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THE IDENTITY L(E,F) = LB(E,F),
TENSOR PRODUCTS AND INDUCTIVE LIMITS

J. BONET, A. GALBIS

The purpose of this article is to extend the study of pairs of locally convex spaces ( E, F')
such that every continuous lincar map from E into F' is bounded (i.. maps a O-nghbin E
in a bounded subset of F'), and to give applications of our results in this direction to the inter-
changeability of inductive limits and projective or injective tensor products and to the projec-
tive description of weighted inductive limits of spaces of vector valued continuous functions.
Our investigations are related to the study of certain classes of Fréchet spaces which have
been relevant 1n several areas recently (see [2], [3], [13], [24], [25], [37], [45]).

Our notation for locally convex spaces (1.c.s.) is standard and we refer the reader to [33],
[34], [40]. Our notation for K6the echelon spaces is asin [11]. Foral.c.s. E, cs( E) denotes
the set of all continuous seminorms on E and % ,( E) is the basis of all absolutely convex
O-nghbsin E. If F and F' arel.c.s.,welet L(E, F) (resp. LB( E, F)) denote the space of
all continuous linear maps (resp. bounded linear maps) from E into F'. According to [21], a
pair ( E, F') ofl.c.s. is said to satisfy the localization property if, for every equicontinuous
subset H of L(E, F), thereis a0-nghb U in E suchthat H(U) :=U{T(U) : T € H} is
bounded in F' (i.e., H is equibounded).

The study of the localization property was 1niciated by Grothendieck [29]. He showed
that if F' is (DF) and F' is a Fréchet space (or if E is Fréchet and F' is (DF)), then (F, F')
has the localization property. Several authors have extended the results of Grothendieck (e.g.
Defant, Floret [21], S. Dierolf [23], Ruess [41]). In these extensions the «symmetric» case was
not treated. Vogt [44] characterized the pairs ( E, F') of Fréchet spaces such that L( E, F) =
LB(E, F) (or,in this case, equivalently satisfying the localization property). Recently Bonet
[16] and Terzioglu [42] complemented the results of Vogt analysing the relevance in this
setting of quojections and Fréchet spaces not satisfying property (*) of Bellenot and Dubinsky
(c.f. [3]).

When one studies the maximal class of 1.c.s. E (or F')suchthat L(FE,F) = LB(E, F)
for certain fixed classes of spaces F' (or F), one sees immediately that quojections (i.e.;
surjective limits of Banach spaces, c.f. [3], [25]) and 1.c.s. with the countable neighbourhood
property, c.n.p. (i.e.; V(p,) Ccs(E)dp € cs(E), A, >0,n€ N,withp, < A p,n€ N;
c.f. [14], [26]), appear very often.

In section 1, we introduce two classes of 1.c.s. The first one (l.c.s. satisfying the quotient
c.n.p.) containing quojections and l.c.s. satisfying the c.n.p. and the second one (called
countable generalized prequojections) which contains the Fréchet spaces which do not satisfy
the property (*) of Bellenot and Dubinsky and the 1.c.s. with the c.n.p. Their relevance for
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the identity L( E, F) = LB(E, F) 1s established in 1.4 and 1.11.

In section 2 we treat the incidence of the identity L(E, F) = LB(E, F) in the inter-
changeability of projective and injective tensor products and countable (always assumed sep-
arated) inductive limits. Grothendieck proved that if E' has the c.n.p. and F' = indF,,, then
EQ®, F = ind( E®, F,) holds topologically. The first author observed in [14] that this topo-
logical identity for a strict ( L F') -space F' already implies that F has the ¢.n.p. Several pairs
(E, F) for which the topological identity holds without assuming the c.n.p. in E were given
in [15], [19]. This problem is throughly studied in Section 2 (see 2.2, 2.5, 2.7). Conceming
the injective topology we complement the study of Hollstein [31], [32] with several remarks.

Section 3 is devoted to the problem of algebraic and topological projective description
of weighted inductive limits of spaces of vector valued continuous functions. The algebraic
identity is completely characterized for Fréchet valued functions or sequences in terms of
suitable modifications of a condition of Vogt [44]. A very general projective description result,
which implies a result on commutativity for the injective topology, is obtained in 3.5. For a
survey on the relevance of projective description of weighted inductive limits we refer to [9].

1. TWO CLASSES OF LOCALLY CONVEX SPACES
AND THE IDENTITY L(E,F) = LB(E,F)

We start with the following definition.

Definition 1.1. (i) a l.c.s. FE satisfies the quotient countable neighbourhood property
(q.c.n.p.) if every quotient of E with a continuous norm satisfies the c.n.p. or equiva-
lently, if VU € % ,(E),Y(U,) C % ,(E)3AV € % (E)3)\, >.0(n € N) with V C
AU, + Ker p,,n€ N (here p, is the Minkowski functional of U).

(ii) A Lc.s. FE is said to be a countable generalized prequojection (countable
g -prequojection) if VU € % ((E),V(U,) C % ,(E)3V € %,(E)3\, > O(n € N)

with B/, NU? € A\, V%, n€ N (here Ej;, is the span of U° in E').

Clearly a Fréchet space E is a quojection if and only if it satisfies the g.c.n.p., and ev-
ery L.c.s. E with the c.n.p. (hence every (DF') and (gDF') -space) also has the q.c.n.p.
Nachbin [39] in the study of holomorphic factorization introduced the following definition.
A lc.s. E has the ogpeness condition if YU € % ,(E)3V € % ,(E)YW € % ,(E)
dp > 0 with V C pW + Ker p,, (ie.; E/Kerp is normable for every p € cs( E) ). Certainly
if £ has the openess condition, then i7 has the g.c.n.p. We recall from [39] that the following
spaces satisfy the openess condition. (i) 1.c.s. endowed with the weak topology, (i) C( X, F)
endowed with the compact open topology if X is completely regular anc Hausdorff and F' a
normed space, (iii) L, (u, F') for every positive Radon measure 4 on a topological space X
and every normed space F(1 < p < o0), (iv) C™(U, F) for every non-void open subset U
of R™ and every normed space F'. Asin [15],if U is anopen subsetof R™, &'(U) satisfies
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the q.n.c.p. (it is isomorphic to a countable product of ( DF') -spaces (c.f. [43], [46])) but it
satisfies neither the openess condition nor the c.n.p.

According to Terzioglu [42], a L.c.s. E is said to satisfy condition (b) if VU € % (( E)
3V € %(E)VW € %,(E)3p > 0 with Ej,, N W° C pV°. A Fréchet space E
satisfies (b) if and only 1f E does not satisfy condition (*) of Bellenot and Dubinsky, [3].
By [45; 0.3] this is, in turn, equivalent to E" being a quojection. The l.c.s. with property
(b) are called generalized prequojections in [35]. Clearly every generalized prequojection is a
countable g -prequojection. Taking polars it is easy to see thatif F has the q.c.n.p.,then E isa
countable g -prequojection, and that these two conditions coincide if E' is reflexive. In general
the converse is not tue. Fréchet countable g -prequojections are precisely the ones which do
not satisfy condition (*) of Bellenot and Dubinsky. We refer to [2] or [38] for examples of
non-normable countable g-prequojections with a continuous norm. We will mention later
completely different examples of metrizable (non-complete) spaces which are countable g-
prequojections but do not satisfy the g.n.c.p. Despite of that we have the following result
(observe that it is not assumed that the l.c.s. has a continuous norm, and compare with [35;

Theorem] and [42; Prop. 2]).

Proposition 1.2, If a countable g-prequojection E has the bounded approximation property
(b.a.p.), then E has the q.c.n.p.

Proof, Let (f, : a € D) be an equicontinuous net in E' ® E C L(E, E), converging
pointwisely to the identity on E. We fix p € cs( E) . To show that E/Kerp has the ¢.n.p. we
take (A,) C % ,(E/Kerp) and select, foreach n € N,U, € % ,( E) with ﬂP(U,,) CA,,

where 7, : E — E/Kerp is the canonical surjection. We will find V € % ,(E) and ), > 0
such that m (V) C A, 7, (U,) forall ne N.

There is ¢ € cs(E) with p(f,(z)) < ¢(z) forall z € E,a € D. Each f_ in-
duces a continuous linear map g, : E/Kerq — E/Kerp,g,( m(z)) = 7w, (f,(z)),and
(ga(ﬂq(z) : a € D) converges to ‘II'P(I) forallz € E. WeputU :={z € E:q(z) < 1}.
Foreachne N wefind V, € % ,(E),V, C U, with 9a(7,(V})) C m(U,) foralla € D.
By assumption, there are V € % ((E) and A\, > 0 with E;, NV C A\, V’,ne N.

Since each f, has finite dimensional range, there is a linearly independent set (Ty¥na
1<n<N,)C E/Kerp and (Yoot 1< N, C E’ suchihal

Nﬂ'
9,(m,(2)) = E Una(2)T(Yns) forall 2€E.
=1
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Put W, := 7 (U,). Given a € D,z € V,n€ N one has that

Py, (95(7(2)) = sup([{g (7 (z),v)| : v € W) =

N,
sup (E Yna (Z) V(T Y,0) |2 v E Wf) =
n=1

Nﬂ'
sup ( <E u(ﬂpymu)y;wz> TV E Wf) <

=1

Nﬂ
sup (pyu (E u( ﬂpym)y;u) "V E Wf) .

n=1

Now (y,, : @€ D,1 <n< N,) C Ej,. Indeed, the norm induced by p on E/Kerp and
D (BaTyns - 1 <n< N,) — sup(|B,]: 1 < n< N,) are equivalent norms on Img, .
Hence there is C, > 0 with |y, (2)| < C,p(g,(7,2)) = C,p(f(z)) < C,g(z) forall
z € E. This implies y;, € Ej.

Finally we have
Hﬂ
P (9a(7,2)) < sup | pyo | Y v(my, )vha | ivEW, | <
n=1

N-Il
A, SUp (pﬂ; (E u(ﬂpym)y:ﬂ) 'V E Wf) =
=1
Nﬂ
A, SUP <E u(ﬂﬂyn.n)y:l.mz> :UEWE,EEV; =

n=1

N,
}‘n sup ( <U’E y;.ﬂ(z)ﬂpyn.n> ‘v E Wf!z € Vn) =
n=1

Apsup(J(v,g,(7,2))| 1 vE W, ,z€V,) <),
since
9.(7,(V,)) Cn(U,) =W,
Consequently,
pw_(ﬂpm) <A,

forevery n € N,z € V, which implies 7 (V) C A, 7,(U,) C A, A, and E/Kerp has the
C.n.p. [
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Remark 1.3. As a consequence we obtain that a Fréchet space with the b.a.p. is a quojection
if and only if it does not satisfy property (*). This is also a consequence of [35; Theorem] or
[42; Prop. 2], if E has a continuous norm.

The next result should be compared with the characterization of the openess condition
given by Terziogly [42; Prop. 1].

Proposition 1.4. For al.c.s. E the following conditions are equivalent (TFAE):

(i) (E, F) has the localization property for every metrizable space F with a continuous
norm.

(1) L(E,F) = LB(E, F) for every metrizable space F with a continuous norm.

(i) E satisfies the q.c.n.p.

Proof. (i) implies (iii). Given U € % ((E) and (U,) C % ,(E) with2U_,, CcU, CU
forall ne N, we denote by n : E — E/Kerp, the canonical surjection. Clearly (w(U,))
is a basis of 0-nghb of a metrizable l.c. topology ¢t on E/Kerp,. Put F := (E/Kerpy,1).

Clearly F' has a continuous norm. By (ii) there is V € % ( E) such that ‘IT( V) is bounded
in F'. This implies V C A U, + Kerp,, forallne N.

(iif) implies (). Let H be an equicontinuous subset of L(E, F),(W,) a basis of 0-
nghbs in F and ||.|| a continuous norm in F'. For each n € N select U, € % (( E) with
T(U) CcW_forallT € H andfind U € % ((E) with ||[T(z)|| < 1 forallz e U, T € H.
By (iii)we find V € % (E),), >0 with V C A\ U, + Kerp,, forall n € N. Therefore
T(V) A, T(U,) C AW, forallne N,T € H and H is equibounded. B

The former proposition and some standard arguments are useful to prove the follow-
ing hereditary properties of the classes considered above. For the class of countable g-
prequojections direct arguments are needed.

Proposition 1.5. (i) The class of spaces satisfying the g.c.n.p. is stable with respect to the
formation of

(1) separated quotients

(2) countable direct sums

(3) arbitrary products

(4) finite codimensional subspaces (here it 15 useful to have in mind [40; 2.6.18]).

(5) if F' has the g.c.n.p. and F is densein E,then E has the q.c.n.p.

(i) The class of countable g -prequojections is stable with respect to the formation of

(1) separated quotients

(2) countable direct sums

(3) arbitrary products

(4) if F is dense in E, then F is a countable g-prequojection if and only if E is a
countable g -prequojection.
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None of the classes mentioned above is stable under the formation of uncountable direct
sums, since @(K ,r € R) has a continuous norm and the b.a.p. but it does not satisfy the
c.n.p. ([23; p. 16]).

Since every Fréchet space is a (closed) subspace of a countable product of Banach spaces,
the classes mentioned above are not stable by passing to a closed subspace.

Not every dense subspace of a space satisfying the q.c.n.p. satisfies this condition. Meta-
fune and Moscatelli ([36]) characterize the Fréchet spaces without continuous norms having a
dense subspace with a continuous norm. There exist quojections with a dense subspace with
a continuous norm. Any such a subspace is a metrizable countable g -prequojection which
does not satisfy the q.c.n.p.

Remark 1.6. If (E; : 1 € I) is anon-void family of l.c.s. with the c.n.p. and F is a subspace
of E:=II(E;:+€I) with ®(E; :1 € I) C F, then F satisfies the q.c.n.p.

Our next results complement the ones obtained in [16].

Proposition 1.7. Foral.c.s. E, TFAE:
(1) (E,F) has the localization property for every metrizable l.c.s. F.
(i) L(E,F) = LB(E, F) for every metrizable l.c.s. F'.
(iii) E satisfies the c.n.p.

Proposition 1.8. Foral.c.s. F,TFAE:

(1) (E, F) has the localization property for every quasibarrelled (DF )-space E .

(1) L(E,F) = LB(E, F) for every quasibarrelled (DF)-space E .

(u1) F has the countable boundedness condition (c.b.c., i.e.; for every sequence of
bounded subsets (B,)) in F there are A, > 0,n € N, such that U\, B, : n € N) is
bounded in F', see [23]).

Proposition 1.9. Foral.cs. F,TFAE:
(1) (E, F) has the localization property for every l.c.s. E with a total bounded set.

(1) L(E,F) = LB(E,F) foreveryl.c.s. E with a total bounded set.
(111) the linear span of every bounded set of F' is normable.

The relevance of countable g -prequojections in this context is clarified by the next propo-
sition.

Proposition 1.10. Foral.c.s. F,TFAE:

(1) (E, F) has the localization property for every inductive limit of normed spaces E :=
ind E, with E_ densein E_, | forall ne N .

() L(E,F) = LB(E,F) for every inductive limit of normed spaces E := ind E_ with
E, densein E_ | forallne N.

(1i1) the linear span of every bounded subset of F satisfies the c.b.c.
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If F is the strong dual of a quasibarrelled space G, then the conditions above are equiv-
alent to

(iv) G is a countable g-prequojection,

Proof. The equivalence of (iii) and (iv) if there is a quasibarrelled space G with F' = G},
follows from the following remark.
Remark 1.11. A quasibarrelled l.c.s. G is a countable g -prequojection if and only if the linear
span of every absolutely convex bounded subset of G satisfies the c.b.c.

(ii) implies (iii). Suppose that there is a bounded subset B of F' such that its linear span
H does not satisfy the c.b.c. We can find a sequence (B,) of absolutely convex bounded
subsets of H with B C B, C B,,, forall n € N such that U(c, B, : n € N) is not
bounded for every sequence (c,) of positive real numbers. We denote by E_ the space H
endowed with the norm defined by the Minkowsky functional of B, . Then E := ind E_ is
an inductive limit of normed spaces with E_ dense in E_,, for all n € N. The inclusion
i : E — F satisfies 1 € L(E, F)\LB(FE, F), which contradicts (ii).

(iif) implies (1). Let E := ind E_ be an inductive limit of normed spaces with E_ dense
in E_,, forall n e N. Let A, be the unit ball of E_ and ¢, the topology of E_ . It H
is an equicontinuous subset of L(E,F) then {T'|E, : T € H} is an equicontinuous in
L(ind(E;,t.),F) and B := H(A,) is bounded in F'. By assumption the linear span L of
B has the c.b.c. and (H(A, N E,);n € N) is a sequence of bounded subsets in L. Hence
there are ¢, > 0,n € N, with U(an(An N E;) : n€ N) bounded in L (hence in F).
Now U := acz(Uc,(A,NE,) :n€ N) isa0-nghbin ind( E,,t,) and H(U) is bounded
in F. Since ind( E,,t.) is a dense topological subspace of ind E_, H is equibounded in
L(E,F). D

There are many examples of inductive limits satisfying the assumptions of 1.11(1). See
[19; Examples 13].
Remark 1.12. If E and F are quasibarrelledl.c.s. then L( E, F;) = LB(E, F)) isequivalent
to L(F,E}) = LB(F, E,). Ingeneral L(E, F) = LB(E, F) does not imply L(F;, E;) =
LB(F}, E;). Indeed, take E = w, F' a Fréchet space, non-Banach, with a continuous norm
such that Fy is a strict (LB)-space (c.f. [2], [38]).

2. COMMUTATIVITY OF INDUCTIVE LIMITS AND TENSOR PRODUCTS

Our first result is an extension of [17; Proposition].

Proposition 2.1. Let E = ind E_ be an inductive limit of normed spaces and F a quasibar-
relled space TFAE:

(i) EQ, F=1ind(E, ®, F) holds topologically.
(ii) (E,F;) has the localization property.
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Proof. Let B, be the unitball of E, . Given T" € L(E, F)) wedenoteby up : EQF — K
the linear form ur-(z ® y) := (T(z),y),z€ E,y€ F.

(1) implies (ii). If H is equicontinuous in L(E, F}), the set (up|E, ®, F : u € H)
is equicontinuous in (E, ®, F')’ forall n € N. By (i), (u, : u € H) is equicontinuous
in (E®, F)',hencethereare U € % ,(E),V € % (E) with Jup(z® y)| < 1 for all
r €U,y € V,T € H. This implies H(U) c V° and H is equibounded.

(ii) implies (i). Let H be an equicontinuous subsetof (ind( E, ®, F))'. If u € H ,define
T,: E — F, by (T“(m'),y) =uw(z®y),z€ E,y€e F. Since (u|E, @, F:u€ H) is
equicontinuous in £ @ F forall n € N, it follows that (T, : u € H) is equicontinuous
in L(E, Fy) . By (ii), it is even equibounded, but this implies that H is equicontinuous in
(EQ®, F)'. s

Applying Proposition 2.1 and 1.11 we obtain

Proposition 2.2, Let E be a quasibarrelled l.c.s. TFAE:

(i) E is a countable g-prequojection.

(i) EQ, F = wnd(E ®, F,) holds topologically for all inductive limit F = indF, of
normed spaces such that F, isdensein F,, , foralln€ N.

In fact (1) implies (i) holds without any quasibarrelledness assumption on E, using a
direct argument,

Proposition 2.3. Let E be a Fréchet space. TFAE:

(i) FE does not satisfy condition (*) of Bellenot and Dubinsky (or E" is a quojection, or
E is a countable g -prequojection).

(ii) EQ®, F = ind(F ®, F,) holds topologically for all inductive limit F' = indF, of
normed spaces such that F, isdensein F,_,, foralln€ N.

(iii) E®, (ind cy(v,)) = 1nd(E ®, cy(v,)) holds topologically for any decreasing
sequence ¥ = (v, ) of strictly positive weights on N such that (ind cy(v,)), is nuclear.

Proof, We only have to prove that (i) implies (i). By [16; 8] or [42; (3)], if the Fréchet space
E satisfies property (*) (or equivalently is not a countable g -prequojection), there is a Kothe
matrix A = (a,) such that \!(A) is nuclear with a continuous norm and L(E, X! (4)) #
LB(E,\'(A)).Ifv (i) :=a (9)~',i € N,n€ N, then (ind c5(v,)); = A (4) ((11; 2,
7)) and F ®, ind ¢cy(v,) does not coincide topologycally with ind( E ®_ cy(v,)) by [17;
Proposition]. This complete the proof. o

Now we turn to the commutativity of inductive limits and injective tensor products. Holl-
stein introduced in [32] the inductive limits with Jocal partition of unity and proved that
E®, (ind F,) = imd(E ®, F,) holds topologycally for every l.c.s. E with the c.n.p.
if and only if ind F,_ admits a local partition of unity. We also recall from [31] that a l.c.s.
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E is an g-space if and only if for every quotient map Q : G — G/ H , the canonical map
1d®Q: EQ®, G — E®_(G/H) is open. We present some partial results for spaces which
do not satisfy the c.n.p.

Lemma 24. Let F = H(Ej : J € N) be a countable product of Banach spaces. Let

F = indF, be an inductive limit with local partition of unity such that F, is dense in
F . .(n€N).Then E®Q_F =1ind(EQ®_ F,) holds topologically.

Proof. Let W be aclosed absolutely convex 0-nghbin ind( EQ_F, ). Thereare U € % ,( E)
and ¢ € cs(F)) with {T € E® F, : ¢(Tu) < 1Vu € U’} C 27'W. If m € N satisfies
H(Ej :J >m) C U then I'I(Ej 1 J>m)QF, C 2 - W. Proceeding by recurrence, using
the density of F, in F,,, forall n € N, weobtain I1(E; :j > m) ® F, C 2~'W forall
n€ N. Now,since II(E; : j < m) isa Banach space and F' admits local partition of unity
we obtain V € % ,(I1(E; : j < m)) and p € cs(F) such that

{TeE(ME;:j<m)®F:p(Tu) < 1Vue V°} c27'W.
This implies
{TEE®F :p(Tu) < 1Vue(V xTI(E;:j>m)°}CcW

and the proof 1s complete. B

Proposition 2.5. Let E be a quojection. Let F := indF, be an inductive limit with lo-
cal partition of unity such that every F, is an e-space dense in F,,,. Then EQ, F =
ind( E ®_ F,) holds topologically.

Proof. First we observe that F' is an g-space. Indeed, givenaquotientmap f : G — H
between Banach spaces, then foreach ne N

f®id :G®,F, - HQ,F,

is open, therefore
fRid:imd(G®, F,) — ind(H ®, F,)

is also open, and, as F' admits a local partition of unity this implies that

fR1d:GR . F - HQ,F
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is open. Now, according to [18] there is a countable product of Banach spaces X and a
quotient map Q : X — E. The diagram

1)

ind(X @, F,) — X®, F
g U®1d
1:1
ind(E®_F,) — EQ®, F

is commutative. The canonical maps g, Q ® 1d are open and ¢, is a topological isomorphism
by lemma 2.4. Thus 3, is also a topological isomorphism. o

We now treat another application of the identity L(E, F) = LB(E, F). We study the
algebraic identity FeindF, = ind( EeF,). For the g-product of Schwartz we refer the
reader to [34; §44].

Our first result provides a certain converse to a result of Bierstedt and Meise [7; 1.4].

Proposition 2.6. For an inductive limit F := indF, of l.c.s., TFAE:

(1) every compact absolutely convex set in F' is compact in some step F,
() EeF = 1nd( EeF,) holds algebraically for every Banach space E .

Proof. (1) implies (i1)by [7; 1.4]). We prove that (ii) implies (i). Let K be an absolutely convex
compact subsetof F. U := K° isa0-nghbin (F',u(F', F)). We put E for the completion
of the normed space F;, (notation as in [33; 8.3]). Then E' is canonically isomorphic to

Fy and then E/ coincides with ( Fy, co( Fy, Finy)) , where co( Fy, F(yyy) is the topology
of the uniform convergence on the compact convex subsets of the second space. Since K is
the unit ball of E’ (cf. [33; proof of 8.3.4]), K is compact in E! . Itis easy to see that the
inclusion E/ — F is continuous, hence it belongs to E¢F . By (ii), there is n € N such that
E_, is continuously included in F, . Then K is compact in F, and the proof is complete. =

An inductive limit F' := indF, is called compactly regular (see e.g. [39; Chapter 8])
if every compact subset of F' is compact in some step F, . An (LF)-space F' := indF, is
compactly regular if and only if it is regular and satisfies 2.6 (i). Indeed, the necessity is
obvious. To prove the sufficience, by [20; 3] it is enough to show that F' is sequentially
retractive. Given a sequence converging to the origin in F' its closed absolutely convex hull
K 1s compact, since F' 1s regular. By the condition 2.6 (i), K is compact in some step F, ,
hence the zero sequence also tends to the origin in F, and we are done.
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Proposition 2.7. Let E be a Fréchet space and let F' := indF, be a compactly regular
(LF)-space. TFAE:

(i) EcF = ind( E€F,) holds algebraically.

(i) L(F.,E)=LB(F!, E)

(iii) For every compact subset H of EcF there is m € N such that H is contained
and compactin EeF, .

Proof. (ii) implies (i). Given T € L(F,,, E) = EeF, we apply (ii) to obtain an absolutely

convex bounded subset B of E such that T € L(F, , Ey) = EgeF. By [7; 1.4] there is

n€ N withT € EgeF, C EeF,.
(1) imples (ii). Given T' € L(F. ,E), we can apply (i) to find n € N suchthat T €

L((F,).,, E). By [41; 1.7], there is a precompact subset K of F, such that T(K ) is
precompact in E. In particular T € LB(F. ,E).

(i) implies (u1). We fix a basis (U,) of absolutely convex O-nghbs in E and a compact
subset H of EcF'. Foreach n € N, H is compactin E(U‘)EF, hence we can apply [22]

to find a strictly increasing sequence ( k(n)) C N such that H is compact in Ey yeF
for ecach n € N. Since E; \eFy, is metrizable we find a compact absolutely convex
subset K, such that H is compact in the Banach space (E yeF ), We set L for

the compact absolutely convex subset K_( Uf ) of Fy(,y . Themap ¢ : (E(U*}aka Vkn —
EW(UE, (Fimdin) V(1) = (T'(u) : v € Uf )}, is linear and continuous, consequently

¥, (H) is compactin [ (Up, (Fy,), ). We denote by g, the Minkowski functional of L,
and we put

G:={T € L(E,,F) : T(U%) C F,,,r,(T) := sup(q,(Tu) : u € U®) < 0o Vn€E N}

endowed with the 1.c. topology generated by the seminorms (7). G is a Fréchet space.
Indeed, if (T;,) is a Cauchy sequence in G, on easily defines alinearmap T" : E,, — F
such that (T,,) converges to T uniformly on each U?, hence T'|U? is continuous for each
n € N. Since (U?) is a fundamental sequence of bounded subsets of the (g DF) -space

E/, (cf. [33; Chapter 12] or [40; Chapter 8]), we conclude that T € L(E__, F),T € G and
(T,,) convergesto T" in GG.

By (1), G C U(EeF, : n € N). Therefore we can apply Grothendieck’s factorization
theorem [30; p. 148] to obtain m € N such that GG is continuously included in EeF, . We
are done if we observe that A 1s compact in . This is trivial since r,(T") coincides with

the norm in I (Uy, (Fy(y);, ) on ¥, (H) and ¢,( H) is compact in this space. .

We utilize our former proposition to derive the following unpublished result due to Floret.
In fact 2.7 was invented as an extension of Floret’s result.
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Proposition 2.8. (Floret). Let E be a Fréchet space and let F := indF, be a (DFN)-space.
TFAE:

() E®,F = ind(E®_F,) algebraically and topologically.

(i) L(E,F)) = LB(E,F;),L(F,,E) = LB(F},,E).

Proof, F has the approximation property and, passing to a suitable equivalent spectrum,
we may suppose that every F, has also the approximation property and that the injection
F, — F,,, isnuclear for each n € N . In this case EeF = E®_F and EcF, = E®_F,,
hence the algebraic identity in (i) is equivalent to L( F;, E) = LB(F}, E) by 2.7.

On the other hand, since EQ, F = EQ_ F and imd(E ®, F,) = ind(E @, F,) we
have that the topological identity in (i) is equivalent to the topological identity F ®, F =
ind( E ®, F,), which in turn is equivalent to L( E, F,) = LB(E, F}) by [17; Proposition].

3. PROJECTIVE DESCRIPTIONS OF WEIGHTED INDUCTIVE LIMITS
OF SPACES OF CONTINUOUS FUNCTIONS AND SEQUENCES

First of all we recall the basic definitions. In this section X will denote a completely regular
Hausdorff topological space, 4 = (v,) a decreasing sequence of strictly positive continuous

functions (i.e., weights) on X. We denote by V = V(¥) the maximal Nachbin family
associated to 4.

V= {Tu': X — R, upper semiconlinuous : sup(

Foral.c.s. F, we define

Cv (X,E):={f€eC(X,E) : (v, f)(X)is bounded in E}

C(v,)y(X,E) :={f € Cv,(X,E) : po (v, f)vanishes at infinity on X
for every p € cs( E)}

both endowed with the 1.c. topology generated by the system of seminorms

gy, p(f) 1= sup(v,(2)p(f(2)) : z € X), f € Cv, (X, E),p € cs(E).
The weighted inductive limits are defined by (cf. [10])

9C(X, E) := ind Cv, (X, E),9,C(X, E) := ind C(v,)o(X, E).
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The projective hulls associated to these inductive limits are
CV(X,E) := {f € C(X,E) : (vf)(X)is bounded in E VT € V}

C?G(X,E) = {f € C(X,E) :po(Vf) vanishes at infinity on X Vv € v
Vp € cs(E)}

with the topology given by all the seminorms ¢;,,,v € V,p € cs(E).
If E=K(RorC), we drop it from our notations and we write Cv_(X),9C(X) , elc.
The basic problem of projective description as stated in [10; 0.5] is to determine when (1)
9C(X,E) = CV(X,E),(1)9,C(X,E) = CV,(X, E) hold algebraically or topologi-
cally. We will concentrate in the case of a Fréchet space E. The scalar cases were treated in
[10]. Extensions to spaces E with the c.n.p. can be found in [12]. In [15; 2.2] it is proved
that if X 1is locally compact (ii) holds if and only if

EQ®, (ind C(v,)(X)) =smd(E ®, C(v,)e(X))

holds topologically, which gives the relation of this question with our study in Section 2. The
topological identity in problem (1) turned out to be much more complicated. In the scalar case
the complete solution is X 1is discrete can be seen in [5]). More information 1s given in [6]
and [1].

If X 1s discrete, i.e., and index set X = I, our notation is as in [5], {6] and [11],
9C(X,E) = k_(E),9,C(X,E) = ky(E),CV(X,E) = K_(E),CVy(X,E) =
Ko(E). If 1 < p < o0, the spaces k,(E) = ind [ (v,, E) and K (E) = KF(?, E)
are defined in a canonical way (se¢ [5] and [6]).

We start with the following observation which gives the key of our results on the algebraic
identity in (i) and (ii). Let E be a Fréchet space with an increasing fundamental sequence of
seminorms (|].|[,) . Let A = (a,) be a Kothe matrix on N. We define § = (v,),v, (1) =
e (3)~!. By [6; 2.2], the mapping L()\'(A),E) — K_(FE), givenby T — (Te,),, is
an algebraic isomorphism, then the algebraic identity K _(E) = k_(E) is equivalent to
L(OY(A),E) = LB()\!(A), E) and, by [44; 1.3] this is in turn equivalent to

V(k(1)) 13k Vn3l, = l,(n),C, >0:
llell,ve () < C,max(|le]lvpp(5) 11 <1< [p)Vi€ Nye € E.

Although the isomorphism L()\'(A),E) ¥ K_(E) is not longer true for KP(E),

p# oo, we will see that adecuate reformulations of the above condition provide the right con-
ditions.
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Proposition 3.1. Let E be a Fréchet space with a increasing fundamental sequence of semi-
norms (||.||,) . Let 9 = (v,) be a decreasing sequence of strictly positive weights on an index
set I ,andlet 1 < p< oo. TFAE:

(i) for every bounded subset B of K F( E) thereis n € N such that B is bounded in

L (v, E) .
(ii) K,(E) =k, (E) algebraically.

(iii) V(k(1)) 13k Vn3ly = lg(n),C, > 0: ||e]l,v(i) < C,max(|le]l;vppn(i) : 1 <
1< l,)Vie N,e€E.

Proof. (for p# oo): (i1) implies (iii). Given the strictly increasing sequence ( k([l)) in N, we
st

G : {m=(z(i))€KF(E):1r;(m) = (E(uk(lj(£)|lm(i)||;)r") < 00 WEN}

endowed with the metrizable l.c. topology given by the seminorms (,) . G is certainly a
Fréchet space and, by (ii), G C U(L(v,, E) : n € N). We apply Grothendieck’s factoriza-

tion theorem [30; p. 148] to obtain k € N such that G is continuously injected in lp( v, E).
Hence forevery ne€ N thereare C, > 0 and [, € N with

1
F

' 1
(E(vkm||mmx|,..)=*) < C,max ((E(Mn(f)llz(ﬂlh)”) :lszstﬂ.)

Condition (iii) follows from this.
(ifi) implies (1). Let B be a bounded subset of K (E). For each l € N the set

{Cllz()l); : = € B} is bounded in K (V). We can apply [11; 2.3] to obtain a strictly
increasing sequence (k(l)) in N such that

M, := sup (Z (Ven (D ]|z(D|]P?P -z € B) < 0.

Let k,C, > 0 and [, (n)(n € N) be given by condition (iii). Then for every n € N and
x € B we have

L
Y Dz C Y M,

{—i

This implies that B is contained and bounded in lp( v, E). o
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Corollary 3.2. (a) Let E be a Fréchet space without a continuous norm and A = (a,) a
Kothe matrix such that \' (A) is not normable. For v = (v,),v,(3) := un(f)'l , we have
K_(E)#k_(FE) algebraically.

(b) If a Fréchet space E satisfies K_(E) = k_(E) for every decreasing sequence of
strictly positive weights on N , then E is normable.

Proof. (a) By a well-known result of Eidelheit, there is a closed subspace H of A!( A) such
that M(A)/H = w. Let ¢ :' AM'(A4) — w be the quotient map, and 1 : w — E atopological
isomorphism into, which exist because E does not have a continuous norm. Then 1o g €
L()\'(A), E) butis not bounded. Consequently K_(E)# k_(E).

(b) By (a), E certainly admits a continuous norm, hence it 1s not isomorphic to X X w,
with X a Banach space. If E is not normable we can apply a result of Bessaga, Pelczynski,
Rolewitz [4] to obtain a subspace F' of E isomorphic to a Kéthe nuclear space \!(A) with
a continuous norm. This implies L(\!(A), E)# LB()\'(A),E). o

Theorem 3.3. Let E be a Fréchet space with an increasing fundamental sequence of con-
tinuous seminorms (||.|l;). Let X be a locally compact space and § = (v,) a decreasing
sequence of strictly positive continuous weights on X . TFAE:

(i) every bounded subsetof CV(X, E) is contained and bounded in some C(v,)(X,E) .

(ii) 9C(X,E) = CV(X,E)

(iii) V(k(1)) T 3kVn3l, =1,(n),C, > 0:

|le]l v (2) < C,max(|le||jvypy(2) 11 <1< ) Vee E,z € X

using that every bounded subset of CV (X) is contained and bounded in some Cv,(X) and
that CV (X, E) is complete.
(ii) implies (iii). Given the sequence (k(l)) in N we set

G:={feCV(X,E): P(f) = sup(vyp () || f(D)]]; : = € X) < 00 VI}

endowed with the metrizable 1.c. topology given by the sequence of seminorms ( P) .G is a
Fréchet space. By (ii), G C U(C(v,)(X, E) : k € N) and Grothendieck’s factorization
theorem yields k¥ € N such that G is continuously included in C(v,)(X, E). Hence for
each n€ N thereare C, > 0 and [,(n) € N with

(1) sup(v(2)|[|f(2)]], : z € X) < C, max(sup(vyy (D) ||f(D)]};: z€ X) :1 <1< )

forall f € GG.
To prove (iii) we now fix n€ N, z, € X,e € E with |le]|,# 0. Taking [, = {;(n) > n
thereisaleast 1 < m < ly(m) with |le]||,, > 0. We set

W= {z € X : sup(vyp(2)|lell; : 1 <1< by) < 2 sup(uy(zollell;: 1 <1< )}
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W is an open neighbourhood of z, . There is g € C(X,[0,1]) with g(z,) = 1,suppg C
W . Since,for z ¢ W,

uk(mi(z)g(z) = “ “ 5“13(”&(1)(%)“&”: <L ID):

Applying (1) to this f we obtain

ve(zo) |lell, = vi(zo)|[f(zo) ], <
C, max(sup(v,p (D) |[f(D];: z€X) 1 1 <1< ) <
2C, max(ukm(:cﬂ)”e]h 1 <1<,

and condition (iii) is proved. =

Proposition 3.4. Let E be a Fréchet space. Let § = (v,) be a decreasing sequence of

strictly positive continuous weights on a locally compact space X . TFAE:
(i) every bounded subset of CV,(X,E) is contained and bounded in some

C(v, ) (X, E).

(ii) 9C,(X,E) = CV,(X,E)

(iii) (a) ¢ is regularly decreasing (ie., ¥n I3m > nVa > 0 W € V : v <
max(av,, V) (cf. [10; Sectuon 2])).

() 9C(X,E) = CV(X, E) algebraically (or equivalently 3.3 (iii)).

Proof. (i) Clearly implies (ii) and (i) follows from (ii) because every closed absolutely con-
vex bounded subset of C‘I_f"u (X, E) is a Banach disc, because CV (X, E) is complete, and
Grothendieck’s factorization theorem can be applied. To prove that (ii) implies (i11), first ob-
serve that (ii) really implies ¥C,(X) = CV,(X) , which is equivalent to ¥ being regularly
decreasing by [10; 2.6]. On the other hand, given f € CV(X, E) we may form abounded net
in CV, (X, E) multiplying f by continuous functions valued in [0, 1], equal to 1 on any com-
pact subset of X and vanishing outside a compact neighbourhood of this compact set. This
bounded net must be bounded in some step C(v, ), (X, E) by (ii) (equivalent to (1)!), hence
f belongs to Cv,_(X, E). Finally we show that (iii) implies (ii). Given f € CVU (X,FE),by
(iii) (b), there is n € N with f € Cv (X, E). Select m as in the regularly decreasing con-
dition (a) and suppose that f ¢ C(v,,)o(X, E) . Then there are p € cs(E) and € > 0 such
that for all compact subset K of X thereis z(K)-¢ K with v_(z(K))p(f(z(K))) > €.
We find M > 0 such that v (z)p(f(z)) < Mforall z € X. Given a = e/M there
is ¥ € V with v, < max(av,,7). Since f € CVy(X,E), given ¢ > 0 there is a
compact subset L of X with v(z)p(f(z)) < e if z ¢ L. For z(L) ¢ L we have
v, (z(L))p(f(z(L))) < max(av,(z(L))p(f(z(L))),v(z(L))p(f(z(L)))) < &.

This 1s a contradiction. -
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We close this section with a very general universal answer to question (ii) of the ba-
sic problem of projective description in the context of arbitrary l.c.s. where the countable
g -prequojections of Section 1 play an important role. Our results extends [15; 2.5].

Theorem 3.5. Let ¥ = (v,) be adecreasing sequence of strictly positive weights on a locally
compact o -compact space X . If al.c.s. E is acountable g -prequojection, then 9,C(X, E)

is a topological subspace of CV ,( X ,E) .

Proof. We fix an equicontinuous subset H of (¥,C(X, E))'. We will see that H is equicon-
tinuous for the topology induced by CV (X, E) . The canonical injection C(v,)y(X) ®,
E — C(v,), (X, E) is continuous, hence we can apply proposition 2.2. to obtain that H in-
duces an equicontinuous on (¥,C(X) ®, E)'. Therefore we can find U € Uy( E) such that
the map ¢(g,.) givenby z € E — ¢(g ® ) belongs to E;,, forall g € 9,C(X),¢ € H.

For each n € N there is p, € cs(E) with |¢(f)]| < sup(v, (z)p,(f(7)) : = €
X)WVfeC(v)y(X,E),¢ e H.PutU,_ :={y€ E:p(y) <1},n€ N. Since E is
a countable g -prequojection we can find » € cs(E), A, > 0,n € N, with U,? N EE,}, C
\VOVne N(V:={ye€E:r(y) <1}). Since X is locally compact and ¢ -compact we
can assume without loss of generality that v := inf 2™ v, is strictly positive and continuous
(cf. [10; p. 112]). Now we proceed in 3 steps.

1. Let K be a compact subset of X,m € N,{Q; : 1 < j < =n} an open cover of
K,p; € C(X) satisfying 0 < ¢, < 1,suppp C Q;,Z(p; : 1 <j < m <1, and for

each ; there is z; € €2, such that ”m(m)/”m(fﬂj) <2foralzeQ; . 1f(2,:1< /< n)
is included in E and sup(kmum(z:j)r(zj) 1< j<n)<1 then

n
J=1

Indeed,

I

J J')

3
N
<
3
p——
8|6
VY e
b
3
S———
—
N
3
o
3
gy
3
j
N

J1=1
n 0;
P:El Pyo (ﬁb (}‘mvm( Ij) , ))

were Pyo is the Minkowski functional of V® (observe that X, v, (z;)z; € V forall 1 <
j < m). Since Up N E}e C A, V° and

¥ ,
¢ ()‘mum( m}.) y ) € Euﬂ
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one has

Consequently

¢ (E "Dj@zi) 52 Pus (¢ (v ‘f;)'))
j=1 j=1 m\Z;

Now, it y; € U,,(1 <) < n) one has

n ‘F’
2 | (vm(;,*) M’-")

j=1

|
©-
P
]
at!
~|s
e
®
=
o
~—

for certain 7;, |n;| = 1. If g denotes the function

we obtain

n n

w0 (
U (2) P (9(2)) = v, (2) Dy, (E 12 n;Y; ﬁE Um(2) P (Z)Pp(y;) < 2

j=1 ”m(IJ') =1 um(mi)

for every z € X, from where it follows |¢(g)| < 2 forevery ¢ € H.

2.Let f € C.(X, E) besuch that sup(v(z)r(f(z)) :z€X)<1.Givenz € X, we
find n(z) € N suchthat 2%®y_ . (z) X, < 29(z),and we set

Q, = {y € X : 2"y s (1) dyzy < 25(Y), Vyiny () < 205, (2),

Puizy (F(V) = F(2)) vy (v) < 2749},

which is an open neighbourhood of z.
Since the supp f is compact we find z,,...,z_. € X such that supp f C LJ(QIJ_ 1 <L

J <m).Find p; € C(X),1 < j < n,such that

n 1/}
suppy; C Q:,.:O <p; < I,E p;=1 ansuppf,z: p; <1 on X.
j=1 j=1
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We take

hi=3" ¢;®f(z) EC(X)®E
j=1

I.:={j=1,...,n: wWz;) = k}(k € N)
Then

h=Y" (E P; @f(zj)) (finite sum!)
k

JEI,

For each j € I, we have

M (Z)T(F(Z))) = Mgz y Yy (2)7(f(2))) < 27%20(z)r(f(2))) < 227

and, according to step 1, we obtain

¢ (E ao;@f(:sj)) <427"

JEl,

forall k € N,¢ € H. Moreover

F=Y ) of

k JEl;
and we have
Pk (E ‘F’;'(I)(f(-’ﬂ) — f(z_j))) v (z) < E iﬂj(m)Pk(f(m} — f(IJ-))'Uk(I) < 2k
JEI, JEI, |

since, for z € 2,
J

pe(f(2) — F(2)) () = Doz ) (F(2) = F(2,)) Vg (7) <27%% =27,

Consequently

¢(E v-yf) <27%+ 14 (E wj@if(mj)) <527 % forallk€ N;¢ € H,

JEIL JEI,
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hence

|¢(f)|SE ¢(E ﬂﬂ,-f) <S5 forallp € H.
k

JEI,

3. We take now f € C(v,)y(X, E) for some » € N, with sup (v(z)r(f(z)) : z €
X) < 1. Wecanfind g € C.(X, E) with

(@ sup(v(z)r(g(z)) :z€ X) <1

(b) sup(v,(z)p,(f(z) —g(2)) :z€ X) <1

(a), (b) and step 2 imply |¢( f)| < 6 forall ¢ € H. This shows that H is equicontinuous
on 9,C(X, E) endowed with the topology induced by CV ,(X, E). This completes the
proof. M

In [28] the second author has proved that a Fréchet space E is a countable g -prequojection
if andonly if ¥,C(X, E) is atopological subspace of CVU (X, E) forall sequence ¥ on any
locally compact and o—compact space X , as a consequence of a complete characterization
of the pairs (¥, ) of sequences on X and Fréchet spaces E such that J,C(X, E) 1s a

topological subspace of GVG(X , ) in terms of a modification of the condition of Vogt in
[44; 1.4].
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