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RIESZ OPERATORS AND PERTURBATION IDEALS
PIETRO AIENA

Abstract. This paper is a general survey on Riesz operator theory on infinite dimensional
complex Banach spaces. We also outline a new approach to the study of the containment
relationships which exists between some well-known perturbation ideals, starting from some
recent characterizations, due to the author, of the class of all Riesz operators and of the ideal
of all inessential operators.

INTRODUCTION. In this paper we give, starting from some recent results of the author
(121, [3], [5]), a new presentation of the theory of Riesz operators on a Banach space and of
the perturbation ideals associated with them. Riesz operators arise directly from one of the
more classic sector of functional analysis. the spectral theory of compact operators. It is well-

known that the spectrum of a linear compact operator defined on a Banach space, verifies a
series of properties that, in literature, are known as «Riesz-Schauder theory» (see [26], Chap.

VI). Some of these properties in the particular case of a compact integral operator lead to the

so-called Fredhohn alternative for integral equations of second kind.

The class of Riesz operators % (E) on a Banach space E has been introduced in 1954
by Ruston ([48]) who defined such operators by considering as axioms some of the spectral
properties of compact operators. Successively this class of operators has been studied and
characterized by different authors (Heuser [25], Caradus [15], Dieudonné [19], West [61]).
More recently such operators have been characterized geometrically by Smyth [52], by Mur-
phy [35] and in terms of invariant closed subspaces by the author ([3], [5]).

Although we don’t know if a Riesz operator admits proper closed invariant subspaces,
these are an interesting tool for studying such a class of operators. In fact, as we shal see,
the behaviour of a bounded operator on a infinite-dimensional closed invariant subspace to-
gether with a certain distribution of the spectrum, characterizes this type of operator. More
precisely in [3] Riesz operators have been characterized «internally» as all bounded opera-
tors on a Banach space which do not admit on every closed invariant infinite-dimensional
subspace a continuous inverse and such that each spectral point different from zero is an iso-
lated point. Similarly it is possible to give an «external» characterization in terms of quotient
spaces and surjectivity ([5]). The study of the relationships which exist between the closed
invariant subspaces and the Riesz operators will be the heart of §3 which aso includes the
decomposition property of a Riesz operator on a Hilbert space due 1o West ([60]). The class
of all Riesz operators % (E) , whose general properties are given in §2, contains the class
S(E) of all strictly singular operators introduced in [36] by Kato, in his treatment of the
perturbation theory of semiFredholm operators, and the class C(E) of all strictly cosingular
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operators introduced in [42] by Pelczynski.

The reason of this inclusions, if one starts from the detinition of strictly singular operator
and dtrictly cosingular operator, is not evident at first glance. Moreover the proof of them is
really laborious (sec [ 163, [44]). The «internal» and «external» characterizations make both
inclusions more intuitive. In fact the proofs are reduced to the agebraic fact that S(E) and
C(E) are both ideals of the Banach algebra -Z°( E) of all bounded linear opcrators on E
(84). The Riesz operators, in the case dim (E) = oo, do not form as do S(E) , C(E) and
the set of all compact operators, an ideal of £( E) .

From many points of view the @ -ideals, i.e. the two-sidcd ideals of operators contained in
% ( E), are more important of the same class % (E) . For exarnple if we perturb a Fredholm
operator A with an operator K belonging to a @ -ideal, the index (A + K) does not change.

Probably from an abstract point of view, the most important @ -ideal, in spite of its name,
is the ideal I(E) of the inessential operators introduced in [38] by Kleinccke. It is meaningful
the fact that this ided is the starting-point of the extension of the Fredholm theory and of the
Riesz theory in Banach algebras (see (9], or the recent paper [8]). The ideal of inessentia
operators I( £) is maximal in % (E) . We shall give some characterizations of I(E) which
show a sort of symmetry of this idea with respect to the defects ([51).

The elaboration of such characterizations and of the relationships between the various @ -
ideals will form the central part of $4. In the last paragraph we have included some interesting
results of Weis and we have aso included the measure of non strict singularity and the measure
of non strict cosingularity introduced in [51] and [57] by Schechter and by Weis, respectively.
Such measures imply the adgebraic structure of S(E) and C(E) and shed light on the reason
of some inclusions between those ideals and the perturbation ideals P+(E) , P_(E) defined
later.

We conclude this paper by giving a genera survey of the relationships between the various
& -ideals in certain Banach spaces. Most of these relationships are still valid when we con-
sider operators acting between different Banach spaces. For simplicity we have considered
only endomorphisms.

We conclude this introduction by remarking that we have given only the proofs that we
retained to be essential for avoiding a simple list of results. In particular some proofs given
here seem to be new and are dtrictly connected with the characterization of I(E) given by
the author.

§1. Throughout this paper we shall always suppose that E is an infinite dimensional
complex Banach space. By Z(E) we shall denote the Banach algebra of all bounded linear
operators, by #( E) and X(E) we shall denote the ideal of all bounded finite-rank operators
on E and the ideal of all compact opemtors, respectively.

We shall suppose that the reader possesses a good familiarity with the spectral theory of
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bounded operators and in particular with the so-caled Riesz-Schauder theory for compact
operators. Anyway a consistent part of the ideas involved here may be found in Heuser's
book ([26]) or in the monography of Caradus-Pfaffenberger-Yood ([16)).

If Ae Z(E), weshal denote by a(A) and f(A) the defects of A, i.e. the dimension
of the kemel ker ( A) and the codimension of the image space A(E) , respectively.

An operator A ¢ Z(E) issaid to be a Fredholm operator if a(A) , B( A) are both finite.
The set ®(E) of all Fredholm operators is a multiplicative semigroup of Z(E) . Moreover,
dencting by 7 : Z(E) — Z(E) [ % ( E) the canonical quotient map, we have

Theorem 1.1. (Atkinson): A € @ (E) ifand only if n( A) isinvertible in £(E) [ % (E) .
Proof, See [26], Prop. 25.2.

The ideal X(E) in the previous theorem may be replaced, as we shall see later, by

any ¢ -ideal. The quotient algebra Z=2( E)/ % ( E) provided with the norm ||i1|| =

ip%f |[A + K]|| is aBanach algebra, known in the literature as the Calkin algebra, which
KeH(E)

has an important role in Frednolm theory.
In the following we shdl use the following theorem due to Kato ([361).

Theorem 1.2. Let A € Z( E) . If B(A) < oo then A(E) is closed.

The semigroup Q(E) is stable under certain perturbations; in fact denoting by ind( A)
the index of A(= a( A) - p(A)) , we have

Theorem 1.3. Let A€ ®(E) . Then

(a) There exists an ¢ = £(A) such that ||B|| < ¢ implies A+ B E-@(E) and ind(A +
B) = ind( A) .

(b) Foreach K € 9% (E) wehave A+ K € ®(E) and ind(A+ K) = ind( A).

Proof, See [26], §37.

Part (a) of the previous theorem is due to Dieudonné ([ 19]) whereas part (b) is due to Yood
([63D).

Let us now consider the so-caled classes of semiFredholm operators @, (E), ®_( E)
defined as follows:
Q+(E) = {A € Z(E): a(A) < oo, A(E) closed }
®_(E)={A € Z(E): B(A) < oo}.

The classes @, ( E) , ®_ ( E) are multiplicative semigroups ([ 16], § 1.3) and clearly, @ ( E) =
Q+(E) N ®_(E). It is possible to define an index on @+(E),@-(E) as follows. Let



4 Pietro Aiena

00 — N=00, N - 00 =—00 for each positive integer n; we definc for each A € [P+(E) u
®_(E) ,ind(A) = a(A) -I3(A).

For a proof of the following theorems we refer to the monographs [ 16], [24] or, for a proof
which does not use the antipodal theorem of Borsuk, to the recent edition of Heuser book
[27], Satz 82.4.

Theorem 1.4. (Kato). If A € <P+(E) U ®_(E), there exists a ¢ = ( A) > 0 such thatfor
each U € Z(E) which verifies ||U|| < e, we have A+ U € ®,(E) UP_(E),

a(A+U)>a(d), B(A+U)>pB(A)

and
ind( A+ U) >ind( A) .

Two important quantities, strictly connected to the defects a(A) and B(A) of a linear
operator A , are the lenghts of the chains

ker(A) Cc ker(A42)cC. ..

AE) D AX(E) > . . .

The ascent of Aisthe smallest positive integer p = p(A), whenever it exists, such that
ker( AP) = ker( AP*1) . If such p does not exist we let p = + oo. Analogoudly the descent
of Ais defined to be smallest integer g = g(A) , whenever it exists, such that A9*1( E)=
A% E) . If such g does not exist we let g = + oa. It is possible to prove that if p and g are
both finite then p = g ([26]).

We recall that, if A= ] —K, K € X(E), then p(A) = g(A) < oo.

Theorem 1.5. (Heuser [26]). Let A : E — E be linear, E a vector space. We have
@) Ifp(A) = g(A) < oo then a(A) = B(A).
(b) If o A)=B(A)andonc of the chains has a finite Jenght thenp =g,

Now, let E be a Banach space, A€ Z(E) and let us denote by a(A), p(A) the spec-
trum of A and the resolvent of A , respectively. It is well known from functional calculus
that the «resolvent function» ) € p(A) = R, = (M — A)~'is holomorphic. A subset
o of a(A) is said to be a spectral set if o is open and closed. Let T, be an integration
path separating o from the remaining part of the spectrum. To the set o there is associated a
spectral projection P, ¢ #(E) , defined as follows

P, = —1— / (M = A)7'd ).
27 T,
If o isreduced toasinglepoint {X,} wehave [26], §50) that ), isapoleof R, = (\I—A)~!

if and only if X, I = A possesses finite chains. In particular A, I — A is a Fredholm operator
having finite chains if and only if the projection P, associated with X, is a finite rank operator.
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2. RIESZ OI'ERATORS
The class of all Riesz operators is defined by considering some spectral properties of compact
operators. Let E bea complex Banach space.

Definition. A € S’(E) is said to be a Riesz operator iffor each X\ # 0
(a) XI-A € ®(E)
(b) X1 —A possesses finite chains.

It is possible to simplify the definition given above. In fact, as we have seen , the quantities
a, B, p, g of an operator are strictly correlated and it is possible to show that (8) implies (b)
(see [26], $52). Then if we denote by %2 (E) the class of all Riesz operators we have:
(1) R(E)={A€ Z(E):\[— A€ ®(E) for each A#0}.

It is possible to give a weaker characterization of % (E) . In fact (see [27], §105)

2 R(E)={A€Z(E): \ - A€ ®,(E) for each \#0}.
or
(3) R(E)={A ¢ Z(E): M- A€ ®_(E) for each \#0}.

We recall that A € S'(E) is said to be quasi-compact if there exists a positive integer n
and an operator K € X(E) such that ||A" — K|| < 1 . Because of the next theorem, Riesz
operators are by some authors ([481) called asymplotically quasi-compact. Let = denote the
canonical quotient map Z(E) — Z(E) /% (E) and let us denote by r(A) the spectral
radius of A .

Theorem 2.1. (Ruston [48]). Let A € S(E) . A is a Riesz operator < m(A) is quasi-

nilpotent in the Calkin algebra #'( E) /% ( E) . In other words if we let A= m(A), then
A€ R£(A) ifand onlyif

Ay =1lim[ inf ||4A"=K]|]'/"=0.
(4) r(A) =ltm{ inf |l Il

Proof, By the Atkinson characterization A - A € ®(E) if and only if AT - A isinvertible
in Z(E)/ 7 (E).
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Riesz operators have been introduced in 1954 by Ruston ([48]) who defined them in a dif-
ferent way from that given above, by considering some other properties of compact operators.
Successively in [25] Heuser considered the class of all bounded operators on a Banach space
which verify (a) and (b). This class of operators was called, by Heuser, volifinit. Later, in
1965, Caradus ([15]) shows, by eliminating some redundances, that the operators introduce
by Ruston and the vollfinit operators coincide.

Riesz operators present, as we shall see in the sequel, a spectral Situation similar to that
of compact operators. The next theorem gives some informations on the distribution of the
spectral points of a Riesz operator and a characterization of such operators with the aid of
spectra  projections.

Theorem 2.2. Let A ¢ Z(E) . We have

(a) A€ % (E) < cach spectral point ) # O isisolated and the spectral projection P,
associated With )\ is a finite-rank operator.

(b) The spectrum a(A) of a Riesz operator isfinite or a sequence which converges to
zero.

(c) If dim(E) = 00,0 belongs to o(A).

Proof. See [26], $52.

From theorem 2.1 it follows immediately that quasi-nilpotent operators and, a fortiori,
nilpotent operators are Riesz opcrators. Moreover aso each compact operator on E belongs
to % (E) . Itis natural to ask if %8 (E) is an ided. Thisis true if dim( E) < oo in fact in
such case we have #(E) = #(E) = Z(E). If dim(E) = 00,2 (E) is not an ideal, as
the following examples show.

Let E? = E x E, E any Banach space, and let us define S, T € Z( E?) as follows

S(zy,zy) = (0,11) and T(Ipxz) = (-'172;0)

where (z,,1,) € E*.

We have $* = T? =0and hence S, T € % (E) . It is easy to verify that ST( z,, z,) =
(z,,0) and TS(z,,z,) = (0,1,),ie. ST and T'S arebothprojectionsof E?* onto E.

Now, in any Banach space E, aprojection P is a Riesz operator if P is a finite-dimen-
sional operator (In fact in this case we have o [ = P) = dim ( P(E)) < 00) .

Since in the previous example we have assumed dim (E) = oo, both products ST and
TS do not belong to % (E) . We observe also that ( S+ T) 2= ] and hence S+ T ¢ % (E) .

To prove that %2 (E) is not closed in general, there is an example, due to Kakutani (cf.
[21], Ex. 3.15) of asequence {A,} of Riesz opcrators, defined on the Hilbert space £, , which
converges to an opcrator A ¢ % (Z,) .
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We aso observe that, differently from compact operators, the range of a Riesz operator
may be not separable.

Although % (E.) generally is not a closed ideal of #(E) , the sum, the product and the
limit of Riesz operators are still Riesz operators if we assume the «commutativity modulo
X(E) ». Precisely, denoting by [A, Bl the operator AB — BA, we have

Theorem 2.3. Let E be a Banach space.

(@ IfABe £(E) and (A, B] € Z(E) then A+ Be % (E).

() ItAc R(E),Bec F(E) and A, Bl € %(E) then AB,BA € #(E).

(c) If {A)} is a sequence of Riesz operators such that ||A, = A|| — 0, A € S(E) and
[A,,A) € X(E) foreach n, then A € #(E).

The following result of West ([61]) suggests, in a certain sense, the «size» of %2 (H)
in Z(H) , where H is an Hilbert space. Denoting by % ( H) the subalgebra of £ (H)
spanned by % (H) we have

Theorem 2.4. %2 ,(H)=%(H).
Proof. See [61], theorem 6.2.

If E is a finite dimensional Banach space we have that % (E) = % (E) = Z(E) .
Conversdly if % (E) = ¥ (E), theidentity I is the uniform limit of a sequence of Riesz
operators {A}. Since [A,, I] = 0 € X(E) we have, by the previous theorem, that
[ € % (E) and 20 that dso implies dim (E) < co. Hence %2 (E) is dense in %( E) if
andonlyif dim(E) < oc.

Let us now denote by Hol( o(A)) the class of all complex-valued functions which are
holomorphic on an open set containing the spectrum o (A) . The following result is due to
West (see [61]).

Theorem 25. If A € % (E) and f € Hol( a(A)) verifies f( 0) = O then f(A) €
% (E) . Conversely if f vanishes only in 0, then f(A) € % (E) implies A € % (E) .
Let us consider a closed subalgebra B(E) of £ ( E) such that the identity | € B(E)

and let &5 = X(E) N B(E) . Morcover let us denote, if A €B(E) , by oy 5 (A) the
spectrum of A with respect to B(E) . It is well-known, from the theory of Banach algebras,

that if a(A) is discrete then a(A) = o 5, (A . Let us denote by A the quotient image of
AiINB(E)/Zy.

Theorem 2.6. Let A ¢ B(E) . Then A is a Riesz operator ifand only if r( Ag) = 0.

Proof. Let A € B(E) be a Riesz operator. Since u(A) is finite or denumerable, u(A) =
opg) ( A) - Let usdenote by P, the spectral projection associated with A # 0, A € cr(A) .
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P, is afinite rank operator and moreover it belongsto B(E) . Clearly, for each e > 0, the
set {\ € &A) : |\| > g} isfinite, suppose {X;, X,, ..., A}

IfweletP=ZPX,wehavePe%Band

k=l
o(A— AP) = o(A(I = P)) = o(A) = {}y,..., )}
thus r( A = AP) < ¢. Since AP € % g we also have
r(Ag) > r(A -AP) < ¢

i.e. r(Ag) = 0. Conversely each operator of B(E) invertible modulo K is necessarily

invertible in #(E) /% ( E) and hence if r(Ag) = 0, A is a Riesz operator. «
Let us denote by £ ( E) the vector space of all bounded sequences {z,} of elements of

E. Clearly £, (E) is a normed space with respect to the norm ||{z, }|| = sup ||z, ||. Let us

denote by m(E) the subspace of £, (E) of all the sequences { z, } which verify the property
that each subsequence {z, } of {z,} admits a subsequence which converges in E. £_(FE)

is a Banach space and m(E) is a closed subspace of £__( E) . Moreover if A € £ (E) and
{z,} ¢ 2_(E) (tesp. {z,} ¢ m(E)) then {As} c £_(E) (resp. {As} ¢ m(E)).
Let us denote by E the quotient space £_( E)/m(E) andif A e Z(E) define A € F(E)
by

A{z,}+ m(E) = {As}+ m(E).

Clearly A € X(E) if and only if A =0.

It is possible to represent the Calkin algebra @ =% E) /#(E) in Z( E) by means
of the representation 7 : % — Z(E) defined by 4(A) = A. Such representation studied
by Lebow and Schechter ([29]) is suggested in a natural way by the following result
Theorem 2.7. Ler A ¢ Z(E) . We have

(@ Aldsinvertible in Z (ie. Ac® (E) ) « A isinvertiblein Z( E).

(b) r(A) = 0 (ie. A € B(E)) « r(A) = 0.

It is an open problem if the representation - is irriducible or if ~( Z)isaclosed subsel
of Z(E) . Lebow and Schechter have shown that the last property is verified if the Banach
space E possesses the so-called Grothendieck approximation property (see [29]). The proof
of the last theorem is obtaincd by using a quotient technique due to Buoni, Harte, Wickstead
(see [9], §3). Such a technique leads to a geometrical characterization of Riesz operators due
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to Murphy [35] and Smyth [52]. Before giving characterizations of this kind we recall that, if
D is a bounded subset of E, the measure of non compactness g(D) is the infimum of £ > 0
such that D has a finite cover by open balsin E of radius ¢ .

L et us denote by U, the closed unit ball of E. If A€ £( E), there exists a relation-
ship between the quantities ||A]| and ( A( Ug)) - In fact the measure of non-compactness
p( A(Ug)) isa seminorm on Z(E) which induces anorm in #£°( E) /2 ( E) . Moreover
wehave

41l > 4u(A(UR)) > 8lIAll
(see [9], proof of Theorem 0.35, p. 12). This last inequality permits to characterize %2 (E)
geometrically in the following way
Theorem 2.8. Let A ¢ Z(E) . The following properties are equivalent
(a) Ac B(E)
(b) limu(A™(Up)'/" = 0 (Murphy [35])

(c) For each e > O there exists a positive integer n such that A™( Uy) admits a finite
cover by open palls of radius ¢ . (Smyth [52)).

A Riesz operator may be characterized by means of the action on its commutant. We recall
that the commutant of A is the subset of #’( E) defined as follows

2(A) = {B € #(E) : AB = BA}.

It is easy to show that t(A) is a closed subalgebra of Z(E) . Morcover if we consider the
operator M, : Z(A) — z( A) defined by M ,(B) = BA, M, is a bounded linear operator
on the Banach space z(A) and (see [9], §0) [|A|| = |[Mll,0(A) = a(M},) .

Theorem2.9. Let A€ #(E). Then A€ B (E) ¢ M, € £(2(4)).

It is possible to prove that if A€ X(E) , then M , is compact on 2(A) ([9], Theorem
0.52). It is somewhat surprising the fact that the converse of such property generaly is not
true. In fact in [35] Murphy has found a counterexample of a non-compact operator A on £,
such that M, is compact on z(A) .

In [55] Vala has studied the operator ¢, defined on Z(E) , A a fixed operator, by
p4(B) = ABA for each B € Z( E) . Also the operator p, has the property to be a
Riesz operator on Z(E) if and only if AisaRiesz operator on E. An equivalent property
is vaid for compact operators. Such properties suggest some natural extensions of the notion
of compacmess and of «Riesz element» for elements of a Banach algebra.

Such notions, together with the theory of Fredholm elements of a Banach algebra, have
been studied by different authors (Bonsall [10], Alexander [6], Vala [55], Bames [9], Pearlman
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[41], Smyth [53]). An excellent and unified account of the main results of this research ama
is given by the monography [9].

We conclude this section by considering an important class of operators strictly connected
with the class of Riesz operators.

Definition. A bounded operator A on a Banach space E is said to be meromorphic if each
spectral point ) # 0 is a pole of the resolvent B, = (A 1 — 4)~!.

Since apoint )\ is apole of R, if and only if \] — A possessess finite chains, Aisa
meromorphic operator if and only if p( A\ — A) =q( A —A) <oofor each A # 0. The
spectrum of a meromorphic operator is finite ora sequence of spectral points which converge
to 0. Moreover each A #0, X € a(A) , is an eigenvalue of A, ([26]).

All Riesz operators are meromorphic. In a Hilbert space the spectral structure of a normal
meromorphic operator presents Some interesting properties. In fact (see [26], Prop. 70.2)
each eigenvalue ) # 0 of Aisasimple pole of R, and moreover

Theorem 2.10. Let A € £ ( H) be normal and meromorhic, and let A#0, {\;,},, ...} the
set of all eigenvalues different from zero, ordered according to decreasing absolute values. If

[e ]
P, is the spectral orthogonal projection of H onto ker( A\ I —A), we have A = ZAnPn

n=1

(where the convergence is uniform).

We observe that by the previous theorem each Riesz normal operator A is necessarily
compact. In fact in such case we know that all P, are finite rank operators.

3. RIESZ OPERATORS AND INVARIANT SUBSPACES

Also in this paragraph E shall denote a complex Banach space. In this section we shall study
the relationships existing between Riesz operators and the closed invariant subspaces. The
following theorem (due to West, [62]) is in a certain sense the starting point of the develop of
the material of this paragraph. Let M be a subspace of E. In the following we shal denote

by Al,,, A € Z(E), the restriction of A on M.

Theorem 3.1. Let A € 92 (E) and considera closed subspace M invariant under A . Then
the restriction A [ y Of Aon M is also a Riesz operator on M and o( A|M) ca(A).

The last theorem leads to an important property of Riesz operators. In fact if A ¢ % ( E)
wehavesince XI-A € Q(E) foreach \#0, XI-A" ¢ ®(E') ie. A ¢ B(E).
Conversdly if A’e % (E’) , A”isaRiesz operator on E” and since A isthe restriction of
A” on the closed invariant subspace E of E”, 0isadso A, by the previous theorem.

Let us now consider the class
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Q,(E) ={A € S(E) : the restriction of A on each closed in-
finite dimensional invariant subspace M for A, is not bijective) .

The class Q,( E) generally contains the class % (E) . In fact |et us suppose that A ¢
% (E) and A ¢ S&,(E) . Then there exists a closed infinite-dimensiona invariant subspace
M for A such that A|,, admits inverse (4|,,)~". Since A|,, € %8 (M) and the two oper-
ators A|,,,(A|,)~' commute, the product (4],,) . (4|,)~" € # (M) and that impiies
of course dim ( M) < oo, contradicting the assumption dim ( M) = oo.

Later we shall see that Q, (E) and 2 (E) possesses the property of having the same,
uniquely determined maximal ideal. For this reason one may suspect that % (E) and Q,( E)
coincide. .

The following example shows that generally we have Q,(E) D % (E) . Let Gbea
compact abelian group and denoting G” the dua group of G. G7is, as it is well-known,
discrete. Let us denote by M(G) the Banach agebra of di regular complex Borei measures
on G with respect to the convolution and denoting L, (G) the usual L, -space with respect
to the Haar measure of G. L,(G) may be embedded, via the Radon-Nikodym theorem, in
M(G) as a closed idedl. If p € M(G) a convolution operator T, : L,(G) - L,(G) is
defined by T, f = p + f for each f € L, (G) , where the symbol (+) denotes the convolution
on M(G).

The following results relate the spectral properties of the operator T, , with the measure-
theoretical properties of p € M(G) .

1) T, is compact on L, (G) < p € L,(G) , i.e. u is absolutely continuous with respect
to the Haar measure on G (Akemann [7], Kitchen [37]).

2) If p* e L,(G) for someinteger k then T, is a Riesz operator. Conversely if pkis
singular with respect to the Haar measure for each k , then T, is not a Riesz operator (see
proof of Theorem 2 of [4]).

Now, iet us consider a measure g € M(G) which verifies the following two properties

a) ukis singular with respect to he Haar measure, for each positive integer .

b) 1}:20 p™(n) = 0, where u” denotes the Fourier-Stieltjes transform of u defined by

p’(n) = / e d p( x) for eachn € G’.
e

We observe that such a measure does exist (see [3]).

The property (a) implies of course that T, ¢ £ (L,(G)) and (b) implies T, €
€ Qy( L, (G)) (see [3]).

The following theorem characterizes %8 (E) in the class of all Q,(E) -operators (see [3],
Theorem 1).
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Theorem 32. Lee A € Z(E) . Then A € £ (E) ifand only ifthe following two conditions
hold

1) A €Qy(E)

2) o( A) is finite ora sequence which converges to zero.

It is possible to improve the last theorem. Let us consider the class

Q, (E) ={A € SE) : the restriction A |,, of A on any closed
infinite-dimensional invariant subspace M for A does not admit
aboundedinverse (A]M)-l - AM) — M}.

Clearly Q, (E) C ©, (E) and generally we have & (E) €, (E) . In fact a well-known
result of Read ([45]) proves that there exists a bounded operator A on £, which does not admit
anon trivial closed invariant subspace. Moreover sp( A) = {} € € :|\| > 1}, therefore
A ¢ % (£,) whereas we have trividly A € Q, (£;) .

Theorem 3.3: (Internal characterization of a Riesz operator). Let A € Z(E) . Then A ¢
2 (E) ifand only if the following conditions hold:

@ AeQ (E).

(b) cr(A) is finite ora sequence which converges to zero.

Proof. See Aiena [3].
Now, let us denote by M any closed invariant subspace for A € S(E) and let[ AJ,, :
E/M — E/M denote the map defined, for each residual class [ z1,, , by

[Al,[z],, = [Az],, where z € [z],,.

It is easy to see that, since M isinvariant for A , the map [A], is well-defined. Moreover
if m,, : E — E/M denotes the quotient map, and N denotes a algebraic complement of
(M — A)(E), 2#0, we have

BT, - [Al,) < dim(my, (N)) < dim(N) = B(A] — A).
The 1last inequality, together with the characterization (3) of % (E) , leads directly to the

following theorem

Theorem 34.If A€ % (E) and M is a closed invariant subspace for A , then [A],, is a
Riesz operator on E/M .

Let us consider the following class
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Q, (B) ={A € Z(E): [Al, is not surjective for each closed
infinite-codimensiona invariant subspace M for A} .

Since the two maps m,,A : E — E/M and [ Al,, have the same range we also have

Q,(E)={A € Z(E) : m,A isnot surjective for each closed
infinite-codimensional invariant subspace M for A} .

The class R,(E) contains .2 ( E) (see [5]). The same example of Read of an operator
on ¢, , mentioned before, shows that generally Q, (E) ?92 (E) . The classes C+(E) and
Q, (E) present some relationships analogues to those, found by Pelczynski ([42]), between
the ideal of all strictly singular operatos and the ideal of all strictly cosingular operator (see
§4). In fact we have

Theorem 3.5. (Volkmann, Wacker [57]): Let E be any Banach space. Then
(a) A*€Q(E") = A€ Q(E).
®) A* € Q(E*) = A € Q,(E).

The following characterization of the class %8 ( E) among the Q, ( E) operators is, in a
certain sense, duel to that given in Theorem 3.3 (sec Aiena [5]).

Theorem 3.6. (external characrerization). Let A € £(E) . Then A € % (E) ifand only
if the following two conditions are verified

(@) A€ Q(E)

(b) a(A) is finite ora sequence which converges to zero.

It is well-known that if E is a Banach space having dimension > 2 and A € X(E) ,
then there exists a closed subspace of E invariant under A . This result, known in literature as
the Theorem of Aronszajn and Smith, is also an immediate consequence of the famous result
of Lomonosov ([31]) which establishes the existence of a proper hyperinvariant subspace (i.e.
invariant for each operator which commutes with A) for any compact operator. If A is a non
quasi nilpotent Riesz operator, each spectral point A# 0 is an eigenvalue and hence there
exists a z# 0 such that Tx = Xx. Then it follows, if dim( E) > 2, that the unidimensional
subspace M spanned by X is a proper closed invariant subspace for A . Unfortunately if A
is a quasi-nilpotent Riesz operator, we don't know if a closed proper subspace invariant for
A does exist. Now, let K € X(E) and Q a quasi-nilpotent operator.

If 7: Z(E)— Z(E) /% (E)denotes the canonical quotient map we have

o(n(K +Q)) = a(m(Q) co(Q) = {0}

i.e. K + Qis a Riesz operator. In [61] West has shown that such decomposition property
characterizes all Riesz operators on a .complex Hilbert space. In fact we have
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Theorem 3.7. Let H be a complex Hilbert space. Then A € % (H) if and only if there
exists a K € X(H) and a quasi-nilpotent gperator Q such that A=K + Q.

It is an open problem whether the decomposition of the last theorem is aways possible
for a Riesz operator defined on a Banach space. The method used by West for decompos-
ing a Riesz operator on a Hilbert space is analogous to the process of super-diagonalizing a
matrix and then splitting it into the sum of diagonal and nilpotent matrices. In fact a Riesz
operator on a Hilbert space is super-diagonalizable along the direct sum of the ranges of the
spectral projections associated with the non zero spectra points and the remainder of such
a process is the quasi-nilpotent operator Q . Such method presents some analogies witht the
super-diagonalization process of a compact operator due to Ringrose ([46]), which depends
essentially on the above mentioned theorem of Aronszain and Smith. We also have observed
that an equivalent result is not known for Riesz operators and without itone cannot expect a
complete theory of super-diagonalization for such a class of operatos. Recently Davison and
Herrero ([1S]) have shown that a West-type decomposition is valid for Riesz operators acting
on alarge class of Banach spaces including ¢, and £, 1 < p < 00.

Definition. A Banach space E will be said to have a finite dimensional p-block decomposi-
tion (1 < p < oo) provided there are finite dimensional subspaces E, such that

00
1) For each x € E , there is a unique scquence {z_} C E, such thatx = Y z_ (norm
n=1

con vergence)
o] 1/p
2 =l =(Dlmnll”) (1< p <o), o0rlall = supl|z,|i(p = 00).
n=1 n

Examples of such spaces are the spaces ¢, and £°( 1 < p < o0) , taking E_ = € forall
n=1,2,.... Wehave ([18])

Theorem 3.8. Let E be a Banach space having the finite-dimensional p-block decomposition
property. Then every Riesz operator A decomposes as a sum K + Q, where K € X(E)
and Q is quasi-nilpotent.

We conclude this paragraph by giving other two characterizations of Riesz operators due

to Dieudonné ([19]) and West ([62]), respectively. The first one involves invariant subspaces
(see aso [21], Theor. 3.20).

Theorem 3.9. Let E be a Banach space. Then E € .% (E) if and only if the following

condition is verified:
For each A € a(A), A;é 0 there exist two closed invariant subspaces M, , N, such that

E = M, @ N,,dim(N,) < oo, the restrictions (\I — A)|Ny, (] — A)|M, are nilpotent
and bijective, respectively.
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The second characterization is obtained decomposing for each X e p(A) the resolvent
Ry = (0 —A)L.

Theorem 3.10. Let A€ S(E) . Aisa Riesz operator ifand only iffor each \ € p(A) ,
A#0,we have (M — 1)~1 = C(X) + B(\~1) where C(X) is compact, B(z) is an entire
function and C(N)B(A~1)= B(A"HC().

4. ¢ -IDEALS

We have observed that if dim (E) = oo then the class of all Riesz operators is not an ideal
of Z(E) . The class % (E) certainly contains the ideal (P(E) of all finiterank operators
and the closed ideal X(E) of all compact operators. If H is a separable Hilbert space a
well-known result of Calkin ([14]) establishes that X (H) is the unique closed two-sided
ideal of £’ (H) . This result has been, successively, extended to the spaces £°( 1 < p < o0)
and ¢, by Gohberg-Markus-Feld’ man ([23]). In a Banach space E theided structure of
Z(E) may be very complicated and a complete classification of all the ideals of #'( E) can
be impossible (see [15], §5.3). In general %2 (E) contains several closed ideals. A classical
example of an ideal contained in % (E) , which arise from applied work with operators,
isthe idea W of the weakly compact operatorson E = L, [0, 1].In fact if Ae W,
we have A> € F(L,[0,1]) ([65, p. 322,323) and the Ruston characterization of Riesz
operators implies that W C % (L, [ 0, 1]) . In [23] there is given, in the cases E = Lp[ 0,1]
1<p<2,E=L,[0,1],E=CI0, 1], an other example of ided of £'( E) contained in
% (E) and containing X(E) , the so-called ideal of all strictly singular operators (or Kato
operators).

Definition. A two-sided ideal J of%(E) , E a Banach space, is said to be a @ — ideal if
(@ J D F(E)
®) I-A€®(E) foreach A€ J.

Clearly if A belongstoa® -ideal J, | = AA € <D(E) for each X, hence A isaRiesz
operator. It is possible to show that in the Atkinson characterization of Fredholm operators
and in the Ruston characterization of % (E) , % ( E) may be replaced by each closed ¢ -
ideal (see [26], §51, §52). Moreover it is possible to prove that the closure of a @ -ideal
remains a ® -ideal of Z( E) ([26], §51).

Next, we want to introduce the ideal |(E) of inessential operators on E, introduced in
[38] by Kleinecke, which plays for many aspects a fundamental role in the theory of Riesz
operators. To define I(E) , first let us denote by 4 any Banach algebra with identity e # 0 .
The (Jacobson) radical of 4 is the intersection of all primitive ideds of £ (or, dso, the
intersection of all the I€ft (or right) maximal ideals of .4 and, since .4 possesses an identity,
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it is possible to prove that ([9])

(1) Rad (A)= {z€.4 :e=az(0re=sa) isinvertible for eacha € 4}

Dencting by 7 : Z( E) — %' (E)/..%(E) = % the canonical quotient homomorphism,
findly we define

(2) I(E) = n~'(Rad(%)).

It is easy to verify that I(E) is the uniquely determined ideal of Riesz operators. Each
@ -ideal is contained in |(E) . Moreover by Atkinson chamcterization of @ (E) and (1) it
follows that

(3) IE)={A€ Z(E): I-UAc®(E), YUEZ(E)}
and simmetricaly
(4) I(E)={a€ Z(E):I-AU €c ®(E), YU € Z(E)}.

Now, let us retum to the abstract situation. Let .%” be a subset of the Banach algebra .2 . We
define the perturbation class associated with & as the set

P(#F)={A€ A :a+s5€, foreach se ¥}.

It is easy to show that if . C &7, a# 0, then P(¥") isasubspace of £ . Moreover if
S isopenin 4 then P( %) isclosed ([29], Lemma 2.1). Let us denote by ¥ the group of
all invertible lements of .4 and let us suppose that .% verifies the condition % ¢ .¥.
Ifwetake a € &, b € P(%),s € %, we have

ab+ s=a(b+ a_ls) €Y

hence P(.%) is aléeft ideal of ~# . Analogously the condition % C & implies that
P(Y) is aright ideal.
Since Q,(E) verifies, whenever £ = £ (E) , the conditions considered above on %,
the perturbation class P( @ (E)) is a closed ideal of Z(E) , which we shal call Riesz ideal.
Now let us denote by B(A) the closed defect of A , i.e. the codimension of A(E) . The
following results are due to Schechter ([50]) (part (8)), and Lebow and Schechter ([29]) (part
(b)), respectively. The proofs may also be found in [ 163, p. 70-7 1.
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Theorem 4.1. (a) A € ®,(E) ¢ a( A = K) < oo for each K € X(E)
B A € DP_(E) e B(A - K) < oo foreach K € X(E).

In the following theorems we reassume some characterizations of P( & (E)) the proof
of which depends on the last theorem.

Theorem 42. Let A € Z(E) . The following properties are equivalent
() A € P(P(E))
®) a(A—S) < oo foreach S € P(E)
(c) B(A = 9) < oo foreach S€ Q>(E)
(d) B(A—8) < oo foreach S € ®(E).

Proof. (3) < (b) is due to Schechter ([50]). For the equivalence (a) <> (c) see Aiena [5]. That
(@ = (d) follows directly from the incluson P(® (E)) c{A € Z( E): B(A-S) < oc}.
That (d) = (c) from the inequality B(A —S) < B(A-S) .

= —~

Theorem 43. Let A € #( E) . The following properties are equivalent
(@ A € P(®(E))
®) a(I —UA) < oo foreachU € Z(E)
(¢) B(I — AU) < oo foreachU € Z(E)
(d) B(I—-AU) < oo foreachU € £(E).

Proof. For the equivalence (8) « (b) (due to Pietsch, [43]) see [2]. The equivalence (8) <
(c) is given in Aiena [5]. Now let A€ P(®(E)) andU € Z(E) . Since P( ®( E))

is an ided, AU € P( @ ( E)) and since I € Q,(E) we have I — AU € ®(E) and thus
B( I— AU) < oco. Then we have (&) = (d). The implication (d) = (c) follows directly from

the inequality B( [ = AU) < B(I = AU) .
Theorem 4.4. P( & (E)) = I(E) (Schechter [50])).

Proof, First we observe that P( ®( E)) isa ¢ -ideal. In fact S(E) ¢ P(®( E)) by
Theorem 4.2, since | € ®(E), we have |-A € <D(E) foreach A € P(®(E)). Hence
P(® (E)) C I(E) . Conversely if A€ I(E) , we have (by characterization (4) of I(E))
I—AU € ®(E) foreach U € Z(E) and hence B(I — AU) < oo foreach U € Z(E).
By characterization (d) of Theorem 4.3. we have then I(E) ¢ P(® (E)) .

Let us now consider the following two classes of Atkinson operators

®_={A € Z(E): o(A) <O, A( E)complemented}
@, = {A € Z(E) : P(A) < oo, ker(A) complemented}
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Denoting by @, the class
Q,={A€c Z(E): Ac D, UDgind(A) €Z}

where Z is the set of integers, we have ([SQ]).
Theorem 4.5. I(E) = P(®,) = P(Cbﬂ) = P((Daﬂ).

We have seen in the previous paragraph how it is possible to characterize the class of Riesz
operators among the €, (E) -operators. It is natural to ask what relationships exist between
I(E) and the classes Q, (E) , Q, (E) . The next theorem shows such relationships, in other
words we have an intemal and an extemal characterization of I(E) .

Theorem 4.6. (Aiena [2],[5]): Let E be a complex Banach space. Then
(a) I(E) is the uniquely determined maximal ideal of the class Q, (E) , Each ideal of

Q, (E) -operators is a P -ideal.
(b) 1(E) is the uniquely detennined maximal ideal of the class £, (E) . Each ideal of
€, (E) -operators is a @ -ideal.

We have dready remarked that in a separable Hilbert space H, % ( H) admitsonly a
closed ideal which necessarily coincides with %' ( /) . Generaly that is not true in a not
separable Hilbert space. In each case we are interested in the simpler problem of determining
the @ -ideals. We shall see now that in a Hilbert space there exists only a closed @ -ideal.

First we reassume some definitions and some familiar results valid on Hilbert spaces (see
the monograph [47]). An operator U € £ ( H) is said to be a partial isometry if there exists
aclosed subspace M of H such that

lUz|| = ||zl for each = € M and Uz = O for each x € M*

where M is the orthogonal in the Hilbert space sense.

If A*isthe Hilbert adjoint of A€ S(E) , the operator AA* is selfadjoint and positive,
therefore it has sense to define the operator |A| = (AA4*)!/? . We recall that, by the polar
decomposition theorem, there exists, for each Age #’( H), apartial isometry U such that
A=Ul|A|land |[A]=U*A.

Theorem 4.7. An Hilbert space H admits only one closed @ -ideal. This ideal coincides
necessarily with X(H) .

Proof. We need only to prove that X(H) D I(H) . Let A €I(H) . By the polar-
decomposition theorem there exists a partial isometry U/ such that |A| = U*A, thus, I(H)
being an ideal, we have |A| € I(H) . The operator |A| is self-adjoint and hence |A| €
X(H) (as dredy has been remarked, each self-adjoint Riesz operator is a compact opera-
tor). Then it follows that also A=U . |A| € X(H) .



Riesz operators and perturbation ideals 19

As we have seen, the situation of @ -ideals in a Banach spaces E generally may be rather
complicated. Let now consider the following two perturbetion classes P, (E) = P( ®,( E))
and P_(E) = P(®_(E)).

These perturbation classes have been introduced in [23] by Gohberg, Markus and
Feld’man. Since Q?+(E) and ®_( E) are open subsets of Z’( E) and since for each in-
vertible operator A € Z(E) wehave A-®,(E) C ¢,(E) and A-P_(E) C P_(E),
we have that the two perturbation classes P, (E) and P_( E) are closed ideals of #(E) .
Moreover, since @,(E) D ®(E) and ®_(E) D ®(E) we have that P(®) = I(E)
contains P, (E)and P_(E) .

Theorem 4.8. P,(E) and P_( E) are ® -ideals. Moreover we have

Z(E) C P.(E) C I(E)
Z(E) C P_(E) c I(E)

Proof, For the inclusions X(E) C P,(E) and X(E) C P_(E) see [16], §4.4.

In [23] it is shown that if F= £, Ll-1,1], where 1 < p < ¢< 2, then the inclusion
P_(E) C I(E) and X(E) C P_(E) are proper. Moreover if E' is the dual of E we have
P.(E)# P_(E") and #(E')# P,(E').

The following theorem provides two characterizations of the ideals P,(E) and P_(E),
respectively. A proof of part (8) may be found in [50]. The characterization of P_( E) seems
to be new.

Theorem 49. Let A € Z(E) . Then
(@ A€ P,(E) & a(A—S) < oo foreach S € ®,(E)
(b)) A€ P_(E) % B(A=8)< oo for each S € ®_(E)
(c) A€ P_(E) & f(A- 8)< oo foreach § € ®_(E).

Proof. (b) If A€ P_(E), by the definition of P_(FE) we have f( A — S) < oo for each

S e® ,hence B( A-S) < 00. Conversely let A ¢ P_(E). Then there exists S €
® (E)such that A =~ S ¢ ®_(E) . By theorem 4.1 there existsa K € X(E) such
that B(A - S — K) = co. Taking C = S = K we have (A - C) = co and since

X(E) c P_(E)weaso have C € ®_(E) . Therefore also <= has been proved.

The equivalence (c) it follows from the inequality B( A—S)< (A - S). ]

Now we want to introduce other two important @ -ideals: the ideal of all strictly singular
operators, introduced in [36] by Kato in his perturbation theory for closed, densly defined,
semiFredholm operators on a Banach space, and the ideal of all strictly cosingular operators
introduced in [42] by Pelczynski.
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Definition. Let E and F be Banach spaces. A € Z( E, F) is said to be strictly singular if
for each closed injinite-dimensional subspace M of E the restriction A ] 5 does not admit a
bounded inverse.

The following deep result due to Kato (see [24], §111.2) shows the relationship which exists
between compactness and strictly singularity.

Theorem 4.10. Let A € Z(E) . Then the following properties are equivalent:

(a) A is strictly singular

(b) For each closedinfinite-dimensional subspace M of E there exists an infinite-dimen-
sional closed subspace N ¢M such that A |, is compact.

(c) For each e > 0and egch infinite-dimensional subspace M of E there exists a closed
subspace N ¢ M, dim( N) = oo, such that the restriction of A on N has norm < ¢ .

(d) For each closed subspace M , dim (M) = oo, the restriction A |,, ¢ @, (M, E) .

Let us denote by S(E) the set of all strictly singular operators. It is useful, in strict
andogy with the measure of non-compactness, to introduce for each A ¢ #(E) a number
which quantifies the property « A ¢ S(E) ». Such a number has been introduced in [51] by
Schechter as follows.

Definition. Let A € & ( E) . We define measure of non-strictly singularity the number
A(A) =sup inf [[A]yll

where the sup is taken over all infinite-dimensional closed subspaces N, M of E. If we let
T,(4)= irgliAlM[! we have, directly from the dejinitions,

(%) T.(4) <AA) <4l
Moreover (see [SO0]) we have

Theorem 4.11. Let A, B € Z( E) . Then
@A€ed(E)sT,(4)>0
b A€ S(E) < A(A) =0
©T,(A+ B)<T,(4)+ T'.(B)
(@ A(A+B) <A(A)+A(B).

In particular (5), together the inequalities (c) and (d), impliesthat I', and A are two
continuous seminorms on % ( E) . Moreover (b) and (d) imply that S(E) is an ideal of
Z(E).

We also observe that S(E) is closed. In fact if { A, } isasequence of strictly singular
operators which convergesto A € Z(E), thenA (A) = A (A =0, ie Ae SE).
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Theorem 4.12. S(E) is a ® -ideal.

Proof. S(E) contains X(E) and it is contained in Q, (E) . Moreover S(E) is an ideal
hence, by Theorem 4.6, S(E) c I(E) .

The following example shows that generally X(E) #S( E) .
Let K : L,[0,11 — L,[0,1] beanintegraloperatordefinedasfollows

) (Kf)(s) = /o K(s,2) ()t

where the kemel &( s, t) is bounded and measurablein[ O, 1] x { 0,1] . Such operator is
weakly compact (see Dunford-Schwarz [22], IV.8.11). In [42] Pelczynski has shown that the
ideal J of all weakly compact operators on E = L, [ 0, 1] coincides with S(E) . To obtain
an example of a non compact operator A € S(E) it suffices to prove that there exists a
kemel k(s, t) such that the integral operator (6) is not compact. An example of kemel which
satisfies this property may be found in [24] (Example I11.3.10).

In [32] Markus and Russu have shown that for each non reflexive Banach space having
a symmetric base (except £, and ¢, ) we have X(E) # S(E) . The same happens for any
Lorentz-sequence space except Z,. In [33] Milman and in [60] Weis have shown that for
E= LP(Q,u),(Q,p) o -finite, and for E = C[0,1] we have S(E) = P(®(E)).

Definition. A Banach space E is said to be subprojective iffor each closed subspace M
of E , dim (M) = oo, there exists a closed infinite dimensional subspace N C M and a
continuous projection of E onto N .

Subprojective spaces were investigated by Whitley ([63]) and examples of subprojective
spaces are £, , 1 <p<oo, ¢y, L,[0,1] where 2 < p < oo and each Hilbert spaces.

The following result is due to Pfaffenberger ([40]). The easy proof given here is obtained
by using Theorem 4.6.

Theorem 4.13. Let E be subprojective. Then S(E) = I(E) .

Proof. We have only to prove the inclusion S(E) D I(E) .

Let us suppose that there exists A € I(E) such that A ¢ S(E) . Then there exists
a closed infinite-dimensional subspace M such that the restriction A | v M = AM)
is a homeomorphism. Since E is subprojective there exists a complemented subspace V
dim (V) = oo, such that V C A(M) . Let us denote by U a topological complement of V
and define T € Z(E) as follows

T {(A[M)-1 onV
0 onU.

If welet S = AT, we have S € I(E), S|, = (AT)|, = I|, contradicting Theorem 4.6. &
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The following result shows that generdly I(E) # S(E) . (Clearly that also happens for
the examples of Banach spaces considered after Theorem 4.9).

Theorem 4.14. (Weis [60]). Suppose that E has two subspaces M, N such that
() both are isomorphic 10 c, or the same £, for some 1 < p < oo

(b)) M is complementedin E
(©) N contains no infinite-dimensional subspace complemented inE . Then I(E) #

#S(E).

In the following we list some examples of Banach spaces which verify the conditions (a),
(b), (c) of the last theorem.

(@) Let E = C(K) where K is the disioint union of the one-point compactification N
of N and the Stone-Cech-compactification AN of N , (see [60], $4).

(b) Let E= Lp(O,oo) + LP(O,oo) where 1 < p<g< 2 and

A1l = inf {{|h]|, +llslly: £ = b + g}

([60], §4).

(c) Let E =U,_, be an Orlicz sequence space defined as in [30], Theorem 4.b.12, where
1/d+1/c= 1.

Other examples of Banach spaces E which verify S(E) # I(E) are given in [32] by
Markus and Russu.

In [57] the following quantitative version of Theorem 1.3 has been proved.

Theorem 4.15. Let AB € #Z(E). Then, if A(A) < T+(B), we have A + B € ©,(E)
and ind( A + B) = ind( A) .

Later we will give an analogous of the last theorem for the set &_( E) . We remark that
othér quantitative versions of Theorem 1.3 may be obtained by using some quantities strictly
connected with the measure of non-compactness (see [17]).

An immediate consequence of the previous Theorem and Theorem 4.11 is the following

result
Corollary ([23]). For each Banach space E, S[E) c P+(E) .

It is a long standing open question whether S(E) = P+(E) . This question, as the otber
relative to the class P_( E) and the ideal of strictly cosingular operators, is of interest because
a positive answer would be a topological characterization of the class P+ (E) . Of course,
whenever S(E) = I(E) , the ideal P+ (E) coincides with S(E) (For example, as we have
seen, for E = ZP, E= LP[O, 11, E = C[0,1]). In[60] Weis has proved that P, (E) =S(E)
fora large class of Banach spaces, including most classical Banach spaces and he reduced the
general question to some other long unsolved problems in Banach space theory. To expose
the result of Weis we give first the following
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Definition. A Banach space E is said to be weakly compactly generated (w.c.g.) ifthe linear
span of some weakly compact subset of E is dense in E.

All reflexive and all separable Banach space are w.c.g. Also L, (€2, u),if (2, p)is
afinite, verifies this property (see [20], Chap. 5).

Theorem 4.16. (Weis [60]). Let E be w.c.g. Then S(E) = P+(E) .

Now we want introduce another class of operators, defined in [42] by Pelczynski, by du-
dizing the concept of injectivity which appears in the definition of strict singularity, with the
concept of surjectivity.

Definition. A € Z(E, F), E, F Banach spaces, is said to be strictly cosingular iffor each
injinite-codimensional closed subspace M of E the operator m, A E — F/M is not
surjective.

An important example of strictly cosingular operator isthe injection J : ¢, — £, (see
[42]). Let us denote by C(E) the set of all strictly cosingular operators on E. In [42] it has
been shown that between S(E) and C(E) there are the same relationships already observed
for the classes Q, (E) , Q, (E) . More precisely if A* € C(E) (respectively A* € S(E) )
then A € S(E) (respectively A € C(E) ).

The following theorem is, in a certain Sense, dua to Theorem 4.9.

Theorem 4.17. (Vladimirski, see [44]). Let A € Z(E) . Then the following properties are
equivalent:
@) A € C(E)

(i1) For each infinite-codimensional closed subspace M , there exists a closed infinite-
codimensional subspace N D M such that 7y A E — F/N is a compact map.

(iii) For each £ > 0 and each closed infinite-codimensional subspace M there exists a
closed subspace N D M, codim ( N) = oo, such that ||, A||<e .

(iv) For each closed infinite-codimensional subspace M C E, ¢ yAEP_(E E/M).

The set C(E) contains the ideal X(E) (In fact if A€ X(E) , for each closed subspace
M, codim( M) = oo, we have 7, A € Z(E,E,)).

In analogy with the strictly singular operators it is possible, for any A € Z(F) , to define
a number which quantifies the property «A ¢ C(E) ».

Definition. Let A € Z(E) . We define measure of not strictly cosingularity the number

A'(A) = sup inf A
(A) szphl,nglﬂN |
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where M, N are closed subspaces having infinite codimension.

If we take I'_(A) = izf ||myAll, M aclosed space having infinite-codimension, we have

from the definition
I_(4) <A'(A) < 14])

The following theorem is dua to Theorem 4.11.

Theorem 4.18. ([58]). Let A, Be Z(E). Then we have
@A€EP(E)Y&T (A)>0
®) AeC(E) +A'(A) =0
©T_(A+B)<I_(A+T_(B)
@ A(A + B) < A'(A) + A'(B).

By the previous theorem and directly from the definitions it follows that the quantities I'_
and A’ are both seminorms on &’ ( E) . Moreover C(E) is a closed ided. It is of interest to
observe that the Fredholm radius rg4(A) of A

Te (A) = the spectra radius of the image of Ain Z(E) /#(E) ,
verifies the following properties ([58])

r(A) = lim A(A™'" = lim A'(A™)'/".
7,00 n,00

Theorem 4.19. C(E) is a ¢ -ideal.

Proof. We have X(E) ¢ C(E) ¢ Q, (E) . Moreover C(E) is an ideal, hence C(E) C
I(E) (Theorem 4.6).

In [33] Milman has shown that for E = L, [0, 1] we have C(E) = S(E) = W, where
W isthe ided of all weakly compact operators on E. Therefore C(E) # X(E) . If E =
L0, 1],where p =1 or 2 < p < oo, we have C(E) = S(E) = I(E) ([33]) and the
same equalities are true whenever 1 < p< 2 (Weis[59], or E=C[ 0, 1]([33]).

Definition. A Banach space E is said to be superprojective iffor each closed subspace M of
E ., codim ( M) = oo, there exists a closed complemented subspace N O M having infinite
codimension.

Examplex of superprojective spaces are Hilbert spaces, all spaces £,,1 < p < o0, and
the spaces [0, 1], 1 < p < 2 (see [63]). The spaces C[0, 1] and B(S) = space of all
bounded functions on a infinite set S, are neither subprojective nor superprojective.

To prove the next theorem we shall use Theorem 4.6.
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Theorem 4.20. If E is superprojective then C(E) = I(E) .

Proof, We have only to show that I(E) ¢ C(E) . Suppose that there exists A € I(E) such
that A ¢ C(E) . Then there exists ainfinite-codimensional closed subspace M such that
m A E — E/M issurjective. It is easy to verify that A= (M) is an infinite-codimen-
sional subspace of E. Since E is superprojective there exists an infinite-codimensional sub-
space V D A™' (M) such that E = V @ U, V complemented. We have codim( V) =
dim (U) = oo, moreover since m,, A is surjective, for any § ¢ E/M there existsan z ¢ E
suchthat § = (m,A)(z). Ifz = v+ u,v € V,u € U, letdefine S: E/M — E by
S(§)=u.Since VD A~ (M) = ker(m,,A), S iswell defined and taking T = S,,, we
have (AT) |, = I|,. Since B = AT € I(E) this contradicts Theorem 4.6.

The following examples show that generdly C(E) # I(E) .
Examples. (a) Let F = £0L,1<p<g< 2. F is superprojective, hence by the previous
theorem C(F) = I(F) . In [23] it has been proved that there exists an operator A € I(F)
suchthat A ¢ S(F) . The dual A’ of A isnot grictly cosingular (see [42], Prop. 3). Since F
is reflexive, taking E = F’ , it follows that A" € S(E) (see [42], Proposition 3.b). Moreover
since E is subprojective we have S(E) = I(E) and therefore A’ ¢ I(E) .

(b) Let E = L,(0,00) N L,(0,00) provided with the norm

A1l = max (|| £l [1£1l,)-

If we take p, g such that 2 < ¢ < p < oo, we have C(E)# I(E).

This result follows by dudity from the example (b) which follows Theorem 4.14 (see
(601).

(c) Let E=U,, defined asin (c) after Theorem 4.14. The relationship C(E) # I(E)
follows by duality from Theorem 4.13 and from U; , ~ U,q (sce the remark following 3.0.12)
in[30]).

Theorem 4.21. Let A,B € K(E) . If A’(A) < T_(B) then A+B € ®_(E) and
moreover ind( A + B) = ind( A) .

Proof. See [58].

If AeC(E) and B ¢ ®_(E) we have A’(A) =0 and r'(B) > 0, hence, by the
previous theorem, we obtain the following result of Viadimirski ([56]).

Corollary. If E is a Banach space, C(E) c P_(E) .

Also for the @ -jdeals C(E) and P_( E) it is an open question if they coincide. As for
S(E) Weis has proved in [60] the following result.

Theorem 4.22. If Eis w.c.g. then C(E) = P_(E) .
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