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STACKEL SYSTEMS
AND KILLING TENSORS *

S. BENENTI **

1. INTRODUCTION

The problem of finding the geodesic of a Riemannian manifold can be solved by the method
of Jacobi. With this method the problem is turned to the integration of a partial differential
equation, the Hamilton-Jacobi equation of the geodesics. Once a complete integral of this
equation has been found, the solutions of the ordinary differential geodesic equations are
obtained by a straightforward process of differentiation and substitution. This method has
been applied in Analytical Mechanics to find the dynamical trajectories of holonomic systems
and also in General Relativity to find the trajectories of test particles in some exact solutions
of Einstein equations. In fact, in almost all the cases in which this method can be applied with
success the complete integral in a sum of functions each one depending on one coordinate
only and the Hamilton-Jacobi equation splits into separated ordinary differential equations.
Thus we say that the Hamilton-Jacobi equation is integrable by separation of variables.

Coordinate systems which allow the integration by separation of variables of the geodesic
Hamilton-Jacobi equation are called separable. Separable coordiantes have some importance
in Mathematical Physics, since they allow the integration by separation of variables of vari-
ous second order ficld equations, related to a Riemannian metric and to a potential function
(Laplace, Helmholtz, Schrédinger, etc.), provided that the potential and the Ricci tensor sat-
isfy suitable conditions.

We know that the existence of separable coordinates on a Riemannian manifold is related
to the existence of Killing vectors (i.e. linear first integrals or isometries) and of Killing
tensors of order 2 (i.e. quadratic first integrals). The geometrical conditions imposed to a
manifold for the existence of separable coordinates are very nice but actually very restrictive.
However, the manifolds with constant curvature abound of separable coordinates, since they
have the greatest possible number of Killing vectors and tensors one can find on a manifold
[12]. Separable coordinates are fully classified for Euclidean spaces, for spheres and for pseu-
dospheres (see [8], also for an essential hystorical account on the problem). Furthermore, as
we have mentioned, many interesting examples of separable coordinates come from General
Relativity (see for instance [5], [17]).

This lecture is devoted to the geometrical characterization of orthogonal separable coor-
dinates. The characterization of non-orthogonal separable coordinates would need a longer
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treatment (see for instance [10],). We shall se¢ that the existence of separable coordinates is
characterized by purely algebraic conditions on sets of Killing tensors of order 2. We shall
call such sets Stickel systems. We begin with an outline of the Jacobi method and a theorem
on the separation of variables which will be used at the end. In Section 3 basic definitions and
theorems concerning the algebra of contravariant symmetric tensors and Killing tensors are
presented. In Section 4 we introduce a modified version of the equations written by Eisen-
hart [7] for the Killing tensors of order 2, by considering a non-holonomic frame made of
eigenvectors. They will be used to prove a theorem which is a modified version of previous
theorems due to Eisenhart [6], Woodhouse [17] and Kalnins and Miller [9].

2. THE METHOD OF JACOBI
Let Q be a differential manifold of dimension n. Let mQ ° T*Q — Q be the cotangent

fibration of Q. Local coordinates of Q will be denoted by ¢ = (¢*) (latin indices range
from 1 to n). The corresponding canonical coordinates on 7*Q will be denoted by (¢*, p;) -
Coordinates (p,) are called momenta. We shall use the canonical symplectic structure of
the cotangent bundle T*Q generated by the foundamental form © (the Liouville 1-form),
locally defined by

O = p.dg’.

With a C* real function H on T*Q we associate a C* vector field X, on T*Q defined
by equation

(1) ‘ledE')Q = —dH.

Here the symbol : denotes the inner product of a vector field by a differential form. The func-
tuon H is called the Hamiltonian of the vector field X,,. In canonical coordinates equation
(1) 1s represented by the Hamilton equations:

(O0H . _ oM
(2) g = 3Pi‘ P; = aqi'

The integral curves of the vector field X, are the solutions of this differential system.
The symplectic structure on T*Q generates a Poisson structure on the space of the C*
real functions on 7*Q . The Poisson bracket { ', G} of two functions is defined by equation

(3) {F,G} = (Xp AXg, dfp).

In canonical coordinates

N IFPrMMN = . T =
(3) {F:G}_ 3!3,_ aq, Bq‘ ap‘
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(This definition differs in sign from that of Classical Mechanics). Two functions F' and &G
are said to be in involution if {F,G} = 0. A function F is said to be a first integral of the
vector field X, (or of the Hamiltonian H') if it is constant along the integral curves of X, .
A function F' is a first integral of X, if and only if {F, H} = 0. Hence the hamiltonian
itself is a first integral (the energy integral).

Besides the Hamilton equations (2) a Hamiltonian H generates a first order partial differ-
ential equation, the (reduced) Hamilton-Jacobi equation,

(4) H (q“, %) - h,

where h is a real parameter (the energy). A complete integral of this equation is a solution

(5) W =Ww(dgc,)
depending on = real constants of integration (c,)(a = 1,...,7n) such that
(6) det(azw)#o

dq¢*dc,

everywhere. Usually one of the constans (c,) , say c, , 1S the energy h. When such a complete
integral 1s known then the solutions of the Hamilton equations (2) are determined by the
following equations:

(7) e 0 (a=1...0-1),
dc,
. oW
(8) LA
ow
(9) = o,

where ( b%, b*) are further n real parameters. Equations (7) define a system of unparametrized
curves on Q. These curves are the projections to Q of the integral curves of X, .
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Example. Let (Q, g) be aRiemannian manifold. (We use this term in a general sense: the
metric g can be positive-definite or semi-definite). Let us consider the geodesic Hamilfonian

1 ..
(10) H == ¢"pp;,

where (g*/) are the contravariant components of the metric tensor g. The vector field X,
on T*Q is the geodesic field. The integral curves of X, are indeed projected by m, onto the
geodesic of (Q, g) . Hence, the unparametrized geodesics are given by equations (7), where
W 1s a complete integral of the geodesic Hamilton-Jacobi equation

iV W o
dqt d¢/

(11)

From a geometrical point of view a complete integral of the Hamilton-Jacobi equation (2) is
a local Lagrangian transversal foliation of T*(}, compatible with the Hamilfonian H . This
means that: (i) For each admissible value of the constants ¢ = (c,) , equations (9) define
a Lagrangian submanifold L, of T*@Q which is trasversal to the fibres (i.e. it is the image
of a section of 7T*(Q)). We recall that a Lagrangian submanifold is an isotropic manifold of
maximal dimension n. Isotropic means that the pull-back to this submanifold of the canonical
symplectic form 1s the zero form. (11) Lagrangian submanifolds corresponding to different
values of ¢ have empty intersection. This is due to the completeness condition (6). (iii)
The Hamiltonian A is constant on each submanifold of the foliation. This is expressed by
equation (2).

There 1s an alternative representation of such a foliation, by means of first integral in
involution. Let ( F) be = real differentiable independent functions on 7*(Q). The equations

(12) F. =c

a Gg?

where (c,) are real parameters, define a local foliation of 7*(Q) . This foliation is transversal
to the fibres fo T*Q if and only if

(13 et (aﬂ).#o.

apj

The foliation i1s Lagrangian if and only if the functions ( F) are in involution,

(14) {F,,F,}=0.
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The hamiltonian H is constant with respect to this foliation if and only if
(15) {H,F,}=0,

i.e. if and only if the functions F, are firstintegrals. The system of equations (15) is equivalent
to the Hamilton-Jacobi equation (2). We pass from the first representation of the foliation to
the second one by solving equations (9) with respect to (c,); then we get equations (12).
Conversely, if we solve equations (12) with respect to the momenta, we find a system of
fucntions p; = W;(¢*,c,) . Because of conditions (14) the 1-form Wdg' is integrable and
an integral function W of this form is a complete integral. Equations (15) imply that the
Hamiltonian H 1is functionally dependent on the functions ( F,). The choice ¢, = h is
equivalentto F, = H.

Definition 1. Local coordinates (g*) of the manifold Q are called separable with respect to
a Hamiltonian H if the Hamilton-Jacobi equation (2) has a complete integral of the form

(16) W =W, (¢ ,c)+W,(¢* c)+...+ W.(qg" c,),

i.e. such that

(17) B‘B}W - 0 fﬂ'r i# j,

For simplicity, we shall use the notation:
9, .0
0= —, 0 =—.
dq* Op;

Levi-Civita [13] gave a criterion for the separability of a coordinate system. The following
equations must be identically satisfied (no sum with respect to the distinct indices 1 and 7 ):

(18) S'HY HO,0,H+ 0, HO; HO'Y H—O'HO; HO,’ H- O, HY HO'O;H =0 (i#}).

Definition 2. Two functions F' and G on T*Q are said to be in separable involution with
respect to a coordinate system (q*) if

(19) {F,G};= 0'F3,G — 8,F3'G = 0.

for each index 1 (no sum with respect to the index 1 ).

In Section 5 we shall use the following theorem, which was already stated in [2].
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Theorem 1. Local coordinates (¢*) are separable with respect to a Hamiltonian H if and
only if there exist n independent first integrals (F,) in separable involution with respect to

(¢").
Proof. By combining equations (9) and (12) we get the identities

F,(¢',0,W) = c,
By differentiating them with respect to a coordinate ¢*, we get

(20) O,F,+ ¥F,I;;=0, T, =3808W.

a1

We must show that condition

(21) rij=01 if 7,

is equivalent to

(22) {F,,F,}.=0

If (21) holds, then (20) implies

(23) 8,F.+3'F.I';; =0

(no sum w.r. to the index 1).
If we write the similar equation for a different function F; and take the difference of the
two equations, we obtain:
Ll By Fo}i= 0.

If T';;#0, then (22) follows. If I',, = 0, then (23) shows that 9, F, = 0 for all indices
a = 1,...,n, but this again implies (22). Conversely, assume that (22) holds. The matrix
(B‘Fn) is regular (condition (13)). Let us denote by ( A?) the inverse matrix: ¢’ F, A¢ = 6{ :
Let us solve the system (20) with respect to the functions Fij ,

— G
l—:“ — """.AjaiFu.
Let us multiply this equation by 3 Fy# 0 (there is at least one index b for which this element
is different from zero), without summing with respect to the index 1, and use condition (22).
We get
I,;0'F, = —A}8'F,0,F, = —8,0,F,.

This shows that T';; = 0 for j#1. al



Stickel systems and Killing tensors 45

3. KILLING TENSORS

Let S*(Q) be the space of C*™ contravariant symmetric tensor fields of order k on the
manifold Q. By definition S*(Q) is the space of vector fields, and S°(Q) = C®(Q,R) is
the space of differentiable real functions on Q. With each K € S*(Q) we associate a C*®
real function Ex on T(Q) defined by equation

Ex(p) = 7 (K(ng(m),p"), peT"Q

where p* = p® ... ® p, k times. For k = 0,K is a function on Q and we define

For k# 0 the local canonical coordinate representation of Ey is a homogeneous polynomial
function of degree k of the momenta:

1 C
Ex = - Kihp, .py.

There is a natural identification between these functions on 7*Q and the symmetric con-
travariant tensors on Q.

The symmetric product of two contravariant tensors K € S¥(Q) and L € SY(Q) is the
symmetric tensor of order k + [ denoted by K N L and defined by equation

(1) Ex .y = Ex Ey .

The Lie bracket of two contravariant tensors K € S¥(Q) and L € SY Q) is the symmetric
tensor [K,L] € S¥-1(Q) defined by equation

(2) E[K,L] = {Ex, Ey },

where {, } is the canonical Poisson bracket. The bracket [, ] can be linearly extended to the
direct sum

S(Q) = ©;:55%(Q).

Then this space becomes a Lie algebra. The Lie bracket is a derivation with respect to the
symmetric product, i.e. it is bilinear and the Leibniz rule holds:

[K.LNM]=[K,LINnM+[K,M]NL.
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This last property directly follows from definitions (1) and (2) and from the analogous property
of the Poisson bracket. It can be shown that when K 1s a vector field (k= 1) ,then [K | L]
is the Lie derivative of L. with respect to K . In local coordinates the components of [K |, L]
are defined by

(k+1—1)!

i) _
(K, L] = k]!

(kKM L9 — ILME-g, D),

where (...) is the symmetrization operator over the indices and @, denotes the partial deriva-

tive with respect to the coordinate g*.
Two symmetric tensors K and L are said to commuteor to be ininvolutiomif [K |L] = 0.
If Q is a Riemannian manifold then there is a natural identification between covariant and
contravariant tensors. This 1dentification will be understood throughout this lecture.

Definition 1. Let (Q,g) be a Riemannian manifold. A Killing tensor is a symmeltric tensor
field K which commutes with the metric tensor: [K ,g]1=0.

Killing tensors form a subalgebra of S(Q). A function F' on T*Q is a first integral of
the geodesic field if and only if {F, H} = 0. Since [K, g] ={E, E, } = 2{E, H} where
H is the geodesic Hamiltonian, it follows that:

Proposition 1. A symmetric tensor K is a Killing tensor if and only if the function Ey isa
first integral of the geodesic flow.

As a consequence Killing tensors are identified with polynomial first integrals of the
geodesic flow. It can also be proved that

Proposition 2. A symmetric tensor K is a Killing tensor if and only if (VK ) = 0, where V
is the covariant derivative with respect to the Levi-Civita connection and the brackets (...)
denote the symmetrization operator.

This property is usually assumed as a definition of Killing tensor. For our purposes Defi-
nition 1 is preferable, since the Levi-Civita connection 1s not involved.

Killing functions (k = 0) are locally constant functions. For Killing vectors (k = 1) we
have the following characteristic properties.

Proposition 3. A vector field K is a Killing vector if and only if the corresponding flow is
isometric (the Lie derivative of the metric tensor is zero).

Proposition 4. A vector field K is a Killing vector if and only if, as a derivation on functions,
it commutes with the Laplacian A : K(Ay) — A(Ky) =0.

The concept of Killing tensor is an extension of the original concept of Killing vector 1n
the direction of symmetric tensors. There is also an extension towards the anti-symmetric
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tensors (see for instance [18]). In the following discussion we shall deal with Killing tensors
of order 2 only, so that "Killing tensor" will mean "Killing tensor of order 2".

Symmetric tensors of order two can be interpreted as linear operators on vector fields and
1-forms. We denote by K - X and by K -¢ the value of the tensor K on the vector field
X and on the 1-form ¢. We recall that a vector field X (respectively a 1-form ¢) is an
eigenvector (resp. an eigenform) of K associated with the eigenvalue \ of a (symmetric)
tensor K of ordertwoif K - X = AX ,or K - ¢ = \¢.

4. THE INTRINSIC KILLING EQUATIONS

A frame on a manifold Q is a set of n independent C* vector fields (X;) . Frames can be
defined only locally, unless @ is parallelizable. The commutation relations

(1) [X;, X1 = QX

define a set of functions (Qf;") . These functions are not all independent because of the anti-
commutativity of the Lie bracket and the Jacobi identity. A frame is said to be holonomic if
the vectors commute, i.e. if Qif; = 0. In this case there exist local coordinates (g¢*) such that

X, =0d/0¢.
Let K and L be two contravariant symmetric tensor fields or order 2. Let (X,) be a
frame. Let K* and L¥ be the components of K and L with respect to the frame (X,) . By

a straightforward calculation, based on formula (3) of Section 3, we get the components of
[K,L] with respect the frame:

(2) [K,L1" = KX, LY — L*™X, KV + (K™ L* + K LM)QJ + ...

Here, periods denote the two terms obtained from the first one by cyclic permutation of the
indices (h,1,7).

Suppose that K and L are "diagonalized" in the frame (X)) ,i.e. that K = LV = 0 for
1# j . From formula (2), written for different indices (h,1,7) (whenn > 3),for h = i#
and for h = 1 = j respectively, it follows thatequation [K L] = 0 is equivalent to equations

QI(K*LF — KL?) + QYKL — K7LY) + Qi (K/L* — K*LJ) = 0,
(3) KX,/ — I'X;K/ + 2 K'L’ — K'L)Q[, =0,
KX.L' - I'X.K'=0,

where K* = K* and L' = L* (no sum with respect to the repéated indices).
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Proposition 1. Let K and L be two symmetric tensors on a Riemannian manifold (Q,g) of
dimension n. Assume that they have a common set of n independent real orthogonal eigen-
vectors (X,) . Let p; and o; be the real eigenvalues of K and L respectively, corresponding
to X;. Then K and L commute,i.e. [K,L] =0, ifand only if
(4)
{Qh;j(ﬂhﬂr - ﬂ,ﬂh) + Q,_,;.(ﬂiﬂ} ‘""P;U,) + ;h;(p;gh phgj) =0, (h,4,7#)
0. X;p; — p;X;0; = (p;0; — p;0;)(X;log || + 26/Q,;.),

where

(3) Qi = [X,X1-X,, &=g"=(X;-

Proof. We take the set (X;) as a frame and substitute

K'=¢p, L'=¢g, Qij} = Ehgﬂ'hr
in equation (3). "
If we choose L = g (sothat o; = 1), we have:

Proposition 2. Let K be a symmetric tensor of order 2 on a Riemannian manifold (Q, g) .
Let the eigenvalues (p;) of K be real (this assumption is satisfied if the metric tensor is
positive-definite) and let (X,) be a frame made of orthogonal eigenvectors of K . Then K
is a Killing tensor,i.e. [K,g] = 0, if and only if the following equations are satisfied, where
znh(i;} Qhu + Qh}:

(6) X;p; = (p; — p;) (X;log [&/] + 2679, ).

{ﬁhnh{ﬁ} + 0%y + P25y =0 (h1,7#),
X;p;=0.
Remark 1. Similar equations has been written by Eisenhart [7], with respect to an orthogonal
unitary frame (X;)(g; = £1),

7 { (Pn = P Vhis + (P — P3)Yijn + (05 — PR)Vjni = O,

xipj = 2()‘5’; - p;) Ej’fijj: X;p; =0,
where

(8) Thij = X; ?xjxh
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are called coefficients of rotation. These coefficients have been sistematically used in Rieman-
nian geometry to study the behaviour of an orthogonal unitary frame. However, it is better
for our purposes to use equations (6) instead of equations (7). Indeed, since we deal with
purely differential properties of the frame (X,) it is more convenient to use, instead of the

coefficients of rotation, the commutation coefficients (Ql.f;) or (K;:,) whose definition does

not involve a redundant structure as the Levi-Civita connection.

Remark 2. If the frame is holonomic and X; = g;, then the first equations in (6) are identically
satisfied and the second ones reduce to

(9) 3;p; = (p; — p;)8;10g |g”|.

Proposition 3. If two Killing tensors K and L are both diagonalized in an orthogonal holo-
nomic frame, then they are in involution.

Proof. The frame is made of eigenvectors and equations (6), hold for K and L. These
equations imply equations (4), . Equations (4),, just like equations (6),, are identically
satisfied since the frame is holonomic. o

5. STACKEL SYSTEMS

Orthogonal systems of separable coordinates have been called "Stickel systems” (see [6]) in
honour of P. Stickel, who established the first fundamental results on separation of variables
(see Theorem 2 below). However, for our purposes it is more convenient to consider Stickel
systems and orthogonal separable coordinate systems as two distinct concepts. Indeed, our
discussion will be based on the following two definitions.

Definition 1. A Stickel system on a Riemannian manifold (Q,g) of dimension n is a set
{K,;a=1,2,...,n} of nKilling tensors on an open submanifold U of Q such that:

(1) They are independent at each point of U .

(11) They have n independent orthogonal eigenvector fields in common.

(ii1) The common eigenvector fields are normal.

A vector field 1s called normalif the orthogonal distribution is completely integrable. Two

Stackel systems are said to be equivalent if they are related by a linear transformation with
constant coefficients.

Two Stéckel systems are said to be equivalentif they are related by a linear transformation
with constant coefficients.

For a definite-positive metric the requirement "real” in condition (ii) is redundant.
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Definition 2. An orthogonal separable system on a Riemannian manifold (Q, g) is a system
of local coordinates (¢*) on Q such that

g” =dg'-dg’ =0, for i#}],

and the corresponding geodesic Hamilton-Jacobi equation

2
(D g (%?) =2k,

has a complete integral of the form
(2) W =W,(¢",c) + W,(g*,¢) + ...+ W,(¢g",¢).

Two such systems (¢*) and (r*) are said to be equivalent if they are related by transforma-
tions of the kind ¢! = ¢'(+'),...,¢" = ¢*(r*) (they have the same coordinate surfaces).
Our aim is to prove that:

Theorem 1. There is bijective correspondence between equivalence classes of Stdckel sys-
tems and equivalence classes of orthogonal separable systems.

We need a third definition.

Definition 3. A Stdckel matrix is a n X n regular matrix of functions [¢E"+}] of m variables
(¢*) such that each element ¢Ej ) isa function of the variable q* alone (i.e. of the variable

corresponding to the lower index). We denote by | cﬁ‘f oy ] the inverse of a Stdckel matrix | ¢E 20

Stiickel matrices are recurrent objects in the theory of separation of variables. How to pass
from orthogonal separable systems to Stéickel systems is shown by the following theorem.

Theorem 2. (P. Stickel). If (¢*) is an orthogonal separable system, then there exists a
Stiickel matrix [ $:®) such that

(3) 9" = P(n -
The symmetric tensors {K ;a = 1,...,n}, whose components are defined by

(4) K¥=¢,, KI=0 for i#j,
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from a Stickel system (with K_ = g ).

For the proof we can refer to the original papers by Stiickel [15], [16], or, for instance, to
[8]. In fact, Stackel proved that the tensors K defined by (4) are in involution. Since K_ is
the metric, they are Killing tensors. Since these tensors are diagonalized in the coordinates
(¢*) , they commute as linear operators, hence they form a Stickel system. Once the Stiickel

matrix [¢$®] is found (this is a purely "algebraic" problem) the sum of the functions

W0 = [V2c,47dg

gives a complete integral of the form (2), with ¢, = h. Indeed, equation (1) becomes

1 )
> ¢Eﬂ}pf =h=c_.

We can look at this equation as one of the following system

1 .
5 aPi = Ca
and this system can be solved with respect the momenta,
2 a
p; = 2cﬂ¢v5 ).

Incidentally we notice that the constants of integration are just the values of the first integrals
corresponding to the Killing tensors

Hence, the fact that the Killing tensors are in involution is a consequence of the theorem of
Jacobi, which states that the constants of a complete integral correspond to first integral in
involution.

Eisenhart [6] [7], Woodhouse [17], Kalnins and Miller [9] gave geometrical characteriza-
tions of orthogonal separable systems in terms of Killing tensors. In Eisenhart’s theorem [6]
separable coordinates are generated by n common closed eigenforms ¢° of n independent
Killing tensors (quadratic first integrals) K  in involution (one of them, K_, is assumed to
be the metric tensor). It is also assumed that the eigenvalues p , of K_ are simple and that
det(p,; — p,;) 70 fori¢janda=1,...,n— 1. In [17] t he Killing tensorts are assumed
to have common closed eigenforms only. In [9] it is assumed that the Killing tensors are in
involution, that they commute as linear operators and that at least one of them has all simple
eigenvalues. In [1] [2] the Killing tensors are assumed to be in involution and to have common
eigenvectors in involution.

The proof of Theorem 1 will follow from the discussion of some equivalent definitions of
Stackel system (Definition 1).
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Proposition 1. In the case of a positive definite metric conditions (i) - (ii) in Definition 1 are
equivalent to (i) - (ii’ ), where

(u’) The Killing tensors commute as linear operators: K_-K; =K, -K_.

When this conditions holds the common eigenvector fields are uniquely determined (up to
a factor).
Proof. The implication from (ii) to (ii’) is obvijous. To prove the converse, let us consider a
finite-dimensional real vector space E with a metric tensor g (i.e. with ascalar product u-v).
Let K be alinear symmetric operator on E. Symmetric meansthatv - K -u=u -K . v for
each pair of vectors (u, v). It 1s known that eigenvectors of K corresponding to different
eigenvalues are orthogonal: K -u = pu,K - v =ov and p# o imply u - v = 0. Itis known
that each eigenvalues p of K generates a maximal linear subspace of eigenvectors S, whose
dimension is equal to the multiplicity of p as a root of the characteristic equation. If L 1s a
symmetric linear operator commuting with K K -L = L . K, then S, 1s an invariant sub-
space of L. . Indeed we have: v €S =K -v=pv=>L -K.-v=pL v=K L v=
pL -v=>L-ve€ Sp. If dsm(S,) = 1(pisasimpleroot),then L -v = Av,and v isalsoan

eigenvector of L. Letus consideraset {K_;a = 1,...,n} of n independent and commuting
symmetric linear operators on E. With each simple eigenvalue of one of them it corresponds
a unique common eigendirection. An eigenvalue of multiplicity m of one of the operators
generates an eigenspace of dimension m of that operator which is an invariant subspace of
the remaining operators. By considering in the order all the operators and picking out the
eigenspaces of dimension [, we reduce the space E to a direct sum of mutually orthogonal
subspaces

(6) E=V'1$V2+...@Vk$31$82$-..$3£,
where V;,V,,..., V., are the common eigendirections defined by simple eigenvalues and
S1,95,,...,8; are subspaces of dimension > 2 made of common eigenvectors: the restriction

on K, to each one of these subspaces is the multiplication by a real number. We can consider
an orthogonal basis on each one of these subspaces. We get an orthogonal basis of £ made of

common eigenvectors, (V;) = (V;,..., Yk, Vi41,---, V,) Where vectors (v,,...,v,) belongs
o (V,,...,V,) respectively. Let us denote by p,, the eigenvalue of K corresponding to
the vector v,. Foreachindex a = 1,...,n and for 1,7 > k such that v, and V; belong to

the same space of the kind 5, we have p;; = p, ;. It follows that the n x n matrix [p,;] 1s
singular. On the other hand, if we set

K.=v. . K v, 9s; = Vi ' Vs,

ai} i a j°?

it follows from equations K - v, = p_;v; that

(7N Ko = 9:iPais Koj=0 for i#].
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Since the operators K | are independent, the nxn matrix [ K ;] is regular. The first equations
(7) show that also the matrix [p,] is regular: contradiction. Hence, the spaces of kind S
cannot exists and the decomposition (6) reduces to

(8) E=V,+V,+...+V

n-

This shows that there is a unique decomposition of E in a direct sum of one-dimensional
orthogonal subspaces made of common eigenvectors. o

Proposition 2. The following condition can be substituted for (iii) in Definition I :

(i1i’) The Killing tensors are in involution: [K_,K,] =0.
Proof. Assume that (1)-(11)-(111") hold. Let us consider a local frame {X ;1 = 1,...,n} made
of common eigenvectors of the Stickel system. Let p_ . be the eigenvalue of K_ correspond-
ing to the eigenvector X,;. We have det[¢,;] # 0 . Because of Proposition 2 of Section 4, for
cachindex a = 1,...,n the following equations hold (see equation (4), in Section 4):

Qijh(pnipbj — ﬂujﬂf.,;) + thi(pujpbh — ﬂnhﬂbj) + Qh;j(ﬂuhﬁu — pgipbh) =0 (1,7,h#),

which can be written (see [9]):

These equations imply det[p,.] = 0, unless

Q;=0 (hij#).

But this means that each X; is a normal vector field, i.e. that the orthogonal distribution of
each X, is completely integrable. Conversely, if (iii) holds, these distributions define families
of orthogonal submanifolds of codimension 1. Hence, there exist orthogonal coordinates
(g*) which have these submanifolds as coordinate surfaces. The vector fields d; = d/d¢*
are common eigenvectors of the Killing tensors. In other words, there exist set of common
eigenvectors X, which commute (i.e. which form a holonomic frame), and there exist local

coordinates (¢*) such X; = d;. Two coordinate systems defined in this way are equivalent
in the sense of Definition 2. Then (i1i’) is a consequence of Proposition 3, Section 4. o
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Proposition 3. Let {K_ ;a = 1,...,n} be a Stdckel system on an open set U . Then:

(i) There exists a set {X;;1 = 1,...,n} of common sigenvector fields which forms a

holonomic frame. The coordinates (g*) generated by such a holonomic frame are orthogonal
separable coordinates.

(it) The diagonal components of the Killing tensors K in the coordinates (g*) form the
inverse of a Stiickel matrix: ¢}, = K.

(iii) There exists an equivalent Stdckel system which contains the metric tensor g .
Proof of (). The first partis already proved. Let us write the commutation relation [K K, ] =

0 in the coordinates (¢*) by using formulae (3) of Section 4. We get:

(9) K%3,K) — K'3,K) =0,

no sum with respect to the index 1. This equation is équivalent o equation
{Ek, : EK,}i =0

which shows that the first integrals (Ey ) are in separable involution with respect to the

coordinates (g*) (see Definition 2, Section 2). Theorem 1 of Section 2 shows that (g¢*) are
separable coordinates. O

Proof of (i1) - We prove the following general property concerning Stickel matrices:

Proposition 1. Let (K_) be n independent contravariant symmetric tensors of order 2. As-
sume that they are diagonalized in a coordinate system (q') , i.e. that K¥ = 0 for i#j.
Then they commute if and only if the matrix of elements

by = K
is the inverse of a Stdckel matrix [¢E“}].
Proof. The commutation relations are equivalent to equations (9), which can be written
(9% ba Oibiey — b1y Oiba) = 0,
no sum w.r. to the index ¢. The independence of the tensors is equivalent to det[q’a{n)] #0.

Let us take the inverse matrix [${®1]. Let us multiply equation (9°) by ¢} ¢,” ¢,” and take
the sum over the indices (7, a, b) . We get, after a straightforward process:

(10) 80,4\ = 6,0,4\° .
If h =1, then
ai‘i’ic) = 5}:3@5#}:

and we see that 8,6.” = 0 for k# i. Hence, [¢!] is a Stickel matrix. Conversely, if [${* ]
is a Stickel matrix, then (10) hold and we pass from (10) to (9) by reversing the process. =
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Proof of (i11) - We use a symplectic property of cotangent bundles: on T*Q the maximum
number of independent functions in involution is n. The functions Ey are independent and

in involution. They are in involution also with H (they are first integrals). Hence, there is
a C*™ function F' : R®™ — R such that H = F( Ey ). We differentiate this function twice

with respect to the momenta and we get the metric tensor as a linear combination with constant
coefficients of the Killing tensors K . =

Remark. Let us consider a linear connection on the manifold Q. Let I“,-;! be the coefficients

of the connection in a local coordinate system (g*) . We can write two differential systems:

hy
(11) 3,9, —Tl¢, =0,
and
(12) 00 + Thvh = 0.

If ¢, and v* are two solutions then

(13) v'$. = const.

Both systems (11) and (12) are completely integrable if and only if the Riemann tensor is zero.
Then the general solution of system (11) has the form

(14) $.=c, ¥, ¢, €R,
where {dyﬁ"’; k=1,...,n} are independent solutions:
det[4]40.

The inverse matrix [¢:} k] gives the general solution of system (12):

(15) v' = c* iy

If in addition the connection is symmetric, then two solutions of system (12), interpreted as
vector fields, commute; that is:

(16) Eh) ai‘i’fk} = ‘f’{k} 3:“1’{&}*
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We say that the connection is separable in the coordinates (¢*) if

(17) [i=0 for i#j.

Then the two differential systems become

(11) 09, =0 (i#)), 8,4, = B}¢,,
and
(127) 9,0/ = —Blv’

(no sum with respect to the index i), where B/ = T'J. Integrability conditions (of both
systems) are:

(18) 8;B} = BiB} (i#7))

(no sum w.r. to the index 1). From (12°) we get the coefficients of the connection (we exclude
vV =0):

(19) B =- v

As a consequence, the integrability conditions (18) become:
(20) uiujaiajuh ~ uiaivja}-uh - uj31+ui6iuh =0, 1#].

These equations are similar to Lamé equations [4]. On the other hand, the first set of equations
(11°), shows that any set of independent solutions form a Stiickel matrix [q{:f.“)]_ Hence, the

most general function satisfying equations (20) is of the kind (15) where [¢of k] is the inverse
of a Stickel matrix, or equivalently of the kind

(21) v' = ¢l

where ¢}, is aline of the inverse of a Stéickel matrix.

Furthermore, let v* and u® be two solutions of system (12°). Let us set

ui
(22) Pi = o
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From equations (12’) and (18) it follows that

(23) 61;Pj = (p; — pj)at- log l”J|

Equations (20) are still the integrability conditions of this differential system.
This is a general framework in which we can find some of the preceding results on Stickel
systems. Indeed if we set

v'=g% ¢, =(8;W)*
then in equation (13) we recognize the Hamilton-Jacobi equation. In the first set of equations
(11°) we recognize the assumption of separability. The existence of a complete integral fo the

form (2) is then equivalent to the complete integrability of system (117) with the functions B;f
given by

. 1 ..
Bf = _E 3;'.?”
The intcgraﬁility conditions are the equations
(201) giigjjaiajghh _ gﬁ ,;gﬁ@jghh _ gjjajgiiaighh — 0; 1:?4: _?',

which are recurrent equations in the theory of separation of variables (see [6], [7]). In fact
these equations directly follow from the separability conditions of Levi-Civita, (18), Section
2, when H is the geodesic Hamiltonian in orthogonal coordinates; hence they represent nec-
essary and sufficient conditions for the separability of the orthogonal coordinates (g*). As
we have seen, the most general solution of equations (20°) is of the form (21), i.e. g = ¢},

where ¢¢,, is a line of the inverse of a Stiickel matrix. This proves the first part of Theorem
2. Furthermore, equations (16) show that the tensors K defined by equations

Ky = ¢t KI=0 (i),

are in involution, and the second part of Theorem 2 is also proved.
Equations (20°) are also the integrability equations of the differential system

a;'ﬁf = (p; — Pj)ai log |9HI*

These are the characteristic equations of the eigenvalues of a Kijlling tensors with respect to
a holonomic frame of eigenvectors (see Remark 2, Section 4). This fact provides another
proof of the point (1v) of Theorem 3; indecd, at the point (ii) we have proved that a Stéckel
system admits a holonomic frame of eigenvectors; this means that in the corresponding coor-
dinates (¢*) system (23’) must be completely integrable; but the integrability conditions are
just equations (20’), which characterize the separability of coordinates (g*) ; thus (g¢*) are
separable. In this way we can avoid using Theorem 1 of Section 1.
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