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ISOPARAMETRIC SUBMANIFOLDS *
G. THORBERGSSON

In this talk we consider two classes of submanifolds in Euclidean spaces that are char-
acterized by simple local invariants. The first class consists of submanifolds with constant
principal curvatures. These are by definition submanifolds M™ such that for every parallel
normal vector field £(1) along acurvein M™ the eigenvalues of the shape operator Ay are
constant, see [St] and [Ol 2]. The second class of submanifolds we will consider consists of
Isoparametric submanifolds. These are by definition submanifolds M™ such that the normal
bundle is flat and the eigenvalues of the shape operator A, are constant for every locally de-

fined parallel normal vector field £, see [Ha], [CW], [Te] and [PT 2]. It is of course clear that
isoparametric submanifolds have constant principal curvatures.
The following theorem was proved in [Th).

Theorem A. Let M™ be an isoparametric submanifold of R™" that is compact, irreducible
and full with codimension v > 3. Then there is a symmetric space X = G/K of rank r

and an isometry A : R™" — T xyX that carries M™ onto a principal orbit of the isotropy
representation of X .

Conversely, it is shown in [PT 1] that every principal orbit of an isotropy representation
of a symmetric space is isoparametric. It is also easy to show that all orbits have constant
principal curvatures.

The compactness of M™ in theorem A is not a real restriction since noncompact complete
1soparametric submanifolds are products of compact ones with Euclidean spaces, see [Te].
We recall that an isoparametric submanifold is said to be irreducible if it is not a product
embedding of two isoparametric submanifolds. A submanifold of a Euclidean space is said
to be full if it 1s not contained in a proper affine subspace.

Notice that a compact isoparametric submanifold with codimension one is a sphere. A
large class of inhomogeneous examples of isoparametric submanifolds with codimension two
was constructed by Ferus, Karcher and Miinzner in [FKM] based on examples by Ozeki and
Takeuchi [OT]. A compact isoparametric submanifold lies in a sphere. Hence isoparametric
submanifolds with codimension two coincide with isoparametric hypersurfaces in spheres
which have been extensively studied and are apparently still far from being classified.

It was proved by Terng [Te] that the normal bundle of an isoparametric submanifold M™
is globally flat. This means by definition that M™ has r linearly independent parallel globally
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defined normal vector fields. Terng proves furthermore that if € is a globally defined normal
vector field over M™", then the set {p + {(p)|p € M™} is a submanifold, called a parallel
submanifold, that 1s isoparametric if its dimension is n. If its dimension is less than =, then

it 1s called a focal manifold of M™. One seces easily that the set of focal points of M™ is a
union over the focal manifolds of M™. Focal manifolds of isoparametric submanifolds have
constant principal curvatures. The following theorem of Olmos [Ol 2] shows that the converse
1S true.

Theorem B (Olmos). Let M™ be a compact submanifold with constant principal curvatures.
Then M™ is either isoparametric or a focal manifold of an isoparametric submanifold.

E. Heintze and the author proved indepehdemly [HT] that a submanifold with constant
principal curvatures and polar normal holonomy satisfies the conclusion in theorem B. Olmos
proves [Ol 1] that the normal holonomy is always polar. The rest of his proof is similar to ours.
One proves that if M™ has constant principal curvatures (and polar normal holonomy), then
the image of a principal orbit of the normal holonomy group under the normal exponential
map 1s 1soparametric.

The following is a corollary of theorem A and B.

Corollary. Let M™ be an irreducible compact submanifold with constant principal curva-
tures and assume that the normal holonomy of M™ is not trivial and does not have factors
that act transitively on spheres. Then there is a symmetric space X = G/K and an isometry
A:R" — T )X that carries M™ onto an orbit of the isotropy representation of X .

Notice that M™ 1n the corollary 1s the focal manifold of an isoparametric submanifold
with codimension two or 1s an isoparametric submanifold with codimension two 1f the normal
holonomy is trivial or is transitive on spheres. Hence we do not have a complete classification
of constant curvature submanifolds since isoparametric submanifolds of codimension two
have not yet been classified.

In the rest of this talk we will give a sketch of the proof of thcorem A. We divide the proof
into three steps and first explain what is done in each of these steps.

In the first step we associate a compact topological Tits gecometry A(M™) of dimension
r, also called a building of rank r, to an isoparametric submanifold M™ as in theorem A.
Such geometries can also be associated to all known examples with codimension two. In
fact, the Tits geometry can be seen as an explanation for the inhomogeneous examples with
codimension r = 2 as will be explained below. The geometry A(M™) is an incidence
geometry which generalizes projective geometry. Its objects are points and lines if » = 2
and also 2-planes and so on if » > 3. In our situation, objects of a given type are compact
manifolds that can be identified with certain of the focal submanifolds. One can associate to
it the full flag space F'lag(A (M™)) whose elements are r-tuples (p, [, w,...) where p 1s a
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point incident to the line [, ! is incident to the 2-plane = etc. (Of course there are no 2-planes
if r = 2). The space Flag(A(M™)) inherits a natural topology and it follows from the
construction of the building that it is homeomorphic to M™.

In the second step we assume that r > 3. It was shown by Tits {Ti 1] that a Tits ge-
ometry A(M™") of dimension at least three is Moufang and in [BS] this was extended to
the topological case by Burns and Spatzier. The Moufang condition is a strong homogeneity
assumption. In particular, the topological automorphisms of the geometry are transitive on
Flag(A(M™)). It was proved by Burns and Spatzier [BS] that the connected component
of the topological automorphism group G of such a topological Tits geometry is a noncom-
pact simple Lie group. It follows that Flag(A(M™)) is homeomorphic to the coset space
G/ P where P is the isotropy group of a flag in A(M™). One proves that P is a minimal
parabolic subgroup of G'. It is then not difficult to prove that G/P is homeomorphic to a
principal orbit of the symmetric space X = G/K where K is a maximal compact subgroup
of GG. This step can certainly not be carried through when r» = 2. There are for example
many examples of topological projective planes that are not homogeneous under their pro-
jective transformations. The inhomogeneours isoparametric submanifolds of [FKM] do not
correspond to projective planes, but to so-called polar planes.

In the third step one notices that G actson R™" with M™ and its parallel submanifolds
as orbits. The action can of course not be isometric since G is a noncompact group with a
fixed point. The geometry A(M™) has a certain involutive automorphism o. Now let K _
be the maximal compact subgroup of G' that commutes with o. Itis then proved that K acts
isometrically on R™" with M™ as an orbit and that the action of K is up to an isometry of
ambient spaces an isotropy action of the symmetric space X = G/K . In an essential step
in this argument we use the normal holonomy of M™.

We now explain the first two steps in special cases. Let us first explain Tits geometries in

dimension two. A generalized n-gon or a Tits building of rank two, see [Ti 2], is a graph A
with the following properties:

(1) The diameter of A is equal to n, 1.€., any two vertices in the graph can be joined by a
path consisting of less than or equal to n edges and for some two vertices one needs n edges
to join them.

(11) There are no cycles in A of length less than 2n.
(1) Any vertex is contained in at least three edges.

An example for n = 3, 1i.e. of a generalized triangle, can be obtained as follows. Let P be
an incidence geometry that satisfies the axioms for projective planes. Let A ( P) be the graph
whose vertices are the points and lines of P and whose edges are flags (p, 1), i.e., p € L.
Then p and [ are vertices of the edge (p,[) . In other words, we do not join two points by
an edge nor do we join two lines by an edge, but we join a point and a line if and only if the
point lies on the line. We can call A( P) the flag complex of P . To see that condition (i) is
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satisfied, let p be a point and ! a line and assume that p does not lieon [. Let [, be a line that
passes through p. Then [, intersects / in a point p, . A path between p and [ then goes over
the edges (p, L), (p;,{;) and (p,,!). Hence the distance between p and [ is three. It is as
obvious to see that the distance between two points or two lines is two, and that the distance
between a point and a line containing the point is one. Condition (i) is also easy to prove and
(111) is equivalent to the property of projective planes that a point lies on at least three lines
and a line contains at least three points.

What 1s remarkable is that the converse can be proved: Every generalized triangle is iso-
morphic to the flag complex of a projective plane.

Examples for n = 4, 1.e. of generalized quadrangles, are flag complexes of so-called
polar planes, see [Ti 1]. Again it turns out that any generalized quadrangle is isomorphic to
the flag complex of a polar plane. |

Now let us explain how a generalized g -gon can be associated to the known examples of
compact isoparametric submanifolds M™® in R™?2 . As we already mentioned, M™® lies in
a round sphere that we can take to be the unit sphere S™! . It tumns out that exactly two of
the focal manifolds of M™ lie in S™' and that each connected component of S™! — M™
contains one of them. We denote these focal manifolds by F, and F,. Now we define
A(M™) as follows: the set of vertices is F|, U F, . The edges are the great circle arcs which
start in F|, meet M™ orthogonally, have their endpoints, on F, and do not have any point
except their endpoints in Fy U F; . It follows that A( M™) is a generalized g-gon where g is
the number of different principal curvatures of M™ as a hypersurface of the sphere. Notice
that it is a result of Miinzner [Mii] that g has to be one of the numbers 1, 2, 3, 4 and 6.
In the proof that A(M™) is a generalized g-gon one uses topological arguments to verify
condition (i) and special properties of the examples for (ii) that has not yet been proved in full
generality. Condition (iii) follows rather trivially. If ¢ = 3, then M™ has associated to it a
projective plane by the above remarks. More precisely, it follows that the focal manifolds F
and F, carry the structure of projective planes. This is not a surprise since it is an old result
of Cartan [Ca] that the focal manifolds F; and F, in this case are the standard embeddings
of LR,P,C,P,H or P,0O and that actually all cases occur. It turns out that a generalized
triangle coming from an isoparametric submanifold satisfies the Moufang condition and that
M™ is a principal orbit of a symmetric space. On the other hand, the Clifford examples [FKM]
give rise to generalized quadrangles that are not Moufang.

We would now like to explain how an isoparametric submanifold M™ in R™",r > 3,
gives rise to a Tits geometry. For this we need the following result of Terng [Te], see also
[CW]: The set ﬁ; of focal points of M™ that are contained in the normal space p+ v( M )F C

R™" atapoint p € M is a union over finitely many hyperplanes in p + v( M), and the
reflections in these normal planes generate a finite Coxeter group W, that lcaves ﬁ; invariant
and 1s irreducible on p+ v( M )F. Actually, .9?; is the union over the mirrors of all reflections
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in W,,. The hyperplanes in .93; all pass through a point (different from p) that we consider
as the origin of p + v(M™),.

The Coxeter groups at two different points of M™ are isomorphic. Coxeter groups have
been classified, see e.g. [GB]. Let us assume that » = 3 to simplify the discussion. The
Coxeter group W, acts irreducibly on a three-dimensional Euclidean space. There are up
to 1somorphisms exactly three such groups: the symmetry group of the tetrahedron that is
denoted by A, , the symmetry group of the cube or the octahedron that is denoted by C; and
the symmetry group of the dodecahedron or the icosahedron that is denoted by H,. Now it
follows from results of Miinzner [Mi] and Hsiang, Palais and Terng [HPT] that the group H,
cannot be the Coxeter group of an isoparametric submanifold. So we are left with the case
A, that will lead to projective geometry and C; that leads to polar geometry.

Let C'P be the connected component of the complement of ﬁ?; inp+v(M )P that contains
p. It follows that C, is a cone over a triangle. In particular, the boundary of C;, lies in three
2-planes that intersect in three lines. We denote the three rays by R,, R, and R, thatlie in
these lines and are contained in the boundary of C,.

Now let us assume that the Coxeter group W, 1S A;. Then it follows that the angles

between the 2-planes containing the boundary of C, are w/3 along two of the lines of in-

tersection and 7 /2 along the third. We assume that the angle is w/3 along R, and R, and
w/2 along R, . Now let f,(p), f,(p) and f;(p) denote the unit vectors in R, R, and R,
respectively. Let F,, F, and F; be the setof f,(p), f,(p) and f5(p) forall p € M respec-
tively. One can show that F;, F,, and F;; are focal manifolds of M™. We call the elements of
F| points, the elements of F, lines and the elements of F; 2-planes. We say that elements z
of F; and y of F;,1# j,areincidentif thereisa g in M™ suchthat z = f;(¢) and y = f;(q) .
It follows that this incidence geometry satisfies the axioms for a three-dimensional projective
space. Furthermore the spaces F), F, and F; have a topology induced from R™" with
respect to which they are compact and connected and it is clear that the incidence axioms
are continuous with respect to this topology. It is now a theorem of Kolmogorov [Ko] that a
compact and connected topological projective space of dimension r > 3 is homeomorphic
and projectively equivalent to P, F ,where IF = R, € or H. It follows that F, is homeo-
morphictoa P IF for IF = R, € or H, and the same is true for F; by duality in projective
geometry. From the construction of the projective geometry associated to M™®, it follows that
M™ 1s homeomorphic to the full flag manifold of A F for F = R, C or H. We have
thus finished step two in the sketch of the proof of theorem A for isoparametric submanifolds
with A, as Coxeter group. The theorem of Kolmogorov was generalized to topological Tits
geometries by Burns and Spatzier in [BS] and the proof of our theorem in the general case
relies on their work.
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