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ON A CLASS OF SYMMETRIC DESIGNS *
A.RAHILLY

Abstract. Non-degenerate quadrics in PG(d,2), where d 1s odd and d > 3, are used to
construct a class of (2%*1,2¢ + g2 s 29-1 4+ g2 iii) -designs, where € = +£1. The con-
structed designs are shown to be isomorphic to the designs with these parameters considered

by Kantor (1975). The set of values taken by the number of absolute points of a polarity of
these designs is shown to be {0,2%,2%41},

1. INTRODUCTION

There is a simple procedure for converting (4 u?,2u?® + eu, u? + eu) -designs (¢ = £1)
into (4u2 — 1,2u? — 1, u? — 1) -designs (see Section 2). When this process is applied the
constructed Hadamard design must possess a special tactical decomposition with two point
and block classes. Provided a (4u? — 1,2u? — 1,u? — 1) -design admits such a tactical
decomposition the conversion procedure can be applied in reverse. We use the existence of
non-degenerate quadrics in PG(d, 2),d odd and d > 3, to show that the symmetric design
PG ,_,(d,2) admits the sort of tactical decomposition required for the reverse application of

the conversion procedure referred o above. The (29+1,2¢ + 2 5 291 4 £2 %) -designs
thus constructed are then shown to be isomorphic to the designs with these parameters con-
sidered by Block [1], Kantor [6] and others. As a consequence we show that the set of values
taken by the number of absolute points of polarities of these (24*!,29+£2 %, 29-14£2 %) -
designs is {0,2¢,24*1},

2. HADAMARD AND RELATED DESIGNS

Considera (v, k, A) -design & = (£, 8,9). Let (P,, B,) beaflagof &, %, (resp. ¥,)
be the set of points (blocks) of & non-incident with B,(F,) , and &%, (#,) be the set of
points (blocks) of & incident with B,( P,) and different to Py( B,) . It 1s straightforward
to verify that % = {FP}, 9,9, %, = {By}, - #,,H, is atactical decomposition ([2],
p. 7 and p. 17) of & with incidence matrices

1 0 1
C=D-= 0 k—XA k—AX
k—1 A A—1

and || = |Bo| = 1,19 | = | B,|= v -k and |F| = | B, | = k1.

* This paper was written whilst the author was an Australian Research Grants Scheme Research Fellow.
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Next, define an incidence structure & = (P, £, 7) , where P = P\P, B =F \ %,

- -
and 9 = U(ﬁ' N, xH,)| U E—U(f’“ N(F; x #,) |, where ° is the complement
Li=1 d L

of . Itis straightforward to show that 2, , &, , &, , &, is a tactical decomposition of &
with incidence matrices

. k— )\ v—2k+ )
C=D-=
k—X—1 A—1

For & to be a tactical configuration we require the two column sums of C to be equal. This
occurs if and only if v = 4(k — ). Buta (v, k, )\) -design satisfying v = 4(k — )\) must
have parameters v = 4u? k= 2u? + eu, A= v’ + eu,whereu=vk—Xande=1 or
—1. So & is atactical configuration if and only if & is a (4 u?,2u? + eu, u? + £u) - design
forsome u >0 ande=+1.

In fact, more can be said, for we have

Theorem 1. Suppose & is a (4u?,2u? + eu, u? + gu) -design for some u > 0 and € = 1
or —1. Then & is a Hadamard design of order v? and P, ,P,, B,,.8,, is a tactical

decomposition of & with incidence matrices

g —

—_ u? u? — gu
(1) C=D-=
w -1 uwl+eu—-1
L ]
and
(2) |P,| = |B;|=2u* —eu and |P|=|B,|=2u +eu—1.

Proof. 1t is sufficient to show that &7 is pairwise balanced with index (of pairwise balance)
u? — 1 since the rest of what we need to show follows immediately from the discussion prior
to the statement of the theorem. In order to dc this we define the following parameters:

M(P,Q) = the number of B, blocks on each of points P,Q inZ,i=1,2

M (P,Q) = the number of &, blocks onmneither of points P,Q in%,i=1,2
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e MP,Q) = the number of blocks oneach of points P,Q inD.
Case 1
P,Q € &,
AP,Q) =X (P,Q) + X (P,Q)
= }‘I(IP, Q)+ (2u* +eu—1) —2(u” + eu) + 1, (P,Q)
=u® +eu—eu— 1
=u? — 1
Case 2
P,Q € %,
MP,Q) = X(P,Q)+ X (P,Q) —1
= (2u® —gu) —2u® + ) (P,Q) + X,(P,Q) -1
=u? -1
Case 3
Pe?,Qe€P,

MP,Q) = (v =2 (P,Q) +(v* +eu—1-X(P,Q))
=2u*+eu—1- (0 (P,Q)+ \(P,Q))

=y —1

Considera (4u?—1,2u?2—1,u?—1) -design & = (P, £, 7) which possesses a tactical
decomposition &%, %, , ¥, ¥, withincidence matrices given by (1) and order of sets given

by (2). Define an incidence structure & = (P, 8, 9) by P= PU{P,}, F = FU{B,}

4
(where Py # By and Py,By ¢ U %#) and I = UP}:, where

=1

2
T, = U(?n (P. x F)),

=1

972=U('§Cn(@i><£’j)),

1=



244 A. Rahilly

‘g".’a = {(P[HB) : B E"‘@Z}i

and
9, ={(P,By) : PEP, U{F}}.

Arguments of a similar nature to those that established Theorem 1 yield
Theorem 2. & isa (4u?,2u? + eu, u? + gu) -design.

Remark 1. Theorem 2 can actually be proved under the weaker hypothesis that
£, %, F,,%,, is simply a block tactical decomposition ([S], p. 44), or simply a point
tactical decomposition, with incidence matrix given by (1) and order of sets given by (2) (see
[71, pp. 37-38).

We note that, if x is a polarity of the design & of Theorem 1 such that x(P,) = B,,

then x restricted to 92 U & is a polarity (% say) of the Hadamard design & of Theorem 1
such that (&,) = #F,,i = 1,2. Conversely, if X is a polarity of the design & introduced
just prior to Theorem 2 such that x(%°,) = #,,1= 1,2, then x defined by x(X) = X(X)

forall X € 2 UB,x(P,) = B, and x(B,) = P, is a polarity of the design & of
Theorem 2.

Remark 2. Let a(x) be the number of absolute points of a polarity x of a (v, k, A) -design
of square order, It is known ([5], p. 41) that

a(x) =2Vk-Aa+k—(v—1DVk—-)
for some o such that

v—1 k v—1 v— £k
+ - .y
7 A A SeS T T

Using this result we readily have that (a) the number of absolute points of a polarity of a
(4u?,2u? +¢cu, u?+eu) -design must be 2 uar+ 2 u? —4 u? for some a such that 2ut —-u <
a < 2u?+u,and

(b) the number of absolute points of a polarity of a (4u? — 1,2u? — 1,u? — 1) -design
mustbe 2ua+ 2u?2 —4u3 — 1 forsome @ suchthat 2u? —u+ 1 <&@ < 2u? + u.

3. A CONSTRUCTION USING QUADRICS

We denote the d-dimensional projective space over GF(q) by PG(d,q) and the
qd+1 —1 qd_ 1 qd—-l .|
[ g—1 "¢g—-1" ¢g-1

PGy _,(d,q) . We also define the characteristic of a non-degenerate quadric & in PG(d, q),

] -design formed by the points and hyperplanes of PG(d, g) by
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where d is odd and greater than or equal to three, to be 1 if ¢ is hyperbolic and -1 if & is
elliptic.

Next, let &, be a non-degenerate quadric of characteristic € in PG(d, q) , where d is
odd and d > 3. Let %%, (resp. &%, ) be the set of points on Z_ (noton &, ), and &, (resp.
£, ) be the set of tangent (non-tangent) hyperplanes of ¢7,. Then (see, for example, [4])
P, P, , H,,F,, form a tactical decomposition of PG,_,(d, q) with incidence matrices

6=§= qd_l-—l

g—1 g—1

— —

_ d_1 _
and |2, | = |.B,| = ¢®— ¢ T ,|%, | = |B,| = z " +€q"T . When ¢ = 2 the symmetric

design PG,_,(d,q) isa (4u® —1,2u? — 1,u? — 1) -design and this tactical decompo-

sition has incidence matrices given by (1) and order of sets given by (2), where u = 2 T .
From Theorem 2 we have that there is a (4 u?,2 u? + eu, u? + eu) -design D(,, d), where

u = 27, constructible from PG, ,(d,2) using ¢7,. We note that if ¢7 and ¢7' are non-
degenerate quadrics in PG(d,2) of the same characteristic, then ¢2 and ¢7' are projectively
equivalent, from which it follows that D(¢Z,d) and D(¢, d) are isomorphic.

Kantor [6] has given a construction for symmetric designs with the same parameters as
d+ ¢

2
ona (d+ 1) -dimensional vector space V over GF(2), where d is odd and greater than or

equal to three, and let f be the associated non-degenerate alternating bilinear form, that is,

flz,y) = Q(z+y) + Q(z) + Q(y)

forall z,y € V.Let By = {z € V : Q(z) = 0} and B, be the set By + z. We note that
the non-zero vectors of By form a quadric ¢, of characteristic ¢ in PG(d,2). Also, let
#P=Vand F={B,:z€V} Then (£ L, 7), where ¥ is defined by set-theoretical

inclusion, is a (4 u?,2u? + eu, u? + eu) -design, where u = 2 T . We denote these designs
by Té(d) .

Theorem 3. T*(d) isisomorphic to D(Z,,d).

D(¢Z_,d) which we now outline. Let Q be a non-degenerate quadratic form of index

Proof. Consider z € V \ {0 }. Then

yEB;# y=v+ 2z for somev such that Q(v) =0
& Qly+2)=0

fly,2)  ifQ(2) =0,

* Q= {f(y,z) +1ifQ(2) = 1.



246 A. Rahilly

Denoting the hyperplane of PG(d,2) consisting of z € V' \ {0} such that f(z,2) =0 by
z+ . we infer from this that

(i) if 2 is a point of ¢, , then B! contains Q , the points which are on both ¢Z, and 2+
and the points which are on neither of ¢, and 2, and

(ii) if z is not a point of {Z,, then B, contains the points which are on precisely one of
@, and zt.

Using the fact that, for each point z of &Z,, 2+ is the tangent hyperplane of &, at z, it is
straightforward to verify that the mapping

0 —F

z —z
B, — B,
B! — 2t

is an isomorphism from T¢(d) onto D(Z,,d) .
Remark 3. The designs T¢(d), in fact, admit many constructions (sce, for example, [6]).
Included among their rather special properties is the double transitivity of their automorphism

groups.

4. POLARITIES

The designs D((,,d) of the last section are (24,24 + 27 24! + g2 T ) -designs.
By Remark 2, the number a(yx) of absolute points of a polarity x of a design with these
parameters must be 2% a+2%—2*%" for some o such that 2¢ — 2% <a<2%+ 24
However, the values that actually occur as the number of absolute points of a polarity of
D(Z,,d) are much more restricted. Denoting {a(x) : x is a polarity of D(&Z,,d) } by A
we have

Theorem 4. A = {0,24,2%1},

Proof. Every polarity x of D({Z,,d) with a(x) > 1 induces a polarity X of PG,_,(d,2)
with a(X) = a(x) — 1. Since polarities of PG,_,(d,2) have either 2¢ — 1 or 2%! — 1
absolute points we have that A C {0,2¢,291}. Also, every polarity ¥ of PG,_,(d,2)
which interchanges the points of ¢Z, and the tangent hyperplanes of ¢Z_ induces a polarity x
of D(&Z,,d) with a(x) = a(X) + 1. Since PG,_,(d,q) admits a symplectic polarity and
also orthogonal polarities with this property we have that {2¢,2%*1} C A .

To complete the proof we show that D(Z_, d) admits a polarity with no absolute points.
From Theorem 3 it is sufficient to show that T¢(d) admits such a polarity.
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From the construction of 7*(d) the set B, is a perfect difference set in the additive group
of V for each z € V. The mapping

§ = B,+§,E€V,

x;:‘ f
B,+n—nneV,

is a polarity of T¢(d) ([2], p. 13). Let 2 ¢ B, and suppose £ is an absolute point of yx, .
Then § € B, +§ which implies z € By, a contradiction. So, if z ¢ By, then x, is a polarity
of T¢(d) with no absolute points.

Remark 4. There seem to be few self-polar designs & for which {a(x) : x is a polarity of
'} has been determined.
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