FUNCTIONAL DIFFERENTIAL INEQUALITIES OF PARABOLIC TYPE *

M. MALEC, R. SELVAGGI, I. SISTO.

INTRODUCTION

We prove a theorem wich generalizes a result of J. Szarski (see [4]; Theor. 2) concerning weak inequalities for a diagonal system of second order differential functional inequalities of the type

$$u_t^i(t,x) \le f^i(t,x,u(t,x),u_x^i(t,x),u_{x,x}^i(t,x),u(t,\cdot))$$
 $i = 1,\ldots,m,$

assuming that f^i is parabolic with respect to u for any i = 1, ..., m.

After introducing the definition of left parabolic (or right parabolic) function with respect to another one, we obtain the over mentioned generalization (Theor. 2.2) as a consequence of a theorem about strong inequalities (Theor. 2.1) which is a generalization of Theor. 1 of [4] in the case of left parabolic (or right parabolic) functions.

These generalizations have been suggested by the following example in wich we have the assertion of Theor. 2 of [4] even if hypotheses of the theorem are not all verified. Consider the function f defined as $^{(1)}$

$$f(t, x, u, q, r, z) = (x_1^2 + x_2^2 - 1) \operatorname{sgn} r_{11}$$

for $(t,x) \in D =]0, T[\times \{x = (x_1,x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1\}, u \in \mathbb{R}, q \in \mathbb{R}^2, r = (x_{ij})_{1 \le i,j \le 2}$ belonging to the set of real and symmetried 2×2 matrices and z continuous function in \overline{D} , with continuous in D partial second derivatives with respect to x as well as functions u and v defined assuming

$$u(t,x) = t \cdot (x_1^2 + x_2^2 - 1)$$
 and $v(t,x) = 0$

for every $(t, x) \in D$.

1. DEFINITIONS AND ASSUMPTIONS

If $(\overline{t}, \overline{x}) \in \mathbb{R}^{1+n}$ and r > 0 we set

$$(1.1) U_r^-(\overline{t},\overline{x}) = \left\{ (t,x) \in \mathbb{R}^{1+n} : (t < \overline{t}) \wedge (t - \overline{t})^2 + \sum_{j=1}^n (x_j - \overline{x}_j)^2 < r^2 \right\}$$

^{*} Work supported by M.P.I., 1987 (60%).

⁽¹⁾ Let $x \in \mathbb{R}$. Then sgnx = 1 if 0 < x, sgnx = 0 if x = 0 and sgnx = -1 if x < 0.

the lower – half neighborood with center (\bar{t}, \bar{x}) and radius r > 0.

For all set $D \in \mathbb{R}^{1+n}$ with $\mathring{D} \neq \emptyset$, we denote by D_p the subset

$$(1.2) D_p = \{(\overline{t}, \overline{x}) \in \overline{D} : (\exists r > 0)(U_r^-(\overline{t}, \overline{x}) \subset \mathring{D})\}.$$

We say parabolic boundary of D the set

$$\Gamma_{p} = \overline{D} \backslash D_{p}.$$

If $m \in \mathbb{N}$ and D_j is a subset of \mathbb{R}^{1+n} containing D_p for j = 1, ..., m, we set

$$Z = \{ \varphi = (\varphi^j)_{1 \le j \le m} : (\forall j = 1, \dots, m) (\varphi_j : D_j \to \mathbb{R}) \}.$$

Furthermore, for $\varphi = (\varphi^j)_{1 \le j \le m}$, $\psi = (\psi^j)_{1 \le j \le m} \in \mathbb{Z}$, we denote

(1.5)
$$\varphi < \psi$$
 on Γ_p^+ (or $\varphi \leq \psi$ on Γ_p^+)

if it results

(1.6)
$$\limsup_{k} (\psi^{j}(t^{k}, x^{k}) - \varphi^{j}(t^{k}, x^{k})) > 0$$

(or

$$\limsup_{k} (\psi^{j}(t^{k}, x^{k}) - \varphi^{j}(t^{k}, x^{k})) \geq 0),$$

for $j=1,\ldots,m$, for any sequence $(t^k,x^k)\in D_p$ such that t^k is decreasing sequence and $\lim_k (t^k,x^k)\in \Gamma_p$ and denote

(1.7)
$$\varphi < \psi$$
 on Γ_{∞} (or $\varphi \leq \psi$ on Γ_{∞})

if the (1.6) is true for $j=1,\ldots,m$ for any sequence $(t^k,x^k)\in D_p$ such that t^k is decreasing to $-\infty$ or $||x^k||\to +\infty$.

A function $\varphi = (\varphi^j)_{1 \leq j \leq m} \in Z$ is called regular in D if φ^j_t, φ^j_x and φ^j_{xx} are continuous in D_p for $j = 1, \ldots, m$ where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \varphi^j_x = (\varphi^j_{x_\ell})_{1 \leq \ell \leq n}$ and $\varphi^j_{xx} = (\varphi^j_{x_\ell x_k})_{1 \leq \ell, k \leq m}$.

Finally we denote Z_0 the subspace of Z containing regular functions.

Assumption K: Let $f^j(t,x,z,q,r,w)(j=1,\ldots,m)$ be a real function defined for $(t,x)\in D_p,(z,q)\in G_j\subset \mathbb{R}^m\times \mathbb{R}^n, r\in M_j\subset \mathbb{R}^{n\times n}$ and $Z_j\subset Z_0$.

For any j = 1, ..., m we set $D(f^j) = D_p \times G_j \times M_j \times Z_j$, $f = (f^j)_{1 < j < m}$ and

(1.8)
$$Z_0(f) = \{ \varphi = (\varphi^j)_{1 \le j \le m} \in Z_0 : (\forall j = 1, ..., m) \}$$
$$((t, x, \varphi(t, x), \varphi^j_r(t, x), \varphi^j_{rr}(t, x), \varphi) \in D(f^j)) \}.$$

The defect $P_{\varphi}(t,x)$ of a function $\varphi = (\varphi^j)_{1 \leq j \leq m} \in Z_0(f)$ at the point $(t,x) \in D_p$ is the vector in \mathbb{R}^m whose components $P_{\varphi}^j(t,x)$ are defined by

(1.9)
$$P_{\varphi}^{j}(t,x) = \varphi_{t}^{j}(t,x) - f^{j}(t,x,\varphi(t,x),\varphi_{x}^{j}(t,x),\varphi_{xx}^{j}(t,x),\varphi).$$

The function $\varphi = (\varphi^j)_{1 \le j \le m} \in Z_0(f)$ is said to be *left parabolic* (or *right parabolic*) with respect to f and we write $\varphi \in \mathscr{P}_0^-(f)$ (or $\varphi \in \mathscr{P}_0^+(f)$) if we have

$$(1.10)_s \qquad \qquad \varphi_{xx}^j(t,x) - s \in M_j$$

$$(1.11)_{s}$$

$$f^{j}(t,x,\varphi(t,x),\varphi_{x}^{j}(t,x),\varphi_{xx}^{j}(t,x),\varphi) - f^{j}(t,x,\varphi(t,x),\varphi_{x}^{j}(t,x),\varphi_{xx}^{j}(t,x)-s,\varphi) \ge 0$$

(or

$$(1.10)_d \qquad \qquad \varphi_{xx}^j(t,x) + s \in M_j$$

$$(1.11)_{d} f^{j}(t, x, \varphi(t, x), \varphi_{x}^{j}(t, x), \varphi_{xx}^{j}(t, x) + s, \varphi) - f^{j}(t, x, \varphi(t, x), \varphi_{x}^{j}(t, x), \varphi_{xx}^{j}(t, x), \varphi) \ge 0) cr$$

for any real symmetric matrix $s \in \mathbb{R}^{n \times n}$, $s \ge 0$, for any j = 1, ..., m and $(t, x) \in D_p$.

Finally, f is left increasing (or right increasing) with respect to φ if for any $z = (z^j)_{1 \le j \le m} \in Z_0, (\overline{t}, \overline{x}) \in D_p, j = 1, \ldots, m$, and $r \in M_j$ we have that

$$(z^{j} \geq 0 \text{ in } E_{j}(\overline{t}, \overline{x})) \wedge (\varphi - z \in Z_{j}) \Rightarrow$$

$$\Rightarrow f^{j}(\overline{t}, \overline{x}, \varphi(\overline{t}, \overline{x}), \varphi_{x}^{j}(\overline{t}, \overline{x}), \varphi_{xx}^{j}(\overline{t}, \overline{x}), \varphi - z) \leq$$

$$\leq f^{j}(\overline{t}, \overline{x}, \varphi(\overline{t}, \overline{x}), \varphi_{x}^{j}(\overline{t}, \overline{x}), \varphi_{xx}^{j}(\overline{t}, \overline{x}), \varphi)$$

(or

$$(z^{j} \geq 0 \text{ in } E_{j}(\overline{t}, \overline{x})) \wedge (\varphi + z \in Z_{j}) \Rightarrow$$

$$(1.12)_{d} \Rightarrow f^{j}(\overline{t}, \overline{x}, \varphi(\overline{t}, \overline{x}), \varphi_{x}^{j}(\overline{t}, \overline{x}), \varphi_{xx}^{j}(\overline{t}, \overline{x}), \varphi) \leq$$

$$\leq f^{j}(\overline{t}, \overline{x}, \varphi(\overline{t}, \overline{x}), \varphi_{x}^{j}(\overline{t}, \overline{x}), \varphi_{xx}^{j}(\overline{t}, \overline{x}), \varphi + z))$$

where

$$(1.13) E_j(\overline{t},\overline{x}) = D_j \cap \{(t,x) \in \mathbb{R}^{1+n} : t \leq \overline{t}\}.$$

We denote a left increasing (or right increasing) function f with respect to φ with the symbol $f \uparrow_- \varphi$ (or $f \uparrow_+ \varphi$).

2. FUNCTIONAL INEQUALITIES

Theorem 2.1. (Strong inequalities). Assume that

- 1) Assumption K,
- 2) For any j = 1, ..., m, $f^{j}(t, x, u, q, r, w)$ is increasing with respect to u^{i} , i = 1, ..., m, $i \neq j$,
 - 3) $u, v \in Z_0(f)$,
 - 4) Pu < Pv in D_p
 - 5) u < v on Γ_p^+ , u < v on Γ_∞ and for any j = 1, ..., m $u^j < v^j$ in $D_j \setminus D_p$,
 - 6) $v \in \mathcal{P}_0^-(f)$ (or $u \in Pr_0^+(f)$),
 - 7) $f \uparrow_+ u$ (or $f \uparrow_- v$).

Under these assumptions we have for any j = 1, ..., m

$$u^j < v^j$$
 in D_j ,

Proof. Let be $v \in \mathcal{P}_0^-(f)$ and $f \uparrow_+ u$. Let be

(2.1)
$$S_t = \{x \in \mathbb{R}^n : (t, x) \in D_p\}$$

for any $t \in \mathbb{R}$ and

(2.2)
$$B = \{t \in \mathbb{R} : S_t \neq \emptyset\}, \quad l_1 = \inf(B) \text{ and } l_2 = \sup(B).$$

At first we will prove that

$$(\forall t^* \in [l_1, l_2[\setminus B) (\exists \bar{t} \in]t^*, l_2[) ((\forall (t, x) \in D_p \cap (]t^*, \bar{t}[\times \mathbb{R}^n), (I))$$

$$\forall j = 1, \dots, m) (u^j(t, x) < v^j(t, x)))$$

and

$$(t^* \in B, t^* < l_2) \land ((\forall x \in S_{t^*}, \forall j = 1, ..., m)(u^j(t^*, x) < v^j(t^*, x))) \Rightarrow$$

$$(II) \qquad \Rightarrow (\exists \overline{t} \in]t^*, l_2[)((\forall (t, x) \in D_p \cap ([t^*, \overline{t}] \times \mathbb{R}^n), \forall j = 1, ..., m)$$

$$(u^j(t, x) < v^j(t, x))).$$

Suppose I is not true. Then, $t^* \in]l_1, l_2[\setminus B]$, a sequence $(t^k, x^k) \in D_p$ and an index j exist such that t^k is decreasing to t^* , $\lim_k x^k = x$ or $\lim_k ||x^k|| = +\infty$ and $u^j(t^k, x^k) \geq v^j(t^k, x^k)$. This conclusion contradicts assumption 5). Similarly, we deduce the II.

Now, we let

(2.3)
$$A = \{t \in B : (\exists x \in S_t, \exists j = 1, ..., m) (u^j(t, x) \ge v^j(t, x)\}$$

and suppose that $A \neq \emptyset$. Put $\overline{l}_1 = inf(A)$ by I we have $l_1 < \overline{l}_1$. Furthermore,

(III)
$$(\forall (t,x) \in D_p \cap (]l_1, \bar{l}_1[\times \mathbb{R}^n), \forall j = 1, ..., m)(u^j(t,x) < v^j(t,x))$$

and

$$(IV) \qquad (\forall (t,x) \in D_p \cap (]l_1, \bar{l}_1] \times \mathbb{R}^n), \forall j = 1, \dots, m)(u^j(t,x) \le v^j(t,x))$$

Now, if $\bar{l}_1 = l_2$, then $A = \{l_2\}$ and by IV we have

$$(2.4) \qquad (\exists \overline{x} \in S_{\overline{l}_1}, \exists j = 1, \dots, m) (u^j(\overline{l}_1, \overline{x}) = v^j(\overline{l}_1, \overline{x}))$$

If $\overline{l}_1 < l_2$, from I it follows that $S_{\overline{l}_1} \neq \emptyset$ and from IV and II we have that (2.4) is true. Hence there is a point $\overline{x} \in S_{\overline{l}_1}$ and an index j so that

$$(2.5) u_x^j(\overline{l}_1,\overline{x}) = v_x^j(\overline{l}_1,\overline{x}) \quad and \quad u_{xx}^j(\overline{l}_1,\overline{x}) \leq v_{xx}^j(\overline{l}_1,\overline{x}).$$

Then by 4, 7, 6 and 2 we get successively

$$\begin{split} 0 &< P_{v}^{j}(\overline{l}_{1}, \overline{x}) - P_{u}^{j}(\overline{l}_{1}, \overline{x}) = \\ &= v_{t}^{j}(\overline{l}_{1}, \overline{x}) - f^{j}(\overline{l}_{1}, \overline{x}, v(\overline{l}_{1}, \overline{x}), v_{x}^{j}(\overline{l}_{1}, \overline{x}), v_{xx}^{j}(\overline{l}_{1}, \overline{x}), v) - \\ &- u_{t}^{j}(\overline{l}_{1}, \overline{x}) + f^{j}(\overline{l}_{1}, \overline{x}, u(\overline{l}_{1}, \overline{x}), u_{x}^{j}(\overline{l}_{1}, \overline{x}), u_{xx}^{j}(\overline{l}_{1}, \overline{x}), u) \leq \\ &\leq v_{t}^{j}(\overline{l}_{1}, \overline{x}) - u_{t}^{j}(\overline{l}_{1}, \overline{x}) - f^{j}(\overline{l}_{1}, \overline{x}, v(\overline{l}_{1}, \overline{x}), v_{x}^{j}(\overline{l}_{1}, \overline{x}), v_{xx}^{j}(\overline{l}_{1}, \overline{x}), v_{xx}^{j}(\overline{l}_{1}, \overline{x})) + \\ &+ f^{j}(\overline{l}_{1}, \overline{x}, u(\overline{l}_{1}, \overline{x}), u_{x}^{j}(\overline{l}_{1}, \overline{x}), u_{xx}^{j}(\overline{l}_{1}, \overline{x}), u_{xx}^{j}(\overline{l}_{1}, \overline{x}), v) \leq \\ &\leq v_{t}^{j}(\overline{l}_{1}, \overline{x}) - u_{t}^{j}(\overline{l}_{1}, \overline{x}) \end{split}$$

and, hence,

$$(2.6) u_t^j(\overline{l}_1, \overline{x}) < v_t^j(\overline{l}_1, \overline{x}).$$

On the other hand, by IV and (2.4) the function $u^j(\cdot, \overline{x}) - v^j(\cdot, \overline{x})$, defined for t in the interval $]l_1, \overline{l_2})$ attains its maximum at $t = \overline{l_1}$. Hence we have $u_t^j(\overline{l_1}, \overline{x}) \geq v_t^j(\overline{l_1}, \overline{x})$ in contradiction with (2.6). This completes the proof.

In the same manner we proof the theorem if $u \in \mathcal{P}_0^+(f)$ and $f \uparrow -v$. Remark 1. Using the notations of [4], if $\sum_{i}^* = \emptyset$ then Theorem 1 of [4] follows from Theorem 2.1.

Theorem 2.2. (weak inequalities). Under assumptions 1,2 and 3 of Theorem 2.1 suppose that

- 8) $Pu \leq Pv \ in D_p$,
- 9) $u \le v$ on Γ_p^+ , $u \le v$ on Γ_∞ and, for any j = 1, ..., m $u^j \le v^j$ in $D_j \setminus D_p$.
- 10) let $I = (l_1, l_2)$ (see (2.2)). There exists a sequence y_ν of real functions defined in I and a function $K: I \times \mathbb{R} \to \mathbb{R}$ such that the function

$$z_{\nu}(t) = \int_{t_{\nu}}^{\tau} K(\tau, y_{\nu}(\tau)) d\tau + \frac{1}{\nu} \cdot t \quad e \quad \overline{z}_{\nu} = \left(z_{\nu} + \frac{1}{\nu}, \dots, z_{\nu} + \frac{1}{\nu}\right),$$

where $t \in I$ and $\nu \in \mathbb{N}$, satisfies:

(I)
$$0 \le z_{\nu}(t) < \infty, \lim_{\nu \to \infty} z_{\nu}(t) = 0, \nu + \overline{z}_{\nu} \in Z_0(f),$$

$$(\forall (t,x) \in D_p, \forall j = 1, \dots, m)$$

$$(II)$$

$$(f^j(t,x,(v+\overline{z}_\nu)(t,x), v_x^j(t,x), v_{xx}^j(t,x), v + \overline{z}_\nu) - f^j(t,x,v(t,x), v_x^j(t,x), v_x^j(t,x), v) < K(t,y_\nu(t)),$$

(III)
$$v + \overline{z}_{\nu} \in \mathcal{P}_{0}^{-}(f) \quad (or \ \nu \in \mathcal{P}_{0}^{+}(f)),$$

(IV)
$$f_{+}^{\dagger}u \quad (or \ f_{-}^{\dagger}(v+\overline{z}_{\nu})).$$

Under these assumptions we have for any $j = 1, ..., m u^j \le v^j$ in D_j .

Proof. By observing that, for any $\nu \in \mathbb{N}$, the functions u and $v + \overline{z}_{\nu}$ satisfy all assumptions of Theorem 2.1, we have that

$$(2.6) u^j < v^j + z_\nu + \frac{1}{\nu}$$

for $\nu \in \mathbb{N}$ and $j = 1, \ldots, m$.

Hence Theorem 2.2, follows from (2.6) and I.

Remark 2. By using notations of [4], if $\sum_{i}^{*} = \emptyset$ then Theorem 2 of [4] follows from Theorem 2.2. In fact if, for ν sufficiently large, y_{ν} denotes a solution of the problem

$$\begin{cases} y' = \sigma(t, y) + \frac{1}{\nu} \\ y(0) = \frac{1}{\nu} \end{cases}$$

moreover, we have

$$y_{\nu}(t) = \int_0^t \sigma(\tau, y_{\nu}(\tau)) d\tau + \frac{1}{\nu}(t+1).$$

Then, put $K(t, \nu) = \sigma(t, \nu)$, I, II and IV of Theorem 2.2 are true.

Remark 3. Assumptions of Theorem 2.2 are true for the functions defined in the introduction.

REFERENCES

- [1] A. AVANTAGGIATI, M. MALEC, Stabilité des solutions d'un sistème d'équations différentielles fonctionelles du type elliptique, Conf. Sem. Mat.Univ. Bari 187 (1983).
- [2] M. MALEC, Inégalités différentielles fonctionelles du type elliptique, Ann. Polon. Math. 42 (1983) 165-171.
- [3] J. SZARSKI, Strong maximum principle for non-linear parabolic differential functional inequalities, Ann. Polon. Math. 29 (1974) 207-214.
- [4] J. SZARSKI, Strong maximum principle for non-linear parabolic differential functional inequalities in arbitrary domains, Ann. Polon. Math. 31 (1975) 198-203.
- [5] W. WALTER, Differential and integral inequalities, Springer, 1970.

Received July 29, 1988.

M. Malec
Katedry Analizy Matem. i Num.
Universytet AGH
Krakow, Poland

R. Selvaggi
Dipartimento di Matematica
Università,
C.P. 193
73100 Lecce, Italy

I. Sisto Dipartimento di Matematica Università, 70125 Bari, Italy