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METRIZABILITY OF AFFINE CONNECTIONS ON ANALYTIC MANIFOLDS
OLDRICH KOWALSKI

It is well-known (see e.g. [3]) that a torsion-free connection V on a connected smooth man-
ifold M is a Riemannian connection of a Riemannian metric g if and only if its holonomy

group ¢(x) (with a fixed reference point z € M ) preserves a positive scalar product on the
tangent space 7. M .

In this paper we are occupied with the corresponding computational problems:

a) How to decide effectively whether a given (torsion-free) connection is a Riemannian
connection?

b) In the positive case, how to find out effectively all corresponding Riemannian metrics
(in the prescribed local coordinates)?

We shall solve both problems under the restriction that the basic manifold M is connected
and simply connected, and that both M and the given connection V are analytic.

Let us note that the problems above have been solved for very special cases in [1], [2],
and in more general terms by the author in [4] and [5], where some kind of regularity for the
curvature tensor was assumed. See also [6] and [7] for related results.

§1. Let M be aconnected analytic manifold with a torsion-free connection V, andlet x €
M be an arbitrary point. According to ([3], Chapter III), the restricted holonomy group ¢°( )
of V with the reference point z is a connected Lie transformation group. The corresponding

holonomy algebra h( z) is generated, as a vector space, by all endomorphisms of the form
(VER)Y(X,Y; Z{,...., Z,),where X, Y, Z,,...,Z, € T,M and 0 < k < 0.

Let us denote by h'™ () the subspace of h(z) generated by all endomorphisms (V¥R
(X,Y;2Zy,...,2.)for0 < k < r. Thepoint z € M issaid tobe ¢-regular if dim A" (z)
attains its maximum in a neighborhood U_ for all ». We can prove easily that the set of all
$-regular ponts is an open dense subset of M. Ata ¢-regular point we have AV*D(2) =
AN (z) for some N, and the same must hold in a neighborhood U, of z. Hence we obtain
(using the covariant differentiation) that h(y) = _1_1(” }(y) forall y € U, . We see that

(1) we can decide effectively if a given point z is regular or not, calculating successively
the subspaces A" (y) in a coordinate neighborhood U.;

(1) around a regular point, the algebra h(y) can be calculated effectively in the prescribed
local coordinates.

We can see even more: the number N is constant on the set of all ¢-regular points of
M. Indeed, let first z, y € M be two ¢-regular points in the same connected coordinate

neighborhood U(z!,...,z"), and suppose that dim h'™ (z) < dim A‘7 (y).



2 Oldtich Kowalski

Denote k = dim A‘” (z). This means that, in a neighborhood V, C U, dim r(2) <

k + 1. Consider the matrix R{" whose entries are the local components RY,

I-_? 1 il r.u,ij__

, the m?

columns are indexed by the ordered pairs (u, v) and the rows are indexed by the ordered sets
(1, 75812008 ), k=0,1,..0,754,7,%,...,4, =1, ..., n Then all determinants of
degree k + 1 of the matrix R(" are real analytic functions in U which are identically zero
on the open subset V. Hence these determinants must vanish in U, which 1s a contradiction

to the assumption dim A7 (y) > k+ 1.If z, y € M are arbitrary ¢-regular points, we can
joint them by a finite chain of intersecting connected coordinate neighborhoods. Hence the
assertion follows.

§2. Let (M, V) be a connected smooth manifold with a torsion-free affine connection.
Let h(z) denote again the holonomy algebra of V at z, i.e., the Lie algebra corresponding
to the restricted holonomy group ¢°(xz) with the reference point . Further, let H(z) C
ST, M denote the subspace of all symmetric bilinear forms G, on T, M satisfying the
condition

(1) G (Au,v) + G (u,Av) =0

forall A€ h(z) andall u, v € T M. Now, we have

Proposition 1. If M is connected and simply connected, and if the subspace H(x) C
S? T. M for some x € M contains a positive definite form, then V is a Riemannian connec-
tionon M . Conversely, if V is Riemannian, then each subspace H(zx), x € M, contains a
positive definite form.

Proof is obvious because G, € H(z) means that G is invariant with respect to the full
holonomy group ¢( z) . For a positive definite G, € A (x) we obtain a unique Riemannian
metric on M via the parallel transport.

Remark. We do not know any direct decision algorithm based on Proposition 1 and using
only linear algebra. Therefore, we shall develop a more «geometrical» algorithm (see §4)
based on the de Rham decomposition of a Riemannian manifold. The next paragraph has a
preparatory character.

§3. Let (M, g) be a connected and simply connected smooth Riemannian manifold and

V the corresponding Riemannian connection. Let {G*, e = 1, ..., p} be any basis of the
subspace H(z) C SZTIM ,and let g € H(x) be a regular form (not necessarily positive).
Define the symmetric endomorphisms S¢, a=1, ..., p,on (T, M, g) by the formula

(2) g(S%,v) = G"(u,v), u,veT M.
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Let C, denote the commutant of the set {S!, ..., SP}, i.e., the subspace in End(T, M)

generated by all commutators [ S%, SP], and let N_ be the (common) null-space of C_ in
T .M.
We have

Proposition 2. If C_#(0), then the orthogonal complement N of N_ with respect to §
coincides with the maximal subspace T, C T, M on which the holonomy group ¢(x) acts
trivially. If C_ = (0), then either dim 7, =0 ,or dim T = 1.

The restrictions G*[Ty(a = 1, ..., p) are generators of the space S*Ty (of all sym-
metric bilinear forms on Ty ). Moreover, the restriction g/N_ is regular and the subspace

H(z)/N, C S*N, is generated by positive semi-definite forms g, , ..., g, whose null-
spaces Ny,...N, in N_ satisfy the following orthogonal decomposition (with respect to

g/N,):
(3) N_=Ni+...+ N .

Proof . According to [3, Chapter 1V], we can write T_ M = T, + T} + ... + T, (direct
sum), where the decomposition is orthogonal with respect to the Riemannian inner product g
and ¢(x)-invariant. Here T}, 1s the subspace of all fixed vectors under the action of ¢(z),
and 7', ..., T, are irreducible subspaces under the action of ¢(z). Further, ¢(zx) itself
decomposes as a direct product ¢y (z) X ¢,(z) X ... X ¢ (), where ¢,(x) is trivial. Now,
H(z) C ST, M is just the subspace of all ¢( z)-invariant forms.

Let f} (¢=0,1,..., s)denote the orthogonal complement of 7. in 7 M with respect
to g. We shall now prove the following

Lemma. The subspace H(x) C S*T,M coincides with the set of all forms

(4) G.=Gy+ MG+ ...+ \,G, (M\,...,\, €ER)

where G runs over all symmetric bilinear forms whose null-spaces contain T,, and
Gy,-..,G, are fixed forms which are positive definiteon Ty, ..., T, respectively and whose

-

null-spaces are T , ..., T, respectively.

Proof . Obviously, all forms G € SZTIM whose null-spaces contain ff’n are ¢( x)-invariant
and hence they belong to H(z). For 7« = 1, ..., s, define the form G, as that with
the null-space Ti and coinciding with the Riemannian scalar product g on 7. Obviously,
Gyy...,G, € H(z). Further, any ¢( ) -invariant symmetric bilinear form on 7} must be a
multiple of ¢|7; (see [3], Appendix 5). Hence each form G € H(z) whose null-space con-

tains ’f“ must be a multiple of G;. Itremains to check that, if G, € H(z),then G_(u,v) =0
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whenever u € T;, v € T;, i#j,1, 7 € {0, 1, ..., s}. Then we obtain the decomposition
(4) taking first the restrictions of G, to T}, , 77, ..., T, respectively and then extending each
restriction g_|T; to a new form on T M in a trivial manner (by taking zero values on the

union ('f*li x 13) U(T; x ’f}) l,J(i"f“,I X f}) ).
Fixi,7 €{0,1,...,z} suchthat 1# 0 ,andfix v € Tj Consider the linear form L € T

given by L(u) = G_(u,v), u € T,. Because G_ is ¢(x)-invariant, then L(u) must be
¢;(z)-invariant. But then L = 0, otherwise the dual representation of ¢(z) on 7" would
admit a fixed direction, a contradiction to the irreducibility, g.e.d.

Letnow {G', ..., GP} be a basis of H(z),andlet S', ..., SP be the corresponding
symmetric operators given by

(3) g(S%,v) = G (u,v) (a=1,...,p;u,v€ T, M).
According to our Lemma, we have

G,

8 8

(6) g=go+ oG, +...+«

where g, is regularon 7, and ¢, ..., a,# 0 . Define the symmetric operators S, , ..., S
by

(7) S;u=(1/a;)ufor u € Tj, Siu:OfDruEf},

and the symmetric operators Ef (=1, ..., p) by

(8) 9(ESu,v) = G*(u,v) foru,v € T,; Efu=0 forueTy.
Further, in accordance with our Lemma, put

(9) G*=Gy+ MG, + ...+ \0G, (a=1,...,p).
Then we see easily that

(10) S*=Ef+ XMS, +...+238, (a=1,...,p).

Because all commutators [ .S, Sj] and [S;, E§] are zero due to (7), (8), we see from (10)
that

(11) [S%,8°1 = [E§,Ej), a,B=1,...,p.
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Hence the commutant C_ of {S', ..., SP} contains only forms with the null-space D ff“o :
and thus

(12) N_ DT, =Ty
Letnow {e;, ..., e } be an orthonormal basis of T, with respectto g, , i.e., with respect

0 go |7, . It means that g, (e;, e;) =€, =41 fori=1, ..., r. The corresponding operators
E;; definedfor 1 <1 <7 < r by

(13) E;:(e;) = €,e;, Eij(ej) = €€, Eij(ek) = () otherwise,

form a basis for the space of all symmetric endomorphisms of 7, (with the scalar product
g0 ). Due to our Lemma, the operators S*|T,(a =1, ..., p) form a set of generators of the
same space. Hence all E;; are linear combinations of the operators S|Tj , and all brackets
[E,., E,;] are contained in the restriction C_|T}, of the commutant C_.

On the other hand, these brackets generate the space of all skew-symmetric operators of

(Ty, go) - Indeed, any skew-symmetric operator Jf defined on 7}, by

(14) Jf*(E:') = % JE(E;‘) = T&&

j 0 J;f(ek) = () otherwise,

can be expressed as J = ;[ E;;,

E;;]. Hence the space C,_ |1}, contains all skew-symmetric
operators of (7, §,) and thus the null-space N_ of the commutant C_ is contained in 7§,

unless dim T, < 1. This and (12) implies that N_ = Ty~ and T;, = N for C_# (0).
We can put g, = G,|N, for « = 1, ..., s (in accordance with our Lemma) and this
concludes the proof of Proposition 2 for dim Ty # 1.

If dm7, = 1,then N, = T M, and we attach a new form g, ; € H(z), which is

positive on 7, with the null-space ’f‘ﬂ . Then Proposition 2 also holds after replacing s with
s+ 1.

Let us still keep the assumptions and notations of §3. We shall prove the following

Proposition 3. Let N_ = Ni-+ ...+ N;- be the orthogonal decomposition as in Proposition

2. Let 'V, ..., g\" be a basis of the subspace H(z)|N_ C S*N_,and SV, ..., 8" be
the endomorphisms of N_ defined by

(15) 9(Su,v) = ¢'Y(u,v) (a=1,...,m u,v€N,).



6 Oldrich Kowalski

Let {Z!V, ..., AR Z5 .., Z57, . AL Z37} be the set of all eigenspaces of all

operators SV, ..., 87 (written in some order). Then each of the subspaces Ni+,... N e

can be written as an intersection of the form Zéi} Nn...N Z&‘") (1 << pj) =1,...,1),
and each of the eigenspaces Z ;‘7‘ can be written as a direct sum of some of Ni-,...,N j .
Moreover, we have T = s, and any resiriction ¢'® |N jJ" Is a multiple of the corresponding

1
form glej- .

Proof . According to Proposition 2 and 1ts proof, we can write

(16) g(“)=kgﬂ)g1+...+kgﬂ)g3 (a=1,...,1),
where g. = g|N; fori=1, ..., s and hence
(17) S = \YE +...+ \¥E

where E; denotes the operators with the null-space N; acting as the identity operator on
N;-. Thus the eigenspaces of S® are just direct sums of some N;-. Conversely, because
gV ... ¢" formabasis of H(z)|N_, we have r = s, and the operators SV, ... S() are

linearly independent. Thus, each E; is a linear combination of S'¥ ... §® . Now, the inter-
sections of the form Z{VN...NZ{¥ (involving eigenspaces of all operators StV ..., S re-

spectively) generate the set {(0), Ni-,..., N1}. Indeed, let Z{1' .. .DZ,?) # (0) . Then we

have, after a renumeration of the subspaces Ni-, ..., N;-, Z\PN...NZ3Y = Ni*+ ...+ N-.
We have toprove that p= 1. If p > 1, then (17) implies

(18) S = \Y(E +...+E)+XHE,  +...+\YE, (a=1,...,s)
and this means that the operators SV | ..., S(*) are not linearly independent, a contradiction.
On the other hand, each N;t is included in some eigenspace of each S, o =1, ..., s.

Hence our last argument follows.

§4. Now we describe an ¢ffective algorithm for deciding whether a torsion-free connection
V on a manifold M is Riemannian, or not. Hence (M, V) is supposed to be connected,
simply connected and analytic.
Step 1. Choose a system of local coordinates in an open set U C M . Calculate the curvature
tensor and its covariant derivatives at a ¢-regular (i.e., generic) point up to the least order N

for which we get RN D (g) = Q{”)(m).
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Step 2. Calculate the space H(z) C S*T_ M ata ¢-regular point z € U from the Frobenius
theorem. Then a general G € N(x) 1s expressed in the form

(19) G=ppG +...+pGP

where G*(a = 1, ..., p) are some basis elements of H(z) whose local components G
are expressed as rational functions of the components R . ;- L p=0,V isnot Rie-

TR SR
mannian. Otherwise, we go to Step 3.
Step 3. Check whether H(z) contains a regular form. This 1s done by writing down the de-

PBNTNES
o
polynomial is non-zero, then a regular form in H () exists. (If this polynomial is 1dentically
zero, then the connection is not Riemannian). We can choose y,, ..., W, SEp by step as
some integers to obtain a concrete regular form g € H(z).

Step 4 . Calculate the operators S, ..., SP corresponding to G', ..., GP respectively via the

regular form ¢ (fr. Formula (5)). Further, calculate the commutant C_ of the set { Sto..., 8P}
and its null-space N_ in our local coordinates. If g|N, is notregular, or if N_ is not invariant

terminant det

(k,l=1, ..., n) withindependent variables p . If the resulting

with respect to S!, ..., SP, then V is not Riemannian. Otherwise go to the next step.
Step 5. 1f C_# (0) , then calculate the restrictions of G', ..., GP to N = T, . If these re-

strictions do not generate S* T}, , then the connection V is not Riemannian. If G|T|, generate

S*T,, , then go to Step 6.
If C, = (0), then go to Step 6, directly.

Step 6 . Find a set of independent generators S, ..., §'® for the space H(z)|N_ among
the restrictions of S*, ..., SP to N,.
Further, calculate all eigenspaces of SV, ..., §'® and all intersections Z." N...N Z}*

of the various eigenspaces belonging to SV, ..., 89 respcetivlely. Let {(0),L,,...,L,}
be the set of all intersections. Then the necessary condition for V' to be Riemannian 1s that
r=sand N = L, + ...+ L (the orthogonal decomposition with respect to g). If this
necessary condition is satisfied, go to Step 7.

Step 7 . Finally, due to Proposition 1, we see that V is a Riemannian connection if, and only
if, each restriction g|L is either positive definite, or negative definite.

§5. Next, we shall show how to calculate, in a neighborhood U, of aregularpont x € M,
all Riemannian metrics ¢ whose Riemannian connection is the prescribed connection V. The
practical point is that these metrics are to be described through the given local coordinates.
Thus we suppose that some local coordinates are fixed in the neighborhood U .
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Looking at the previous «decision algorithm» we see that, if the given connection V 1S
Riemannian, we can calculate all the objects involved for the whole neighborhood U_ as-
suming that this neighborhood is small enough. In particular, through Step 2 of the previous
algorithm we obtain analytic tensor fields G* of type (0, 2), = 1, ..., p, such that the
formula (19) holds at all points y € U, . Further, the regular form g € H(x) constructed 1n
Step 3 can be extended to a tensor field on U, as a linear combination of G, ..., G? with
constant coefficients.

The computational procedure for our second problem will be now clear from the following
Propositions 4-6.

Proposition 4. Let V be an analytic connection on a connected and simply connected an-
alytic manifold M , and let U_ be a neighborhood consisting of ¢-regular points. Suppose
that V is Riemannian, and let g be a regular form on U,_ as above.

Let HV , ..., HY be analytic tensor fields on U_ such that:
a) HY, ..., H® are linearly independent symmetric bilinear forms on T,M for each
yeu,,
b) the null-space of each H) at y is N,
c) the restrictions of H'V , ..., H'Y to N;- at y generate the space S* Ny .
Then
t
(20) VHD =Y wi@H? (i=1,...,1)
j=1

holds, where w} are some Pfaffian forms on U . Moreover, the system of linear homogeneous

partial differential equations

t
(21) dX;+ ) Mwf=0 (i=1,...,1)
k=1

is completely integrable.

Proof . The first part is obvious because the distributions {N,} and {N;} on U, are in-
variant with respect to the parallel transport, and hence the system of vector spaces Span
(HY,...,H®) ., is also invariant with respect to the parallel transport. More specifi-

cally, let ( M,,g,) be the Euclidean partof (M, g) (where g is arbitrary Riemannian metric
belonging to V) and 7y : M — M, be the canonical projection.

Let (u!, ..., u") bethe Cartesian coordinates in ( M 0:90) = R‘" ; then the corresponding
differentials d u* are parallel with respect to the corresponding Euclidean connection V, on
M, , and hence the induced forms G = 3 (du*dw/) on M are V-parallel.
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. ,?
Obviously, for each y € U,_, the forms G(‘” have the common n {f sﬁlce N, by con-
struction, and the restrictions of G/ to N;-(i,j =1, ..., 7; i < j) forma basis of SN

Because {H ¥} and {G/} form two bases of the same vector space at each y € U, we

+ 1 y
have t = r(r+1) and we can numerate G as G®, k=1, ..., t,as well. Put
i
(22) GR =N"NHD (k=1,...,1)
i-1
on U, . Then the matrix ||\¥|| is non-singular on U_. Because VG® =0 for k= 1,...,¢,
we see from (20) and (22) that (\%, ..., \¥), k=1, ..., ¢, form ¢ independent solutions of

the system (21). Hence (21) 1s completely integrable, g.e.d.

Proposition 5. Let M, V, U, g be as in Proposition 4, and let, for each y € U_, N =
Ly,+ ...+ L, bethe orthogonal decomposition constructed in Step 6 of the decision algo-

rithm. Let h; (+ =1, ..., s) denote the tensor field on U which coincides with g on each
subspace L;,, v € U, and whose null-space at each y € U is the orthogonal complement

of L;, in T M withrespectto g. Then
(23) Vh,=w, ®h, (k=1,...,8),

where w, are exact differentialson U, w, = d f.

Proof . As we know from the theory of the de Rham decomposition, each distribution
{Li.y}yEU is V-parallel. Let g be any Riemannian metric on U belonging to V. Then
denote by g, the tensor field on U which coincides with g on each L;, and whose null-
space ateach y € U 1s the orthogonal complement of L, in 7 M with respect to g. Then
we get obviously Vg, = 0. On the other hand, Step 7 of our decision algorithm says that

h; = +efig; on U, where the same sign holds in the whole neighborhood and f; is an analytic

function (2 =1, ..., s). Hence Vh, =d f, ® h,, q.e.d.

Proposition 6. Let M, V, U be the same as in Proposition 4, and let H'VY |, ..., HY
hy, ..., h, be analytic tensor fields on U satisfying the conditions of Proposition 4 and 5,
respectively. Then all admissible Riemannian metrics g on U are of the form

(24) g = EM‘H“‘HE{: e Teh,,

i,k=1
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where f,, ..., f, are some primitive functions for the exact differentials w,, ..., w, respec-
tively, (N}, ..., A\ ) for i=1, ..., t form a basis of the space of solutions of the completely
integrable system (21), and the constants b, , ..., b,, ¢, ..., c, are arbitrary but such that

the resulting forms are positive definite.

Proof . Each Riemannian metric g belonging to V is of the form g = g, +dyg, + ...+ d_g,,

t .
where g, = 3 b,G'" and g, = e /kh, for k = 1, ..., r. The result now follows Propo-
i=1

sition 4 and (22). (Recall that s = r if dim Ny#l, and s = r+ 1,1 = 0 holds for
dim N, = 1).

Remark 1. The following observation 1§ obvious for a Riemannian connection V: if the
commutant C_ is zero (i.e., if the Euclidean part 1s at most 1-dimensional), then the set of
all admissible Riemannian metrics g for the connection V can be found only by algebraic
operations, differentations and by integrations of exact differentials.

In the general case C_# (0) , the integration of a completely integrable system of linear
homogeneous 1-st order PDE 1s needed to express the Euclidean part explicitly in the given
coordinates.

Remark 2. For the low-dimensional manifolds, the decision procedure 1s essentially simpli-
fied.

If dim M = 2, then the connection V is Riemannian just in two cases: either p =
dim H(z) = 1 and H(=z) 1s generated by a positive definite form at the given ¢-regular
point z. Or p = 3, and then V 1s a Euclidean connectiorn.

If dim M = 3, then V is Riemannian only if either p = 1,orp= 2,0r p = 6. For
p= 1, V is Ricmannian iff H(z) is generated by a positive definite form. The corresponding
Riemannian manifold is then irreducible. For p = 2 ,if V isRiemannian, then (M, g) = KX
(N, h),where R isthereal line and (N, h) is irreducible. For p = 6, V 15 automatically
Euclidean.
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