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CONFORMALLY FLAT IMMERSIONS *
F. MERCURI **

Dedicated to Prof. Diana Benincasa

1. INTRODUCTION

A conformally flat manifold (C.F. manifold for short) is a differentiable manifold together
with an atlas whose change of coordinate are conformal diffeomorphisms. In terms of Rie-
mannian geometry a C.E. manifold is a Riemannian manifold such that each point has an open
neighborhood conformally diffeomorphic to an open set of an euclidean space. We will take
always this point of view. Since space forms (i.e. spaces of constant curvature) of the same
dimension are all locally conformally diffeomorphic, C.F. manifolds may be considered as
the analogue of such spaces in the context of conformal geometry.

Examples of C.F. manifolds are, besides space forms, all two dimensional Riemannian
manifolds (due to the existence of isotermal coordinates) and products of two space forms
of curvature ¢, and ¢, with ¢, + ¢, = 0. We observe explicitly that the product of two
space forms 1s not in general a C.F. manifold (see remarks below 2.3) so the category of C.F.
manifolds is not closed under products.

In this paper we will study some of the local and global gcometry of C.F. manifolds which
can be isometrically immersed in cuclidean space with low codimension.

2. CHARACTERIZATIONS OF C.F. MANIFOLDS

In this section we will describe some characterizations of C.F. manifolds in terms of Rieman-
nian invariants.

For a Riemannian manifold M™ of dimension n we will denote, as usual, by V the
Levi-Civita connection and by R(X,Y) = [Vx,Vy] — V xy, the curvature tensor. If
{Xy,...,X,} is an orthonormal basis of the tangent space of M at z,T, M, the operator
Q(X) = ZR(X, X;) X, is the Ricci tensor and the quadratic form Ricci (X) = (Q(X), X)
is the Ricci curvature whose trace S is the scalar curvature. We define an operator «
T M —T_M by

1
(2.1) WX) = - [Q(X) -

SX ]
(n—2)

2(n—1)

The best known characterization of conformal flatness is probably the following:
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Theorem 2.2. M™ is a C.F. manifold is and only if

(1) R(X,Y)=9(X)ANY + X Aq(Y),

(1) (VxM(Y) = (Vy)(X)

Moreover, if n > 4, (1) = (i1).
Remark. In the above we have identified the bi-vector X A'Y with the antisymmetric map
(XAY)Y(Z2)=(X,2)Y —(Y,Z2)X.

A particularly useful characterization of C.F. manifolds in terms of the scctional curvature
k , is the following:

Theorem 2.3. If n > 4 , M™ is C.F. if and only if, given orthonormal vectors X, X,, X5,
X4, we have

k(X, X))+ k(X5,X,) = k(X ,X3) + k(X,,X,).

Remark. In particular, as we have anticipated in the introduction, if Q,,Q, are space forms
of curvatures c¢,,c, and dimensions n; > 2,1 = 1,2, then Q, x Q, is C.F. if and only if
c,+¢,=0.

For the above results and similar characterizations we rcfer to [6].

A further nice characterization of C.F. manifolds in terms of Lorcntzian gecometry is the
following (see [1]): Let L™ be the Lorentz space of dimension (n+ 2) ,i.e., L™2? = R™?
with the indefinite metric

n+1l

(X,Y) = — Ty Yo +E ;Y X = (In,ml,..,,$n+1),Y= (yn:yu--*:yml)

1=1

The light cone is defined as
vVl ={X eL™ 1 (X,X)=0,z, >0}

The induced metricin V™! is semidefinite and the directions of null norm are the generatrices
of the cone.
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Theorem 2.4. M™ is a C.F. manifold if and only if there exists a local isometric immersion
f:M® = V™ Moreoverif M™ is simply connected, f is globally defined.

Idea of the proof. Let f : M™ — V™! be a (local) isometric immersion and
SP={XeV™ :(X,ep) =—-1};¢, =(1,0,...,0) € L™2.

Since M™ is Riemannian and f isometric, f is transversetothelines tX, X € V™! ¢t > 0.
We define a map

miM" — 8% w(z) = —f(x)/(f(z),e,).

It 1s not difficult to see that 7 is a local conformal diffeomorphism, called the developing
map, and therefore M 1s C.E

If M™ is C.F. we will construct local isometric immersions f : M® — V™1 C L ™2
using the fundamental theorem of submanifolds (see 3.4. for the Riemannian version, which
extends to our situation). For this we have to construct a Lorentzian 2-plane bundle E , a
bilinearmap « : T, M®T, M — E and aconnection V+ in E such that those data satisfy the
basic equations of Gauss, Codazzi-Mainardi and Ricci. The study of the local geometry of an
isometric immersion f : M™® — V™! guggestthe following choises: We take E = M ™ x L2
and let e5(z) = (z,1,0),e,(z) = (2,0,1) be the basic sections so that —(e,,e,) = 1 =

1

1
(e;,e;) and (ey,e;) = 0. Wedefine Ay, A, : TM —-TM by A, = ’T_ELAI =+ EI

and a( X,Y) = (A X,Y))ey + (A, X,Y )e,. Finally V+ is defined extending Vxe, = 0 =
V}%el , VX € T'M. The Ricci equation is trivially satisfied and the equation of Gauss and
Codazzi-Mainardi are essentially 1) and 11) of thcorem 2.2,

The above result may be used to give a proof of a classical theorem of Kuiper (see [5]):

Theorem 2.5. Let M™ be a compact connected and simply connected C.F. manifold. Then
there exists a conformal diffeomorphism n : M® — S™.

Proof. By 2.4 there is a (global) isometric immersion f : M™ — V™! The developing
map w : M"™ — S™ 1s then a globally defined local conformal diffeomorphism. Since M™ is
compact, w is acovering map and, being S™ simply-connected, a conformal diffeomorphism.

Classically, the construction of the developing map is based on Liuville’s theorem (cf [5]
[9]). If n= 2 alocal diffeomorphism ¢ : U C R? & C — C is conformal if and only if
¢ 1s holomorphic or anti-holomorphic. In dimension » > 3 Liuville’s theorem guarantees
the local conformal diffeomorphisms are essentially products of inversions. In particular, if
n > 3, aconformal diffcomorphism of an openset U C S™ = R"U{oo} extends to a unique
global conformal diffeomorphism of S™. |

Let M™ be a C.F. manifold, n > 3,and ¢ : U C M™ — o(U) C S™ a conformal
diffeomorphism. Let 4 : [0,1] — M be a curve with p = ~4(0) € U. Thus we can
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"developed” ¢ along ~ as follows: Cover ¢([0,1]) withopensets U = U,,U,,...,U;
such that U; NU,,,#¢ and let p, : U; — A C S™ be conformal diffeomorphisms. By

Liouville’s theorem ¢, 05" : 9, (U; NU,) — ,(U; NU,) extends to a global conformal
diffeomorphism @, ,.8" — S". The (local) diffeomorphism ¢, = @, o p, agrees with
v, In U; N U, and therefore y, can be extended to U, U U, . If we go on this way we end
up with a local conformal diffeomorphism p., of a neighborhood of v([0, 1]) onto an open
set of S™. If ~,,~, are curves in M with ~,(0) = p 4;,(1) = ¢ which are homotopic (with
end-points fixed), a monodromy argument shows that tp,n(q) = p, (g); therefore, if M is

simply connected we can define globally a developing map n : M™ — S*.
The developing map although not defined on M, is certainly defined on the universal

cover M of M and is a useful tool in the study of the geometry and the topology of C.F.
manifolds.

3. CONFORMALLY FLAT HYPERSURFACES

Let M™ be a Riemannian manifold and f : M™®™ — R™P an isometric immersion. The
orthogonal decomposition f*TR™? = T M @vM induces, modulo the usual identifications,
the decomposition

D,Y =V,Y + a(X,Y)
Dyé=—-AX + Vxé

where X,Y are smooth sections of TM and £ of vM; D and V dcnote the Levi-civita
connections of R™? and M™ respectively and « is induced by a bilinear fibred map T M @
TM — vM wichis related to the Weingarten operator A, : TM — T'M by (a( X, Y), €)=

(AX,Y). Finally V* is a metric connection in vM, called the normal connection whose

curvature we will denote by R*.
The basic relations of the geometry of an isometric immersion are the following:

Gauss equation 3.1. k(X,Y) = (a(X, X),a(Y,Y)) — ||a( X, )]||*.

Codazzi-Mainardi equation 3.2. (V,a)(Y,2) = (Vya)(X,Z) where
(Vz0)
(V,W) =Via(V,W) —a(V,V, W) —a(V,V W).

Ricci equation 3.3. (RY(X,Y)€,n) = ([4;,4,1X,Y).

Those relations are basic in the sense that they determine the geometry of the immersion
in view of the fundamental theorem of submanifold theory:
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Theorem 3.4. Let M"™ be a Riemannian manifold, E a p-dimensional Riemannian vector
bundle with a metric connection V'. Let o/ : TM & TM — E be a symmetric bilinear
map which verifies the analogue of 3.1, 3.2, 3.3. Then there exists a locally defined isometric
immersion f of M™ into R™?P with vM isometric to E ,V+ and « corresponding to V'
and o via this isometry. Moreover the immersion is unique up to rigid motions of R™? and,
if M is simply connected is globally defined.

We will discuss, in this section, the case of hypersurfaces, i.e., p = 1. We fix a unit normal
field § (locally) and write A for A,. A 1s a symmetric operator, hence diagonalizable. Let

{X,,...,X,} be an orthogonal basis which diagonalizes A; the eigenvalues of A, \; =
(AX;,X;) are called the principal curvatures and the Gauss equation gives k(X,, X;) =
A

As an immediate consequence of 2.3 we have:

Lemma 3.5. (Cartan). Let f : M™ — R™! be an isometric immersion, n > 4. Then M™®
is C.F. if and only if A has an eigenvalue of multiplicity at least (n— 1).

Remark. If n= 2 the above condition is trivially satisfied. If n = 3 there are examples of
isometric immersions of C.F. manifolds into R* with distinct principal curvatures.
With respect to the basis {X,,..., X} we have, up to reordering:

(ifn>4 and M* isCFE). Let U = {z € M : M z) = pu(z)} be the set of umbilic
points. In the open set M — U we have a well defined smooth codimension one distribution
D, = span{X,,...,X,} whose leaves Z, are totally umbilic in R™! , complete if M is
complete and A 1s constant along the leaves. All those facts are direct consequence of 3.2 but
for completeness. For the completeness we refer to [16].

If M™ is compact, the leaves X, are spheres in hyperplanes of R™* .

The geometric structure of a compact C.F. manifold in this situation i1s described by the
following result:

Theorem 3.6. Let f: M™ — R™! be an isometric immersion of a compact C.F. manifold,
n>4.
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(@)IfU={z:u(z) =X(z)}=¢ then M is either diffeomorphic to S x S* ortoa
generalized Klein bottle (i.e. a non orientable S™' bundle over S' ).

(b) If U# ¢ any connected component C of M — U is foliated by (n— 1) spheres and
0C has at most two connected components each one being either a point, an (n— 1) sphere
or two (n— 1) -spheres with a common point.

(c) Each connected component of U is either a point, an (n — 1) sphere or an n-
dimensional umbilic set bounded by a union of (n— 1) spheres and two such spheres have
at most one common point.

The following figures are taken from [3] (to which we refer for a proof of 3.6) and represent
the closure of the possible connected components of M — U'.

(b)
(0)

(¢)

(d) (e)

Figure 1

The classical description of "generic" C.F. hypersurfaces (i.e. p# A#0) was given in
terms of envelopes of a 1-parameter family of n-spheres (see [2]).

This means that we start with a regular curve ¢ : (a,b) — R™! and a positive function
r : (a,b) — R with ||&(2)]] > |r'(t)]. To describe the envelope of the spheres centred at
c(t) of radius r(t) we consider first the functions

(37 =rfllds R=rl1 - (/|2

and a function ¢ : S™! x (a,b) — R™! such that ¢ = ¢(-,t) is an immersion Vi €
(a,b),||¢,(z)|| = 1 and {$,(z),é(t)) =0. Let g : 8™ x (a,b) — R™! be the function

(3.8) g(z,t) = [c(t) — S&(t)] + R(t)¢(z,1)
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Proposition 3.9. If g is an immersion then S™' x (a,b) with the induced metric is C.F. and
g realized it as an hypersurface with u# \# 0. Conversely given a C.F. hypersurface with
u# N#0, this is of the form 3.8.

On time! This means that we can look at "generic” C.E. hypersurfaces either as envelopes
of n-spheres centred at ¢(t) of radius r(t) or as foliated by a family of (n— 1) spheres cen-
tred at y(t) = c(t) —S(t)¢(t) ofradius R(t) and contained in the hyperplane perpendicular
to ¢(1).

Examples 3.10. If c is a straight line we get a rotation hypersurface. If r 1s a small
constant we get a tube around c = 4. Let ¢ : S' — R* C R™! be acircle with ||¢(t) || = L
and r(t) = B~ sin(¢/L)+1.1f B > 1 and L is sufficiently large we get a C.F. hypersurface
which 1s neither rotational or a tube.

An example when singularities appear (i.c., g is not an immersion) is given by taking ¢(t)
as a straight line and »(t) in such a way that R'(t) changes sign along a lcaf when 7'(t) #0.
This given an hypersurface obtained rotating a curve as in the figure below.

rotational axis

— )
Figure 2

Anyhow, with a little paticnce, we can write down conditions on ¢ and r such that the
map ¢ 1S an immersion.

Proposition 3.11. A point (z,t) € S™! x (a,b) is singular for g if and only if
(1 -8 = |[ell™*{R(¢, &) + §(¢, )

which, if S# 0 is equivalent to R' = S(¢, ¢).

We will now describe the global structure of compact C.F. hypersurface (n > 4 as al-
ways). For this we will use the Morse theory for the height functions whose basic facts we
will rapidly recall (also for use in the next section).

Let f : M® — R™P be an immersion and £ € S™P~! C R™P? be a fixed unit vector.
The height function in the £ direction 1s the function

he: M® =R, hy(z) = (f(2),£).
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Then h.(z) is the height of f(z) with respect to the (oricnted) hyperplane ¢+ or, equiva-

lently, the projection of f(z) ontheline t£,t € R. Itis well known that z, € M isacritical
point for h, if and only if £ € v M and at such a point the hcssian of h{f 1S given by Ag.

Let v'! M = {(z,n) € vM : ||n|| = 1} be the normal sphere bundle and " : v' M —
S™p=1 T (x,n) = n be the (generalized) Gauss map; if ¢ is a regular value of ' the hessian
of he 1s non degenerate at each critical point of h, i.e., all critical points are non degenerate

and h, is what is called a Morse function. Recal that the index of a function at a critical point
is the number of negative eigenvalucs of the hessian.
The main result of Morse theory may be stated as follows:

Theorem 3.12. Let h be a Morse function on a compact manifold M. Then M has the
homotopy type of a cell complex with one cell of dimension m for each critical point of h of
index m.

The first consequence of the above thcorem and Cartan’s Lemma (3.5) is that a compact
C.F. hypersurface in R™! n > 4 is homotopy equivalent to a cell complex with cells only
in dimensions 0, 1, (n— 1) and n. In particular the homology groups H.( M;Z) are zcro
forl<i<(n-—1).

Let now M™ be a compact C.F. manifold, n > 4, and f : M® — R™! an isometric
immersion. Let { be aregular value of I' so that h is a Morse function.

If hos does not have critical points of index 1 then M is simply connccted (by 3.12) and
therefore diffeomorphic to S™ by Kuiper’s theorem 2.5. Suppose z, € M is a critical point
of index 1. Since z, is non degenerate, u < 0 < X, so by 3.6 z, has a ncighborhood V

diffeomorphic to S™! x (a,b) via a diffeomorphism which sends the slices S™! x {t}
onto the leaves of the foliation X, and, say, (p,t,) in z,. We can pcrform the following
construction that we will call a conformal surgery at z, .

Delete from M the image of S™' x (t, — €,t, + €) and fill up the "holes” with two
disks. Playing with the local description in terms of the curve ¢(t) and the function r(¢) and
using 3.11 to avoid singularities, it is possible to show that the above conformal surgery can
be performed in such a way that:

a) the resulting manifold is still a C.F. hypersurfaces

b) the Gauss map, restricted to the added disks, omits £¢ (in particular h, does not have
critical points in those disks).

In the language of differental topology, the manifold M 1s obtained from the modified
manifold by attaching an handle of type S™' x (a,b). We can now prove one of the main
results of [3]:

Theorem 3.13. Let M™ be a compact C.F. hypersurface in R™' n > 4. Then M™ is
diffeomorphic to a sphere with b, handles (of type S™' x (a,b) ) attached. Conversely any
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Q(

Figure 3. Conformal surgery at z;.

such manifold may be immersed in R™' in such a way that the induced metric is C.F.

Remark. The number b, is the first Betti number of M, ie. b, = dimq H(M,Q).

Proof. Let { be aregular value fo I" and z,, ..., z, the critical points of h, of index 1.
Suppose we have ordered the z;s in such a way that after performing conformal surgeries at
Tyyeeey Ty WE obtain a connected manifold M and any surgery at z,;,1 > b, disconnects M.
It is then sufficient to prove that M is diffeomorphic to S™. Performing conformal surgeries
in M atz, ,...,z, weobtainaC.F.manifold M’ on which h, has only critical points of

index O0,(n— 1) or n. The connected components of M’ are simply connected (by 3.12)
and hence diffeomorphic to spheres by Kuiper’s theorem 2.5. It 1s not diffucult to see that
since M is disconnected by any of the above surgery M has to be the connected sum of the
connected components of M’ and hence diffeomorphic to a sphere.

The converse is proved (I hope!) by the figure 4.

i N v N

Figure 4. An immersion of a sphere with b; handles attached.
Conformal surgery at z does not disconnected, conformal surgery at y disconnects.

The above thcorem looks exactly like the classical classification theorem for compact
surfaces (which are conformally flat!).

The following natural question is still open:
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Problem. Give a description of compact C.F. hypersurfaces in R4 .
We observe explicitly that if an hypersurfaces of R* has a principal curvature with multi-
plicity at least two then all the above arguments still hold true and we get the same conclusons.

. 1
For such an hypersurface it is easy to see that, with the above notations, y = A [A ~ 5 A ] ,

sothat R(X,Y) = v(X) AY + X A4(Y) and, using the Codazzi-Mainardi equation for
A, (Vi )(Y) = (Vyy)(X) so that the manifold 1s C.F.

4. CONFORMALLY FLAT SUBMANIFOLDS

In the section we will study some of the local and global geomctry of 1sometric immersions
of a C.F. manifold M™ into R™? . The first things to look for are analogues of the Cartan
Lemma {0 characterize conformal flatness or, at least, give necessary conditions for it.

Let f: M™ — R™P be an isometric immersion. We recall that a subspace V C T, M is
said to be an umbilic subspace if these exists a normal vector £ € v_. M such that

a(X,Y) =(X,Y)e VXET,MY€EV

A first partial analogue of Cartan’s Lemma is the following result due to J.D. Moore (sce [11]
for proofs):

Theorem 4.1. Let f : M™ — R™P be an isometric immersion, p < n— 3. If M" is C.F,
Vz € M there exists an (n— p) -dimensional umbilic subspace V CT M.

If M™ is compact the above reuslt gives, via the Morse thcory for the height functions,
restrictions on the topology of the manifold.

Corollary 4.2. Let M™ be a compact C.F. manifold and f : M®™ — R™P an isometric
immersion, p < (n— 3). then M™ has the homotopy type of a cell complex with no cells
in dimension k,p < k < (n— p). In particular, for k in this range, the homology groups
H,(M",Z) vanish.

Proof. The existence of an umbilic subspace V C T, M of dimension at least (n —
p) implies that V§ € v, M, A, has an eigenvalue of multiplicity at least (n — p). If this
eigenvalue is negative the index of h, at z 1s at lcast (n— p), 1f it 1s positive the index can
not be bigger than p. The conclusion then follows from 3.12.

Definition 4.3. A normal vector £ € v, M is called quasi-umbilical if A, has an eigenvalue
of multiplicity at least (n— 1) . The immersion f : M™ — R™P is called quasi-umbilical
if, Yz € M, there exists an orthonormal basis £, ,...,{, in v, M, with {; quasi-umbilical,
1=1,...,p.

The following characterization of conformal flatness for low codimensional submanifold
was obtained by J.D, Moore and J.M. Morvan along the lines of Cartan’s ideas (see [12]).
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Theorem 4.4, Let f: M™ — R™P? be an isometric immersion with p < min{4,(n— 3) }.
Then M™ is C.F. if and only if f is quasi-umbilical.

Remark. In [13] Morvan and Zafindratafa construct an immersion of an open neighbordhood
of 0 € R* into R'% with 0 as a flat point (with the induced metric) but not quasi-umbilical.
This shows that some conditions on the codimension are essential for a theorem of the type
of 4.4. _

Theorems 4.1 and 4.4 have been used by M.H. Noronha to study the local geometry of
a conformally flat n-dimensional submanifold of R ™?* . We will describe now some of her
results.
Definition 4.5. A submanifold X C M 1s a geometric sphere of type €, = 0,1, if X is
an umbilic submanifold of M with parallcl mean curvature vector (in vZ C TM ) and the
sectional curvatures of M along planes tangent to o are zero (g = 0) or a positive constant
(e=1).
Definition 4.6. A manifold M™ is of type (&,l) if it is locally foliated by codimensional [
geometric spheres of type €. From 4.1 using the Codazzi-Mainardi equation we get:

Corollary 4.7. Let f : M™ — R™P be asin4.1. Then there exists an open and dense set
N C M such that each connected component of N is of type (g,1),l < p.

For a more dctailed analysis of the local gcometry of C.F. manifolds which can be 1somet-
rically immersed 1n euclidean space with low codimension we nced some facts about normal
curvature., We recall first that the vanishing of the normal curvature is a conformal invari-
ant of the immersion. It is not true, in general, that C.F. submanifolds of codimension two
have R+ = 0. There are, in fact, flat surfaces in R* with R*+# 0, if we want higher di-
mensional example is enough to take the product of such an immersion with the identity map
1:R*¥ — R*. However to study the local intrinsic geometry of a C.F. manifold immersed
in codimension two, we can suppose R+ = 0, based on the following result (see [15] for a
proof).

Theorem 4.8. Let f : M™ — R™?% be an isometric immersion, M C.F.and n> 5. Then
there exists a local isometric immersion g : M™ — R™?% with R* = 0.

Let M™ be a C.F. manifold of type (g,1),n > 5. Combining results of J.D. Moore (see
[14]) with the arguments of §3, we get:

Theorem 4.9. In the above hypothesis there exists a local isometric immersion of M™ into
R™! near each point of an open dense subset N C M™. Moreover, given an isomeltric
immersion f : M™ — R™2 Yz € N there exists a neighborhood U, where f\ U_ is the
composition of an isometric immersion f, . U, — R™! and a local isometric immersion
j : le —_ Rn+2 _
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Codimension two C.F. submanifolds of type (&, 1) look like hypcrsurfaces. We will dis-
cuss now the case (&g,2).

Theorem 4.10. Let M™ be a C.F. manifold of type (g,2),n > 5. A necessary and sufficient
condition for the existence of a local isometric immersion into R™? is that M™ admits two
orthogonal codimension 1 foliations whose leaves are, in the induced metric, C.F. manifold of
type (&, 1) and the intersectionof the leaves of the two foliations gives the codimension two
foliation by geometric spheres.

Idea of the proof. Let us suppose M™ is (locally) immersed in R™? . By 4.8 we can
suppose R+ = 0 and therefore, by the Ricci equation for all z € M™ there exists an or-
thonormal basis {X,,...,X_} in T, M™ which diagonalizes simultaneously all the opcrators
Ag:f € v_. M. By 4.4 there are two orthogonal quasi-umbilic vectors §,,£{, € v, M. Up to

reordering the basis {X,,...,X_} we have:

- . b 0

a, 0
b,
a
A‘El = A& = b

0 a

] ] 0 b

with b; # b, a, # a otherwise M™ would be of type (¢g,1).
It is not difficult to see that we can choose the X s and £;s differentiably near z so that
we get four differentiable distributions:

D, = span{X,,X;,...,X,}

D, = span{X,,X5,..., Xy}

D — Dl ﬁDZ

Dt = span{X,, X, }.

From the Codazzi-Mainardi equations it follows that each distribution 18 integrable. Let
2,1 = 1,2, 1 denote the leaves of the foliations. A little more playing with the ba-
sic equations show that the s are C.F. manifolds of type (g, 1) and the X's foliated Z; and
ar¢ geometric spheres.
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For the converse we first observe that if e = 0, the Z/s are of type (0.1). Then Z, is flat

and with a few calculation is possible to see flat M is flat so we can locally embed itin R ™2 .
Let us suppose € = 1. We want to construct two commuting symmetric operators A,, A, :

T.M — T_M and a connection in M x R? such that the basic equations 3.1, 3.2, 3.3, are
satishied. It 1s possible to show that there exists a local orthonormal frame {X,,..., X} that
diagonalizes the operator v (defined in 2.1) such that {X,,X;,..., X, } diagonalizes the
operator v, (relative to the C.F. manifold Z, ) and {X,, X,,...,X_} diagonalizes , . In
this basis ~y takes the form

L O 32

We are looking for operators A, which in the above basis look like

-0 a- L0 b -

The basic idea s that the Gauss equations give four relations between a, b, a,,a,, b, sowecan
determine them in function of one parameter. So we can play with this parameter and using
the fact that ~ verifies an equation of type Codazzi-Mainardi, define a suitable connection
on M x R? such that our data verify also the equation of Codazzi-Mainardi and Ricci. The
calculations however are non trivial and we refer to [14] for a complete proof.

The results described above give a reasonable description of the local geometry of C.F.
submanifolds of R¥ with codimension two. However, probably, they have to be refined to
answer the following natural questions:
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Problem. Give a global geometric description of compact C.F. submanifold in R¥ with
codimension two similar to the one given in 3.5 and 3.10 for hypersurfaces.

Probably the first and essential step is to understand haw the various pieces of type (g, )
glue together.

Another interesting question is the following:

Problem. Given a C.F. manifold of type (&,[), which are there geometric invariants of
the immersion into V™! (cf. 2.4) which detect the type?
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