X5) = 35 X5 + t35 X, + 135 X,

| T(Xy,Xs) = tis Xy + tis Xy + 135 X,

(125) 3
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Now, we shall calculate the commutators, in U(g) for the generators X, - X; + X, - X, ,
X5, X, , X5 € D(G/H) . Realizing this, we obtain modulo h using (3) and (125):

[D1 = [ X3, X1 = 13, X, — 13, X, — 13, Xs,
Dy = [X3,Xs]= 135X — 155X, — 135X,
Dy= [X, X, +X, X, Xs] =
(126) = “215(X; - X+ Xy - X)) o Xy + op X,
D= [X; X+ Xy Xy, X,] =
= —2t(X, - X+ X, - X)) + B X + B X;,
Ds= [X,-X;+X, -X,,Xs] =

where o, ..., 1, € R.
From the commutativity condition we obtain the following relations:

ti:} = t}d = tiﬂ =Y,
130 =134 = 13 = 0,
t3s = t35 = 135 = 0,
tis = tds = 135 = 0.

(127)

From (125) and (127) we get using shorter notations:

T(X,,X,) = aX; + bX, + cX;,
T(Xq,X,) =T(X5,Xs) =T(X,,X5) =0,
(128) T(Xy,X3) = dX,, T(X,,X,)=—dX,,
j:(Xl:Xq) = fX,, j:(xzsxzt) = —fXy,
T(X,,Xs) = 9X,, T(X, Xs)=—g9X,.

Further, we have from (124)

(129) R(X;, X)) =1 A, r;€R, i,j=1,...,5.
Substituting (128), and (129) in the Bianchi identity (6) we get

(130) R(Xy,X,) = rp Ay, R(X;X;) =0 otherwise.

To prove the natural reductivity of our space we shall change again the reductive decom-
position g = m @ A", [R", m] C m into the new reductive decomposition

(131) g=m' ®h", [h',m']Cm,
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where
m' = Span(X1,...,X¢),
-X:::Xi: £=1:2:31

X‘; — X4 — (b'l' f)A]_z,

The Lie algebra brackets in g are, due to (128), (130), (132), and (3) equal to

[.;{._lll ,.X-i] — —ﬂ-.X3 -— bX4 - C.XS + EEA].ZJ o & R,
X! X1 =aX,, [X X.]=—aX,,
(133) (Xi,Xi1=bX,, [X;,Xi]=-bX,,
X!, X! =cX,, [X},X!]=—cX,,
[ X3, X4) = [ X3, X4] = [X}, X351 =0.

From (133) and (2) it follows the natural reductivity of our commutative space (M, g)

in the case (E).
This completes the proof of Theorem 2.1.
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