METRIZABILITY OF AFFINE CONNECTIONS ON ANALYTIC MANIFOLDS OLDŘÍCH KOWALSKI It is well-known (see e.g. [3]) that a torsion-free connection ∇ on a connected smooth manifold M is a Riemannian connection of a Riemannian metric g if and only if its holonomy group $\phi(x)$ (with a fixed reference point $x \in M$) preserves a positive scalar product on the tangent space T_xM . In this paper we are occupied with the corresponding computational problems: - a) How to decide effectively whether a given (torsion-free) connection is a Riemannian connection? - b) In the positive case, how to find out effectively all corresponding Riemannian metrics (in the prescribed local coordinates)? We shall solve both problems under the restriction that the basic manifold M is connected and simply connected, and that both M and the given connection ∇ are analytic. Let us note that the problems above have been solved for very special cases in [1], [2], and in more general terms by the author in [4] and [5], where some kind of regularity for the curvature tensor was assumed. See also [6] and [7] for related results. §1. Let M be a connected analytic manifold with a torsion-free connection ∇ , and let $x \in M$ be an arbitrary point. According to ([3], Chapter III), the restricted holonomy group $\phi^{\circ}(x)$ of ∇ with the reference point x is a connected Lie transformation group. The corresponding holonomy algebra $\underline{h}(x)$ is generated, as a vector space, by all endomorphisms of the form $(\nabla^k R)(X,Y;Z_1,\ldots,Z_k)$, where $X,Y,Z_1,\ldots,Z_k\in T_xM$ and $0\leq k<\infty$. Let us denote by $\underline{h}^{(r)}(x)$ the subspace of $\underline{h}(x)$ generated by all endomorphisms $(\nabla^k R)$ $(X,Y;Z_1,\ldots,Z_k)$ for $0 \le k \le r$. The point $x \in M$ is said to be ϕ -regular if $\dim \underline{h}^{(r)}(x)$ attains its maximum in a neighborhood U_x for all r. We can prove easily that the set of all ϕ -regular points is an open dense subset of M. At a ϕ -regular point we have $\underline{h}^{(N+1)}(x) = \underline{h}^{(N)}(x)$ for some N, and the same must hold in a neighborhood U_x of x. Hence we obtain (using the covariant differentiation) that $\underline{h}(y) = \underline{h}^{(N)}(y)$ for all $y \in U_x$. We see that - (i) we can decide effectively if a given point x is regular or not, calculating successively the subspaces $\underline{h}^{(r)}(y)$ in a coordinate neighborhood U_r ; - (ii) around a regular point, the algebra $\underline{h}(y)$ can be calculated effectively in the prescribed local coordinates. We can see even more: the number N is constant on the set of all ϕ -regular points of M. Indeed, let first $x, y \in M$ be two ϕ -regular points in the same connected coordinate neighborhood $U(x^1, \ldots, x^n)$, and suppose that dim $\underline{h}^{(r)}(x) < \dim \underline{h}^{(r)}(y)$. Denote $k = \dim \underline{h}^{(r)}(x)$. This means that, in a neighborhood $V_x \subset U$, $\dim \underline{h}^{(r)}(z) < k+1$. Consider the matrix $R^{(r)}$ whose entries are the local components $R^v_{iju\,i_1,\dots,i_k}$, the n^2 columns are indexed by the ordered pairs (u,v) and the rows are indexed by the ordered sets $(i,j;i_1,\dots,i_k), k=0,1,\dots,r;i,j,i_1,\dots,i_k=1,\dots,n$. Then all determinants of degree k+1 of the matrix $R^{(r)}$ are real analytic functions in U which are identically zero on the open subset V_x . Hence these determinants must vanish in U, which is a contradiction to the assumption $\dim \underline{h}^{(r)}(y) \geq k+1$. If $x,y \in M$ are arbitrary ϕ -regular points, we can joint them by a finite chain of intersecting connected coordinate neighborhoods. Hence the assertion follows. §2. Let (M, ∇) be a connected smooth manifold with a torsion-free affine connection. Let $\underline{h}(x)$ denote again the holonomy algebra of ∇ at x, i.e., the Lie algebra corresponding to the restricted holonomy group $\phi^{\circ}(x)$ with the reference point x. Further, let $H(x) \subset S^2T_xM$ denote the subspace of all symmetric bilinear forms G_x on T_xM satisfying the condition $$G_x(Au,v) + G_x(u,Av) = 0$$ for all $A \in \underline{h}(x)$ and all $u, v \in T_x M$. Now, we have **Proposition 1.** If M is connected and simply connected, and if the subspace $H(x) \subset S^2T_xM$ for some $x \in M$ contains a positive definite form, then ∇ is a Riemannian connection on M. Conversely, if ∇ is Riemannian, then each subspace H(x), $x \in M$, contains a positive definite form. *Proof* is obvious because $G_x \in H(x)$ means that G_x is invariant with respect to the full holonomy group $\phi(x)$. For a positive definite $G_x \in H(x)$ we obtain a unique Riemannian metric on M via the parallel transport. **Remark.** We do not know any *direct* decision algorithm based on Proposition 1 and using only linear algebra. Therefore, we shall develop a more «geometrical» algorithm (see §4) based on the de Rham decomposition of a Riemannian manifold. The next paragraph has a preparatory character. §3. Let (M,g) be a connected and simply connected smooth Riemannian manifold and ∇ the corresponding Riemannian connection. Let $\{G^{\alpha}, \alpha = 1, ..., p\}$ be any basis of the subspace $H(x) \subset S^2T_xM$, and let $\hat{g} \in H(x)$ be a regular form (not necessarily positive). Define the symmetric endomorphisms S^{α} , $\alpha = 1, ..., p$, on (T_xM, \hat{g}) by the formula (2) $$\hat{g}(S^{\alpha}u,v) = G^{\alpha}(u,v), \quad u,v \in T_xM.$$ Let C_x denote the *commutant* of the set $\{S^1, \ldots, S^p\}$, i.e., the subspace in $\operatorname{End}(T_xM)$ generated by all commutators $[S^\alpha, S^\beta]$, and let N_x be the (common) null-space of C_x in T_xM . We have **Proposition 2.** If $C_x \neq (0)$, then the orthogonal complement N_x^\perp of N_x with respect to \hat{g} coincides with the maximal subspace $T_0 \subset T_x M$ on which the holonomy group $\phi(x)$ acts trivially. If $C_x = (0)$, then either dim $T_0 = 0$, or dim $T_0 = 1$. The restrictions G^{α}/T_0 ($\alpha=1,\ldots,p$) are generators of the space S^2T_0 (of all symmetric bilinear forms on T_0). Moreover, the restriction \hat{g}/N_x is regular and the subspace $H(x)/N_x \subset S^2N_x$ is generated by positive semi-definite forms g_1,\ldots,g_s whose null-spaces $N_1,\ldots N_s$ in N_x satisfy the following orthogonal decomposition (with respect to \hat{g}/N_x): (3) $$N_x = N_1^{\perp} + \ldots + N_s^{\perp}.$$ Proof. According to [3, Chapter IV], we can write $T_xM=T_0+T_1+\ldots+T_s$ (direct sum), where the decomposition is orthogonal with respect to the Riemannian inner product g and $\phi(x)$ -invariant. Here T_0 is the subspace of all fixed vectors under the action of $\phi(x)$, and T_1,\ldots,T_s are irreducible subspaces under the action of $\phi(x)$. Further, $\phi(x)$ itself decomposes as a direct product $\phi_0(x)\times\phi_1(x)\times\ldots\times\phi_s(x)$, where $\phi_0(x)$ is trivial. Now, $H(x)\subset S^2T_xM$ is just the subspace of all $\phi(x)$ -invariant forms. Let \hat{T}_i ($i=0,1,\ldots,s$) denote the orthogonal complement of T_i in T_xM with respect to g. We shall now prove the following **Lemma.** The subspace $H(x) \subset S^2T_xM$ coincides with the set of all forms (4) $$G_x = G_0 + \lambda_1 G_1 + \ldots + \lambda_s G_s \quad (\lambda_1, \ldots, \lambda_s \in R)$$ where G_0 runs over all symmetric bilinear forms whose null-spaces contain \hat{T}_0 , and G_1,\ldots,G_s are fixed forms which are positive definite on T_1,\ldots,T_s respectively and whose null-spaces are $\hat{T}_1,\ldots,\hat{T}_s$ respectively. Proof. Obviously, all forms $G \in S^2T_xM$ whose null-spaces contain \hat{T}_0 are $\phi(x)$ -invariant and hence they belong to H(x). For $i=1,\ldots,s$, define the form G_i as that with the null-space \hat{T}_i and coinciding with the Riemannian scalar product g on T_i . Obviously, $G_1,\ldots,G_s\in H(x)$. Further, any $\phi(x)$ -invariant symmetric bilinear form on T_i must be a multiple of $g|T_i$ (see [3], Appendix 5). Hence each form $G\in H(x)$ whose null-space contains \hat{T}_i must be a multiple of G_i . It remains to check that, if $G_x\in H(x)$, then $G_x(u,v)=0$ whenever $u \in T_i$, $v \in T_j$, $i \neq j$, $i, j \in \{0, 1, ..., s\}$. Then we obtain the decomposition (4) taking first the restrictions of G_x to T_0 , T_1 , ..., T_s respectively and then extending each restriction $g_x|T_i$ to a new form on T_xM in a trivial manner (by taking zero values on the union $(\hat{T}_i \times T_i) \cup (T_i \times \hat{T}_i) \cup (\hat{T}_i \times \hat{T}_i)$). Fix $i, j \in \{0, 1, ..., x\}$ such that $i \neq 0$, and fix $v \in T_j$. Consider the linear form $L \in T_i^*$ given by $L(u) = G_x(u, v)$, $u \in T_i$. Because G_x is $\phi(x)$ -invariant, then L(u) must be $\phi_i(x)$ -invariant. But then L = 0, otherwise the dual representation of $\phi(x)$ on T_i^* would admit a fixed direction, a contradiction to the irreducibility, q.e.d. Let now $\{G^1, \ldots, G^p\}$ be a basis of H(x), and let S^1, \ldots, S^p be the corresponding symmetric operators given by (5) $$\hat{g}(S^{\alpha}u,v) = G^{\alpha}(u,v) \quad (\alpha = 1,\ldots,p; u,v \in T_xM).$$ According to our Lemma, we have $$\hat{g} = \hat{g}_0 + \alpha_1 G_1 + \ldots + \alpha_s G_s,$$ where \hat{g}_0 is regular on T_0 and α_1 , ..., $\alpha_s \neq 0$. Define the symmetric operators S_1 , ..., S_s by (7) $$S_i u = (1/\alpha_1) u \text{ for } u \in T_i, \quad S_i u = 0 \text{ for } u \in \hat{T}_i,$$ and the symmetric operators E_0^{α} ($\alpha = 1, ..., p$) by (8) $$\hat{g}(E_0^{\alpha}u, v) = G^{\alpha}(u, v) \text{ for } u, v \in T_0; \quad E_0^{\alpha}u = 0 \text{ for } u \in \hat{T}_0.$$ Further, in accordance with our Lemma, put (9) $$G^{\alpha} = G_0^{\alpha} + \lambda_1^{\alpha} G_1 + \ldots + \lambda_s^{\alpha} G_s \quad (\alpha = 1, \ldots, p).$$ Then we see easily that (10) $$S^{\alpha} = E_0^{\alpha} + \lambda_1^{\alpha} S_1 + \ldots + \lambda_s^{\alpha} S_s \quad (\alpha = 1, \ldots, p).$$ Because all commutators $[S_i, S_j]$ and $[S_i, E_0^{\alpha}]$ are zero due to (7), (8), we see from (10) that (11) $$[S^{\alpha}, S^{\beta}] = [E_0^{\alpha}, E_0^{\beta}], \quad \alpha, \beta = 1, \dots, p.$$ Hence the commutant C_x of $\{S^1\,,\,\ldots,\,S^p\}$ contains only forms with the null-space $\supset\hat{T}_0$, and thus $$(12) N_x \supset \hat{T}_0 = T_0^{\perp}.$$ Let now $\{e_1,\ldots,e_r\}$ be an orthonormal basis of T_0 with respect to \hat{g}_0 , i.e., with respect to $\hat{g}_0|T_0$. It means that $\hat{g}_0(e_i,e_i)=\epsilon_i=\pm 1$ for $i=1,\ldots,r$. The corresponding operators E_{ij} defined for $1\leq i\leq j\leq r$ by (13) $$E_{ij}(e_i) = \epsilon_j e_j$$, $E_{ij}(e_j) = \epsilon_i e_i$, $E_{ij}(e_k) = 0$ otherwise, form a basis for the space of all *symmetric* endomorphisms of T_0 (with the scalar product \hat{g}_0). Due to our Lemma, the operators $S^{\alpha}|T_0$ ($\alpha=1,\ldots,p$) form a set of generators of the same space. Hence all E_{ij} are linear combinations of the operators $S^{\alpha}|T_0$, and all brackets $[E_{ij},E_{kl}]$ are contained in the restriction $C_x|T_0$ of the commutant C_x . On the other hand, these brackets generate the space of all *skew-symmetric* operators of (T_0, \hat{g}_0) . Indeed, any skew-symmetric operator J_i^j defined on T_0 by (14) $$J_i^j(E_i) = \epsilon_i e_j, \quad J_i^j(e_j) = -\epsilon_i e_i, \quad J_i^j(e_k) = 0$$ otherwise, can be expressed as $J_{\bf i}^j=\epsilon_{\bf i}[E_{{\bf i}j}\,,\,E_{{\bf i}i}]$. Hence the space $C_x|T_0$ contains all skew-symmetric operators of $(T_0\,,\,\hat g_0)$ and thus the null-space N_x of the commutant C_x is contained in T_0^\perp , unless dim $T_0\leq 1$. This and (12) implies that $N_x=T_0^\perp$ and $T_0=N_x^\perp$ for $C_x\neq (0)$. We can put $g_i = G_i | N_x$ for i = 1, ..., s (in accordance with our Lemma) and this concludes the proof of Proposition 2 for dim $T_0 \neq 1$. If dim $T_0=1$, then $N_x=T_xM$, and we attach a new form $g_{s+1}\in H(x)$, which is positive on T_0 with the null-space \hat{T}_0 . Then Proposition 2 also holds after replacing s with s+1. Let us still keep the assumptions and notations of §3. We shall prove the following **Proposition 3.** Let $N_x = N_1^{\perp} + \ldots + N_s^{\perp}$ be the orthogonal decomposition as in Proposition 2. Let $g^{(1)}$, ..., $g^{(r)}$ be a basis of the subspace $H(x)|N_x \subset S^2N_x$, and $S^{(1)}$, ..., $S^{(r)}$ be the endomorphisms of N_x defined by (15) $$\hat{g}(S^{(\alpha)}u, v) = g^{(\alpha)}(u, v) \quad (\alpha = 1, ..., r; u, v \in N_x).$$ Let $\{Z_1^{(1)},\ldots,Z_{p_1}^{(1)},Z_2^{(2)},\ldots,Z_{p_2}^{(2)},\ldots,Z_1^{(r)},\ldots,Z_{p_r}^{(r)}\}$ be the set of all eigenspaces of all operators $S^{(1)},\ldots,S^{(r)}$ (written in some order). Then each of the subspaces $N_1^\perp,\ldots,N_s^\perp$ can be written as an intersection of the form $Z_{\alpha_1}^{(1)}\cap\ldots\cap Z_{\alpha_r}^{(r)}$ $(1\leq\alpha_l\leq p_j,j=1,\ldots,r)$, and each of the eigenspaces $Z_{\alpha_i}^{(i)}$ can be written as a direct sum of some of $N_1^\perp,\ldots,N_s^\perp$. Moreover, we have r=s, and any restriction $g^{(\alpha)}|N_j^\perp$ is a multiple of the corresponding form $g_j|N_j^\perp$. Proof. According to Proposition 2 and its proof, we can write (16) $$g^{(\alpha)} = \lambda_1^{(\alpha)} g_1 + \ldots + \lambda_s^{(\alpha)} g_s \quad (\alpha = 1, \ldots, r),$$ where $g_i = \hat{g} | N_i$ for i = 1, ..., s and hence (17) $$S^{(\alpha)} = \lambda_1^{(\alpha)} E_1 + \ldots + \lambda_s^{(\alpha)} E_s$$ where E_i denotes the operators with the null-space N_i acting as the identity operator on N_i^{\perp} . Thus the eigenspaces of $S^{(\alpha)}$ are just direct sums of some N_i^{\perp} . Conversely, because $g^{(1)},\ldots,g^{(r)}$ form a basis of $H(x)|N_x$, we have r=s, and the operators $S^{(1)},\ldots,S^{(s)}$ are linearly independent. Thus, each E_i is a linear combination of $S^{(1)},\ldots,S^{(s)}$. Now, the intersections of the form $Z_{\alpha}^{(1)}\cap\ldots\cap Z_{\gamma}^{(s)}$ (involving eigenspaces of all operators $S^{(1)},\ldots,S^{(s)}$, respectively) generate the set $\{(0),N_1^{\perp},\ldots,N_s^{\perp}\}$. Indeed, let $Z_{\alpha}^{(1)}\cap\ldots\cap Z_{\gamma}^{(s)}\neq (0)$. Then we have, after a renumeration of the subspaces $N_1^{\perp},\ldots,N_s^{\perp},Z_{\alpha}^{(1)}\cap\ldots\cap Z_{\gamma}^{(s)}=N_1^{\perp}+\ldots+N_p^{\perp}$. We have to prove that p=1. If p>1, then (17) implies (18) $$S^{(\alpha)} = \lambda_1^{(\alpha)} (E_1 + \dots + E_p) + \lambda_{p+1}^{(\alpha)} E_{p+1} + \dots + \lambda_s^{(\alpha)} E_s \quad (\alpha = 1, \dots, s)$$ and this means that the operators $S^{(1)}$, ..., $S^{(s)}$ are not linearly independent, a contradiction. On the other hand, each N_i^{\perp} is included in some eigenspace of each $S^{(\alpha)}$, $\alpha=1$, ..., s. Hence our last argument follows. - §4. Now we describe an *effective algorithm* for deciding whether a torsion-free connection ∇ on a manifold M is Riemannian, or not. Hence (M, ∇) is supposed to be connected, simply connected and *analytic*. - Step 1. Choose a system of local coordinates in an open set $U \subset M$. Calculate the curvature tensor and its covariant derivatives at a ϕ -regular (i.e., generic) point up to the least order N for which we get $\underline{h}^{(N+1)}(x) = \underline{h}^{(N)}(x)$. Step 2. Calculate the space $H(x) \subset S^2T_xM$ at a ϕ -regular point $x \in U$ from the Frobenius theorem. Then a general $G \in N(x)$ is expressed in the form (19) $$G = \mu_1 G^1 + \ldots + \mu_p G^p,$$ where $G^{\alpha}(\alpha=1,\ldots,p)$ are some basis elements of H(x) whose local components G^{α}_{kl} are expressed as rational functions of the components $R^{v}_{iju;i_1,\ldots,i_k}$. If p=0, ∇ is not Riemannian. Otherwise, we go to Step 3. Step 3. Check whether H(x) contains a regular form. This is done by writing down the determinant $\det \left\|\sum_{\alpha} \mu_{\alpha} G_{kl}^{\alpha}\right\|$ (k, l = 1, ..., n) with independent variables μ_{α} . If the resulting polynomial is non-zero, then a regular form in H(x) exists. (If this polynomial is identically zero, then the connection is not Riemannian). We can choose μ_1, \ldots, μ_p step by step as some *integers* to obtain a concrete regular form $\hat{g} \in H(x)$. Step 4. Calculate the operators S^1 , ..., S^p corresponding to G^1 , ..., G^p respectively via the regular form \hat{g} (fr. Formula (5)). Further, calculate the commutant C_x of the set $\{S^1, \ldots, S^p\}$ and its null-space N_x in our local coordinates. If $\hat{g}|N_x$ is not regular, or if N_x is not invariant with respect to S^1, \ldots, S^p , then ∇ is not Riemannian. Otherwise go to the next step. Step 5. If $C_x \neq (0)$, then calculate the restrictions of G^1 , ..., G^p to $N_x^{\perp} = T_0$. If these restrictions do not generate S^2T_0 , then the connection ∇ is not Riemannian. If $G^{\alpha}|T_0$ generate S^2T_0 , then go to Step 6. If $C_x = (0)$, then go to Step 6, directly. Step 6. Find a set of independent generators $S^{(1)}$, ..., $S^{(s)}$ for the space $H(x)|N_x$ among the restrictions of S^1 , ..., S^p to N_x . Further, calculate all eigenspaces of $S^{(1)}$, ..., $S^{(s)}$ and all intersections $Z_{\alpha}^{(1)} \cap \ldots \cap Z_{\gamma}^{(s)}$ of the various eigenspaces belonging to $S^{(1)}$, ..., $S^{(s)}$, respectively. Let $\{(0), L_1, \ldots, L_r\}$ be the set of all intersections. Then the necessary condition for ∇ to be Riemannian is that r=s and $N_x=L_1+\ldots+L_s$ (the orthogonal decomposition with respect to \hat{g}). If this necessary condition is satisfied, go to Step 7. Step 7. Finally, due to Proposition 1, we see that ∇ is a Riemannian connection if, and only if, each restriction $\hat{g}|_{L_j}$ is either positive definite, or negative definite. §5. Next, we shall show how to calculate, in a neighborhood U_x of a regular point $x \in M$, all Riemannian metrics g whose Riemannian connection is the prescribed connection ∇ . The practical point is that these metrics are to be described through the given local coordinates. Thus we suppose that some local coordinates are fixed in the neighborhood U_x . Looking at the previous «decision algorithm» we see that, if the given connection ∇ is Riemannian, we can calculate all the objects involved for the whole neighborhood U_x assuming that this neighborhood is small enough. In particular, through Step 2 of the previous algorithm we obtain analytic tensor fields G^{α} of type (0, 2), $\alpha = 1, \ldots, p$, such that the formula (19) holds at all points $y \in U_x$. Further, the regular form $\hat{g} \in H(x)$ constructed in Step 3 can be extended to a tensor field on U_x as a linear combination of G^1, \ldots, G^p with constant coefficients. The computational procedure for our second problem will be now clear from the following Propositions 4-6. **Proposition 4.** Let ∇ be an analytic connection on a connected and simply connected analytic manifold M, and let U_x be a neighborhood consisting of ϕ -regular points. Suppose that ∇ is Riemannian, and let \hat{g} be a regular form on U_x as above. Let $H^{(1)}$, ..., $H^{(1)}$ be analytic tensor fields on U_x such that: - a) $H^{(1)}$, ..., $H^{(t)}$ are linearly independent symmetric bilinear forms on T_yM for each $y\in U_x$, - b) the null-space of each $H^{(i)}$ at y is N_y , - c) the restrictions of $H^{(1)}$, ..., $H^{(t)}$ to N_y^{\perp} at y generate the space $S^2N_Y^{\perp}$. Then (20) $$\nabla H^{(i)} = \sum_{j=1}^t \omega_j^i \otimes H^{(j)} \quad (i = 1, \dots, t)$$ holds, where ω_j^i are some Pfaffian forms on U. Moreover, the system of linear homogeneous partial differential equations (21) $$d\lambda_i + \sum_{k=1}^t \lambda_k \omega_i^k = 0 \quad (i = 1, \dots, t)$$ is completely integrable. *Proof*. The first part is obvious because the distributions $\{N_y\}$ and $\{N_y^{\perp}\}$ on U_x are invariant with respect to the parallel transport, and hence the system of vector spaces Span $(H^{(1)},\ldots,H^{(t)})_{y\in U_x}$ is also invariant with respect to the parallel transport. More specifically, let (M_0,g_0) be the Euclidean part of (M,g) (where g is arbitrary Riemannian metric belonging to ∇) and $\pi_0:M\to M_0$ be the canonical projection. Let (u^1, \ldots, u^r) be the Cartesian coordinates in $(M_0, g_0) \equiv R^r$; then the corresponding differentials du^i are parallel with respect to the corresponding Euclidean connection ∇_0 on M_0 , and hence the induced forms $G^{(ij)} = \pi_0^* (du^i du^j)$ on M are ∇ -parallel. Ç Obviously, for each $y \in U_x$, the forms $G_y^{(ij)}$ have the common null-space N_y by construction, and the restrictions of $G_y^{(ij)}$ to $N_y^\perp(i,j=1,\ldots,r;i\leq j)$ form a basis of $S^2N_y^\perp$. Because $\{H^{(k)}\}$ and $\{G^{(ij)}\}$ form two bases of the same vector space at each $y \in U_x$, we have $t = \frac{r(r+1)}{2}$ and we can numerate $G^{(ij)}$ as $G^{(k)}$, $k=1,\ldots,t$, as well. Put (22) $$G^{(k)} = \sum_{i=1}^{t} \lambda_i^k H^{(i)} \quad (k = 1, ..., t)$$ on U_x . Then the matrix $||\lambda_i^k||$ is non-singular on U_x . Because $\nabla G^{(k)} = 0$ for $k = 1, \ldots, t$, we see from (20) and (22) that $(\lambda_1^k, \ldots, \lambda_t^k)$, $k = 1, \ldots, t$, form t independent solutions of the system (21). Hence (21) is completely integrable, q.e.d. **Proposition 5.** Let M, ∇ , U, \hat{g} be as in Proposition 4, and let, for each $y \in U_x$, $N_y = L_{1,y} + \ldots + L_{s,y}$ be the orthogonal decomposition constructed in Step 6 of the decision algorithm. Let h_i ($i = 1, \ldots, s$) denote the tensor field on U which coincides with \hat{g} on each subspace $L_{i,y}$, $y \in U$, and whose null-space at each $y \in U$ is the orthogonal complement of $L_{i,y}$ in T_yM with respect to \hat{g} . Then (23) $$\nabla h_k = \omega_k \otimes h_k \quad (k = 1, \dots, s),$$ where ω_k are exact differentials on U, $\omega_k = d f_k$. *Proof*. As we know from the theory of the de Rham decomposition, each distribution $\{L_{i,y}\}_{y\in U}$ is ∇ -parallel. Let g be any Riemannian metric on U belonging to ∇ . Then denote by g_i the tensor field on U which coincides with g on each $L_{i,y}$ and whose null-space at each $y\in U$ is the orthogonal complement of $L_{i,y}$ in T_yM with respect to g. Then we get obviously $\nabla g_i=0$. On the other hand, Step 7 of our decision algorithm says that $h_i=\pm e^{f_i}g_i$ on U, where the same sign holds in the whole neighborhood and f_i is an analytic function $(i=1,\ldots,s)$. Hence $\nabla h_i=\mathrm{d}\, f_i\otimes h_i$, q.e.d. **Proposition 6.** Let M, ∇ , U be the same as in Proposition 4, and let $H^{(1)}$, ..., $H^{(t)}$, h_1 , ..., h_s be analytic tensor fields on U satisfying the conditions of Proposition 4 and 5, respectively. Then all admissible Riemannian metrics g on U are of the form (24) $$g = \sum_{i,k=1}^{t} b_i \lambda_k^i H^{(k)} + \sum_{k=1}^{s} c_k e^{-f_k} h_k,$$ where f_1 , ..., f_s are some primitive functions for the exact differentials ω_1 , ..., ω_s respectively, $(\lambda_1^i, \ldots, \lambda_t^i)$ for $i=1,\ldots,t$ form a basis of the space of solutions of the completely integrable system (21), and the constants b_1 , ..., b_t , c_1 , ..., c_s are arbitrary but such that the resulting forms are positive definite. Proof. Each Riemannian metric g belonging to ∇ is of the form $g=g_0+d_1g_1+\ldots+d_rg_r$, where $g_0=\sum_{i=1}^t b_i G^{(i)}$ and $g_k=\pm e^{-f_k}h_k$ for $k=1,\ldots,r$. The result now follows Proposition 4 and (22). (Recall that s=r if $\dim N_y\neq 1$, and s=r+1, t=0 holds for $\dim N_y=1$). **Remark 1.** The following observation is obvious for a *Riemannian* connection ∇ : if the commutant C_x is zero (i.e., if the Euclidean part is at most 1-dimensional), then the set of all admissible Riemannian metrics g for the connection ∇ can be found only by algebraic operations, differentiations and by integrations of exact differentials. In the general case $C_x \neq (0)$, the integration of a completely integrable system of linear homogeneous 1-st order PDE is needed to express the Euclidean part explicitly in the given coordinates. Remark 2. For the low-dimensional manifolds, the decision procedure is essentially simplified. If dim M=2, then the connection ∇ is Riemannian just in two cases: either $p=\dim H(x)=1$ and H(x) is generated by a positive definite form at the given ϕ -regular point x. Or p=3, and then ∇ is a Euclidean connection. If dim M=3, then ∇ is Riemannian only if either p=1, or p=2, or p=6. For p=1, ∇ is Riemannian iff H(x) is generated by a positive definite form. The corresponding Riemannian manifold is then irreducible. For p=2, if ∇ is Riemannian, then $(M,g)=R\times (N,h)$, where R is the real line and (N,h) is irreducible. For p=6, ∇ is automatically Euclidean. ## REFERENCES - [1] S. Gołab, Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, 9 (1959), pp. 1-7. - [2] A. Jakubowicz, Über die Metrisierbarkeit der affin-zusammenhängenden Räume, I, II, III. Tensor, 14 (1963), pp. 132-137, 17 (1966), pp. 28-43, 18 (1967), pp. 259-270. - [3] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, 1963. - [4] O. Kowalski, On regular curvature structures. Math. Z. 125 (1972), pp. 129-138. - [5] O. Kowalski, A note on the Riemann curvature tensor. Comment. Math. Univ. Carolinae, 13, 2 (1972), pp. 257-263. - [6] K. Nomizu, K. Yano, Some results related to the equivalence problem in Riemannian geometry. Math. Z. 97 (1967), pp. 29-37. - [7] C. TELEMAN, On a theorem by Borel-Lichnerowicz (Russian). Rev. Roumaine Pures Appl. 3 (1958), pp. 107-115.