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SEQUENCES OF IDEAL NORMS
ALBRECHT PIETSCH

Dedicated to the memory of Professor Gottfried Kothe

Abstract. There is a host of possibilities to associate with every (bounded linear) operator
T, acting between Banach spaces, a scalar sequence

| T ||= A(T) < 4,(T) < ...

such thatallmaps A, . T — A, (T) are ideal norms. The asymptotic behaviour of A_(T)
as n — oo can be used to define various subclasses of operators. The most simple condition
18 that
supn PA_(T) < oo,
n

where p > 0. This yields a 1-parameter scale of Banach operator ideals.
In what follows, this construction will be applied in some concrete cases. In particular,
we let
H (T) :=sup{|| TJy|H ||: M C E, dim(M) < n},

where Ji, denotes the canonical embedding from the subspace M into E. Note that ( H )
is the natural dimensional gradation of the Hilbertian operator norm || -|H || in the sense of
A. Pelczynski ({30], p. 165) and N. Tomczak-Jagermann ([46] and (48], p. 175). Taking the
infimum over all p > 0 with

supnPH_(T) < oo,

we get an index h(T) € [0,1/2] which can be used to measure the «Hilbertness» of the
operator T .

Our main purpose is to show that several sequences of concrete ideal norms have the
same asymptotic behaviour. This solves a problem posed in ({48], p. 210). We also give
some applications to the geometry of Banach spaces.

Concerning the basic definutions and various results from the theory of operator ideals, the
reader is referred to my monographs [31] and [32]. The notation is adopted from the laiter,

The present paper is a revised and extended version of my preprint [36]. This revision
became necessary when I observed that its main result was already contained in Remark 13,4
of G. Pisier’s book [43]; see 5.3 below.
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1. IDEAL NORMS

1.1. Let E and F' be (real or complex) Banach spaces. We denote by L ( E, F') the collection
of all (bounded linear) operators T° from E into F'. Recall that T ( £, F') becomes a Banach

space with the norm
| T |l:=sup {|| Tz ||: = € Ug},

where U is the closed unit ball of E. For o, € E' (dual space) and y, € F, we let

Gy @Yy 1 T — {T,a4)Yg -
1.2. A function A which assigns to every operator 7° between arbitrary Banach spaces a
non-negative number A(T) is called an ideal norm (on % ) if the following conditions are
satisfied:

(N;) A(e®vy)=|le|l]ly]| for a€ E' and y € F.

(N,) A(S+T)<A(S)+ A(T) for STEL(E,F).

(N3) A(YTX) || Y ||AT) || X || for X € E(E,,E),

Note that we always have || T ||< A(T).

1.3. An ideal norm A is said to be symmetric if A(T") = A(T) forall T € LW(E, F),
where 7' € T ( F', E') denotes the dual operator.

1.4. An ideal norm A 1is called injective if A(JT) = A(T) forall T € L (E, F) and all
metric injecuons J € L (F, F,); see ([31], B.2.6 and D.1.14).

1.5. An ideal norm A is called surjective if A(TQ) = A(T) forall T € W (E, F') and all
metric surjections QQ € L (E,, F); see ([31], B.2.8 and D.1.15).

2. THE IDEAL NORMS H_

2.1. Anoperator T' € L (F, F') 1s Hilbertian if 1t factors through a Hilbert space H . This
means that

T : EA:HF:F.

The Hilbertian norm is defined by
| T|& ||:= inf [[Y [[]] Al

where the infimum ranges over all possible factorizations. The collection of Hilbertian oper-
ators 1s a Banach 1deal, denoted by # ; see ([31], 6.6.2).
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22.ForT eL(FE, F)yand n=1,2,..., we define

HAT) =sup {||TILIH ||: M C E, dim(M) < n} .

Remark. Recall that J3; denotes the canonical embedding from the subspace M into E.

2.3. The non-trivial part of the following proposition is an immediate consequence of a famous
result of FE. John [11].

Proposition. H_ isanideal norm. Moreover, for T € L (E, F), we have

T |= H(T) <...< H(T)< ... and H_(T)<a'*||T]| .

2.4. We now state a classical result which goes back to J.I. Joichi [12]. Its proof 1s based
on compactness arguments or ultraproduct techniques; see ([24], Prop. 7.1) and ([41], Prop.
2.3).

Criterion. Anoperator T € L (E, F) is Hilbertian if and only if the sequence (H_(T)) is

bounded. In this case,

| T|# ||= sup H (T).

2.5 Proposition. The ideal norms H,_ are injective.

Proof. This follows from the injectivity of the Hilbertian operator norm || -|H [|; see ([31],
8.4.9).

2.6. I do not know whether the ideal norms H_ are symmetric. Therefore it is of interest to
describe the dual norms.

Proposition. Let T € T (E, F) . Then

H (T =sup{|| QuT|H ||: N C F, codim(N) < n} .
Remark. Recall that Q¥ denotes the quotient map from F' onto F/N .

2.7 Proposition. The following problems are equivalent:
(1) Is H_  symmetric?
(2) Is H_ surjective?
(3) Is it true that H_(T') =|| T|H || whenever rank (T) < n?
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Proof.

(1) - 2 LetT € LW(E,F). If Q € L(E,, E) is a metric surjection, then Q' €
L (E', Ey) is a metric injection. Hence, assuming the symmetry of H, , we conclude from
Proposition 2.5 that

H,(TQ) = H,(Q'T) = H(T') = H(T).

(2) — (3): Letrank(T) < m,andwrite N ;= {x € E: Tz = o}. Then dim(E/N) <
n. Consider the canonical factorization T' = T,Q% , where Qf denotes the quotient map
from F onto E/N and T, € L ( E/N, F). Assuming the surjectivity of H_ and using the
surjectivity of || -|H ||, we now obtain

Hn(Tﬂer) = H (Ty) =|| T, |# ||=] TOQ}?JE& | -
(3) — (1): Given € > 0, we choose a subspace M of F' such that
H (T") —e<||T'JE|M || and dim(M) <n

Note that M is the polar N° of a subspace N of F with dim(F/N) < n. Moreover,
JEe = (Q%)’. By assumption, we have || QRT|HM ||= H, (Q%T). Now the symmetry of
|| |3 || implies that

H (T — e <|| T'T30 |2 ||=]| QVTI® ||= H,(QRT) < H,(T).

Letting € — 0 yields H (T") < H,(T). Next, replacing T by T", we obtain H_(T") <
H, (T'). Since H (T) < H_(T") is obvious, it follows that

H(T) < H,(T"YH,(T") < H,(T).

3. THE IDEAL NORMS K _
J1.ForTeLW(E,F)and n=1,2,..., we define

K. (T) := inf ¢,

where the infimum is taken over all constants o > 0 such that

1/2

n n n 1/2
E | E%:Ti?i Is <c (E || x; ||2>
i=1

j=1 i=1

for z,,...,z € E and any unitary (n, n)-matrix S = (ﬂf;‘)'
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3.2. First, we state some elementary facts.

Proposition. K _ is an ideal norm. Moreover, for T € T ( E, F) , we have

IT|l=K(T)<...< K(T)<... and K, (T)<n?|T]|.

Proof. Let z,,...,z, € E',and let § = (o;;) be unitary. Then

T T n lfl n 1!2
| Eﬂ-{jT'Ti < E |U¢';'| | Tz, |I<|| T || (Z fﬂiﬂz) (E | z, ”2)
i=1 i=1 i=1 i=1

Hence

2 2. 2
YN oy Tz P<al| TIPY |zl
j=1 j=1] =1

This proves that K _(T) < n!/? || T'||. The other assertions are even more obvious.

3.3. Next a famous result of S. Kwapien ([19]. Prop. 3.1) is reformulated in terms of the ideal
norms K _. See also ([24], Theorem 7.3), ([41], Cor. 2.5) and ([48], Theorem 13.11).

Criterion. Anoperator T' € L (E, F) is Hilbertian if and only if the sequence ( K_(T)) is
bounded. In this case,

| T|2 ||=sup K,(T).

3.4 Proposition. The ideal norms K_ are symmetric, injective and surjective.

Proof. Fix by,...,b, € F',andlet § = (o;;) be any unitary (n, n)matrix. Given g > 0,
we choose z,,...,x, € F such that

<Ii: E} G':'jT;bj> =] E Uf}‘TJ.’b_;‘ ||2
= j=1

and

|| L ”g (1 + E) ” Eg:'jT}bj ” .

=1
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Then it follows that

E”Z%m I& E< E%Tb> “ <EU,}T$I,bJ>

i=1 j=

1 n
<D oyTa |1 b lI<

j=1 =l

12, 1/2

S ez ) (NP <
J=]‘ =1 J=1
1/2

n 1/2 n
< K, (T) (Z | z, |F) Yo P <
i=1

j=1

A

12 4 1/2

<a+oKm [T E%Tb 5 D lIb; 17
j=1

1=1 j=1

Hence
1/2 1/2
1

DD S ouT'h P <+ K, (T) [ D 115,17
=1 j=1 j=1

This means that K (T") < (1+¢) K, (T). Letting e — 0 yields K (T") < K, (T) . Next,
replacing T by T”, we obtain K _(T") < K_(T"). Since K_(T) < K_(T") is obvious, it
follows that

K. (T) < K, (T") < K,(T") < K, (T).

Therefore, K is indeed symmetric.
The injectivity of K is trivial, and the surjectivity can easily be seen by passing to dual
operators.

3.5 Problem. Find the stabilization index

o(n) :=min {m : K_(T) =|| T|H || whenever rank (T) < n} .

Remark. In view of the Tomczak-Jdgermann theorem (Remark at the end of 5.4), using a
similar argument as in the proof of 5.3, we see that o(n) < %n( n+ 1) in the real case and

o(m) < n? in the complex case.
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3.6. Let [3( E) denote the Banach space of all E-valued n-tuples (z;) equipped with the
norm

" 1/2
| (z)15 ||:= (E [E? ||1) ;
i=1

In what follows, we use the complex interpolation method
Dg : (E;, By) — [EnsEl]a

which yields an exact functor of type © for 0 < ® < 1; see ([49], p. 59). Note that the
Banach spaces

115 (Bo) .3 (By)]g and &3 ([Ey, B\ ]g)
can be identified isometrically; ([49], p. 121).

Proposition. Let (E,, E,) and (F,, F,) be interpolation couple, and assume that T €
L(Ey + E,, Fy + F,) transforms E, into Fy, and E, into Fy. Then

e

K,(T:[Ey,Eilg — [Fo,Filg) <K, (T:Ey - F) " K,(T:E —F)°.

Proof. For every unitary (n, n)-matrix S = (o;;) , we define the operator

ST : (x;) — (E Ui}-TEi—) :

i=1
The desired result now follows from

| ST : G ([By, Eilg) = 15 ([Fo, File) lI=
=1 ST : |5 (Ey) ., (E1)]e — B (Fo) .3 (F1)]e lI<
NSRT: 55 (By) =5 (F) Pl ST 5 (Ey) — 15 (F)]]°<

<K (T:Ey—F) K/ (T:E —F)°.

4. THE IDEAL NORMS G,

4.1. Anoperator T' € L (E,| F) is called 2-summing if there exists a constant ¢ > 0 such

that
1/2

n 1/2 .
(ZI[T%IIE) < csup (Zlimi,ﬂ)lz) fle|l<1
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for all finite families of elements z,,...,z_ € F and n=1,2,.... The 2-summing norm 1s
defined by
|| T|# 5 ||:= inf ¢,

where the infimum ranges over all admissible constants. The collection of 2-summing oper-
ators is a Banach ideal, denoted by 3 , ; see ([31], 17.1.2) and ([32], 1.2.3).

4.2. Anoperator T' € L (E, F) is dual 2-summing if T' € 38 ,(F', E') . In this case, we let
| 7|38 5 ||:=]| T'|38 , ||. The collection of these operators is also a Banach ideal, denoted by

B
43. ForT e W(E, F) and n=1,2,..., we define the approximation number
o, (T) = mf {||T-L|:LeL(E,F), rank(L) < n} .

The Schatten-von Neumann norms of T' € L (1}) are given by

T

1/p
| T3, []:= (E ak(T)P) , where 1 < p < oo.

k=1

Notethat || | , || and || T'|s% , || coincide with the nuclear norm and the 2-summing norm
of T', respectively. Moreover, we have

T8, IK 2| TS, |-

4.4. For every (m, m)-matrix § = (o;;), we denote by || S || the norm of the operator

5 (‘SJ') — E"Tﬂ"fi
j=1

defined on [T*.

4.5. The next result, which 1s closely related to ([37], Prop. 1), can be proved by routine
arguments. See also ([48], Theorem 27.1).

Lemma. Let T € L (E,F). Then, for every constant ¢ > 0 and every fixed number

n=1,2,..., the following statements are equivalent:

1/2

(G) Z | EU:}TI:‘ ”2 S ¢ (E | z; ||2)
i=1- 1= ] 1=1
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for z,...,z, € E and any (mm)-matrix § = (oy;) suchthat || S |[|[< 1 and rank(S) <

n, where m=nn+ 1,...

1/2

(G3) |Ezﬂij<T$i: bj)l <c¢ (Z | z, Hz) Z | b, ||2
' i=1 j=1

for zy,...,z, € E, by,..., b, € F' and any (mm)-matrix S = (oy;) suchthat || S ||< 1

and rank(S) < n,where m=mn, n+ 1, ...

(G3) 1Y ) o (z", T'h)| < c (E | z", 1F> PRk
i=1 j=1 i=1 i=1
forz",,....,x" € E", b,...,b, € F" andany (m,m)-matrix S = (o,;) suchthat || §||<

1 and rank(S) < n,where m=mn, n+1,...

(Ga) | BTX|3  [I<cll BR[| X[F2 |

for X € L (1, E) and B € T (F,13).

(Gs) | TXPE, 1< || XIBY || for X €W (G, E).

Proof.

(G,) — (G5) : Use the Cauchy-Schwarz inequality.

(G,) — (G3) : Apply Helly’s lemma ([31], 28.1.1).

(G3) — (G4) : This implication can be shown by obvious modifications of the tech-
niques used in the proofs of 5.3 to 5.5.

(G4) — (Gs) : Note that, by trace duality, we have

| TX|3, ||=sup {| race (BT X)|: Be€ L(F,13),|| B|E, ||<1}.

(Gs) — (G) : See the proof of Proposition 1 in [37].

46. ForT e W(E,F) and n=1,2,..., we define
G _(T) := inf ¢,

where the mmfimum ranges over all constants ¢ > 0 for which the equivalent conditions
(Gy),--.,(Gs) are satisfied.
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4.7. Next we state an analogue of Propositions 2.3 and 3.2.

Proposition. G, is an ideal norm. Moreover, for T € L (E, F') , we have

IT|=GU(T) <...< G (T)< ... and G (T)<n'*||T]|.

Proof. The monotonicity is obvious. If X € T (I}, E) and B € L (F,[3), then

| BTX|8, || < n'/? || BTX|S, ||=n'/? || BTX|B, ||<

<n/2 || BB, I TX NI a2 | T BIE N1 XIBEL -

Hence G _(T) < n'/? || T |.

4.8. We now formulate an analogue of Criterions 2.4 and 3.3 which is due to S. Kwapien ([17]
and [18], Cor. 1). See also ([31], 19.6.2), ([41], Cor. 2.10) and ([48], Theorem 13.11).

Criterion. Anoperator T' € W ( E, F') is Hilbertian if and only if the sequence (G (1)) is
bounded. In this case,

| T2 ||= sup G.(T).

4.9 Proposition. The ideal norms G, are symmetric, injective and surjective.

Proof. The symmetry follows from the equivalence (G,) «— (G5) established in 4.5.
The injectivity is obvious by (&), and the surjectivity can be deduced by passing to dual
operators.

4.10. The next result states that, for finite operators, the sequence (G, (717)) stabilizes on the
earliest possible moment.

Proposition. G _(T) =|| T'|H || whenever rank (T") < n.

Proof. Let X € W(l E) and B € L (F,IT) with m = 1,2 ... In view of rank(T")
n, there exist partial 1sometries A € L (L, 7) and ¥ € L (3, 1}) such that BT X
Y*YBT X A*A. Now it follows from

A

| BTX|$ , |I<|| YBTXA'$, |I< G,(T) || YBIF, || || XA*F |I<
<GUD) || BIE, [ X3 |l

that
G, (T) <G (T) for m=1,2,...
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Hence
| TIH ||=sup G, (T) =G (T).

4.11. We now established an analogue of Proposition 3.6 which goes back to G. Pisier ([38],
proof of Lemma 3.2). See also [39] and ([48], p. 223).

Proposition. Let (Ey, E,) and (F,, F,) be interpolation couples, and assume that T €
L(E,+ E,, Fy, + F) transforms E, into F, and E, into F,. Then

G, (T:[Ey, Ele — [Fy,Flg) <G, (T:Ey, > F) "G (T:E, —F)".

4.12. The following result can be proved by trace duality or by applying Maurey’s extension
theorem [27]. For details we refer the reader to ([3], Lemma 10.1), ([33], Theorem 5.5), ([37],
Prop. 1) and ([48], Theorems 13.12 and 27.1).

Theorem. Let T' e W(E,F). Then
G.(T) = 1inf c,

where the infimum ranges over all constants ¢ > 0 having the following property:
Forevery subspace M of F' withdim( M) < n there exists an operator T, € W (E, F)

such that

| Tyl# |I<c, Ty(E) CM and Ty x =Tz wheneverTz € M.

413. For Te LW(E,F) andn=1,2,..., we define

(T = sup {uﬂmm XEEW.E), | XI5l < 1'}.

BeW(F13), || Bl#E,||<L 1]

These quantities were comprensively studied in [33].

4.14 Proposition. Let T e W(E,F) and n=1,2,... Then

nz,(T) < G,(T) < ) 2(T).
k=1

Proof. By ([33], Lemma 2.3), we have

2,(T) := sup {ak(BTX) X €T, B), |[X]|[H; [[1< ll}

BeT(F L), ||BlE, I <1
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whenever k < n. The assertion now follows from

n

na,(BTX) <|| BTX|8, ||= ) a,(BTX)
k=1

by passing to the suprema over X € % (I3, E) and B € %W (F,13) with || X|§ ||< 1 and
| BI#, |[< 1.

5. RELATIONSHIPS BETWEEN THE IDEAL NORMS G, , H,,AND K,
5.1 Proposition. K _(T) < H(T) for T € G(E,F) andn=1,2,...

Proof. The conclusion follows from
K (T)=sup {K, (TJ3): M CE, dim(M) < n}
and

K, (TJE) <|ITIEIM |I< H,(T).

Remark. The identity niap of the real Banach space [} 1s an example of an operator 7' for
which K_(T) < H_(T) whenever n is an odd number; see 9.3. In the complex case, I do
not know any operator 7" with K_(T) < H_(T) for some n.

5.2 Proposition. H, (T) < G (T) for T€ B (E,F) andn=1,2,...

Proof. Let M be a subspace of E with dim( M) < n. Then, by 4.10, we have

| TIgH ||= G, (TJy) < G.(T).

This implies that H_(T") < G (T).

Remark. Neither in the real case nor in the complex case, I know an operator 7' with
H (T) < G (T) for some n.

3.3. We now establish a fundamental inequality which goes back to G. Pisier ([43], Remark
13.4). He only considered the special case of identity maps. The generalization to arbitrary
operators 18, however, straightforward. Nevertheless, for the convenience of the reader, we
present here a detailed proof.
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Proposition. G _(T) <2K (T) forTe W (E,F) andn=1,2,..

Proof. Let X € T (3,E) and B € TW(F,3). Given ¢ > 0, in view of the famous

Tomczak-Jagermann Theorem 3.4, there exist convex decompositions

p q
X":E}\h“qh and B-_— E##Bki
h=1 k=1

where

/ Alh Aih Bll.i: BI.&

Ah:E !!2 EE .’:ll‘ld Bk F—}E—u—}izj

n 1;’2
(Elﬂ‘iheilﬁ) <V2(1+e) | XIS, || Ay IIL 1,
1=1

1/2

STIBle; 1P| <V2Z(1+e) || B, I, || By lI< 1.
=1

Applying Lemma 5.5 to the dual operator 7", we obtain

| BTX|®, ||=l| X'T'B'|#, ||<

P
< E Mbig || Aopd1n T By By |38 |I<

h=1 k=1
P g
< DD ki |l AT B3 1 |I<
h=1 k=1
2 /o 172
‘CZK(T)EEMM (Z | Ayne; |l ) E” e II”
h=1 k=1 j=1

<21+ e) K (T') || BIE, ||| X[¥ 2 I
By the symmetry of K_ and property (G, ) 4.5, we have
G.(T) <2(1+¢e)*K _(T).

Letting € — O yields the desired result.
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5.4. Note that

. 1/2
I| Al |I< (E | A'Efllz) for A€ L(E, L),
i=1

where (e,,...,e,) denotes the canonical basis of [} . Hence,if " € L ( E, F') 1s of the form
T:ES510 5 F,

then we have

1=1

. 1/2
1T <Y | (E | A'e, Ilz)

We now formulate a converse of this result; see ([31], 19.1.8 and 19.2.9) and ([32], 1.7.14).

Factorization Theorem. Let € > 0. Every finite operator T' € L (E, F') admits a factor-
ization

such that

. 1/2
1Y |l (Z IIA’E,—IIZ) <A+e) [[TIE, Il -

§=1

In general, the dimension of the Hilbert space [7 must be chosen considerably larger than

rank (7") . However, on the cost of a more complicated representation, one may arrange that

n = rank (T') . For a proof of this result, we refer the reader to ([30], Cor. 18.1), ([46], Prop.
2) and ([48], Prop. 24.3).

Tomczak-Jagermann Theorem. Let € > 0. Every finite operator T' € W (E, F') can be
represented as a convex combination

P
T =) \T,
h=1

of operators

such that n=rank (T") and

. 1/2
| Yy || (E | Ape; ||2) <V2(1+8) ||TIE, || for h=1,...,p.
h=1

Remark. The factor v/2 can be dropped when we replace I3 by IV with N = 1 n(n+ 1)
in the real case and N = =* in the complexe case.
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3.5. In the proof of 5.3 we have used an auxiliary result.
Lemma. Let T e L (E, F)andn=1,2,... Then

1/2

n 1’(2 L
| BT X3 |I< K,(T) (E | Xe; IIZ) 2 I Be; |
I:=l .?:1

for X e W(l3,E) and B € W(F,13}).

Proof. By the polar decomposition theorem, there exists a unitary operator § € L ({7) for
which SBT'X > O. Let (0,;) denote the representing matrix of S, and observe that BT'X

is represented by the matrix ((T'z;,b;)) , where z; = X e, and b, = B'e;. We now obtain
| BTX|$, || =|| SBTX|$ , ||= trace(SBTX) =

= i i 0;;{T'z;,b;) <

i=1 j=1

. 1/2 . 1/2
< K, (T) (2 | z, ||2) dYolblF] =
i=1 j=1

1/2

. 12 / .
= K, (T) (): | Xe, ||2) D NI Bl
i=1 J=1

5.6. Finally, we summarize the results from Propositions 5.1, 5.2 and 5.3.

Theorem. Let T €e W(E,F) and n=1,2,... Then

K,(T) < H,(T) < G,(T) < 2K, (T).

6. GROTHENDIECK NUMBERS

61. ForTeW(E,F) and n=1,2,..., we define the Grothendieck number

Ti,...,Z, €EUg

[ (T) := sup{det( Tz, b. )" St
| ( Dl byy... b, € UG |

117

These quantities were comprehensively studied by S. Geiss ([4], [5] and [6]). Among others
he proved the following statements:

n 1/n
(1) I (T) = (Huk(T)) for T €% (7).
k=1
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(2) (T =L (T) for Te¥L(E,F).

(3) I"n(.S‘T)g\/EHSHﬁZHF“(T) for TeW(E,F) and Se€B,(FG).

Note that I' is not an ideal norm.

Remark. In the original version of the famous Geiss inequality (3) there appeared e instead
of \/e; see also ([33], Lemma 1.8). The best possible constant ¢ > 1 such that I"_(ST) <

cn~ /|| B|#, || T,(T) for n=1,2,... is still unknown.
6.2 Proposition. I (T) < K, (T) forTe€e L(E,F) and n=1,2,...

Proof. Given z,,...,z, € Ug and b,,...,b, € Uz, wedefine X € L ([}, E) and B €
L(F5G) by

n T
X:=Eei®mi and B:=Ebj®ﬂj.
j=1

i=1
Then ({T'z;,b,)) is the representing matrix of BT'X € % (13). Hence, applying the inequal-
ity of means and Lemma 5.5, we obtain

n

1/n
det ((T'z;, b;))|'/* < T,(BTX) = (H %(BTX)) <
k=1

1 [+ 1
< = (H ﬂk(BTX)) == | BTX|3, ||<

T
k=1

1/2

n 1;”2 n
1
< —K(T) (an) (E I b, ||2) < K, (T).
j=1

1=1

This proves that I'_(T) < K _(T).
6.3 Proposition. G_(T) <ed i—l}(T) forTe W(E, F)and n=1,2,...

Proof. Let X € W (l},E) and B € W (F,13) . Assumethat || X, ||< 1 and || B} , ||<
1. Then

n

1/n
o (BTX) < (Hak(BTX)) =T, (BTX) <

k=1
<2181, IT,T0 <4 /Sr,00m) <

€ ) ! €
< [ XT3 | TW(T) < —T,(T).
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Hence

n

N1
| BTX|$, |I= ) ax(BTX) < e} 7Tu(T).

k=1 k=1

The desired result now follows from property (G,) in 4.5.

6.4. The following example shows that, up to the factor e, the preceding inequality is the best
possible.

Example. Let S € W (L,[0,1],C[0, 1]) be the operator of integration defined by

S x(t) —r/ x(t)dt.
0
Then

(S)=1 and G,(S)x<1+logn

Proof. Note that the extremal points of the closed unit ball of C[0, 1]’ have the form g6,
where §, denotes the Dirac measure at the point ¢ and || = 1; see ([1], p.-441). Hence, in
order to compute I'_(.S) , it is enough to take the supremum over

det ((Sz,,6,)) ['/* with || z)L, [[<1 and 0<t <..<t,<1.

Substracting the (7 — 1)-th column from the j-th column and putting ¢, = 0, we obtain

det ((Sz,,8,)) = det (f m‘-(t)dt) .
ti

J' —_

Now 1t follows from Hadamard’s inequality that

- q1/2
n t;
|det(5’m 5, )|<H E|/t z,(t)dt]? <
_j=1 j=1 |
R t, )
< Ef z()|de| < 1
i=1 | j=1 Y4 ]

This proves that I'_(S) < 1. The lower estimate can be obtained by choosing non-negative
functions z, such that

i—1 1 1
support(zx;) = [ ,—] and f z,(t)ydt=1
0

n n



428 Albrecht Pietsch

and letting ¢; = j/n. Then
1 if1 <7,
(52:,04) = {0 if i > J.

In order to estimate G_(.S) , we note that the functions z, and b, defined by

T, (1) = V2 cos (Zk — 1wt> and b.(s) := V2 sin (Zk_ l'n.s)

2 2

constitute orthonormal systems in L, [0, 1]. Moreover,

2
(2k— Dn

SIk-_— bk for k=1;2:‘.'-*

See ([7], p. 120). Let I, and I, denote the canonical erabeddings from L,[0,1] into
L,[0,1] and from C[0,1] into L,[0,1] respectively. Then || I |5 ||= 1. Define
X el(ly,Ly) and Be L(L,,l5) by

X:zzﬂjei@mi and B:=§:bj®e}-.
i=1 j=1

We now obtain that || I X |, ||[< 1, || BI,|#, ||< 1 and

2 v 1
| BI,SI. X |8, ||= ;;%_1 =1+ log n.

Hence G (S) » 1+ log n, by property (G,) mn4.5. On the other hand, we have

N1 N1
GH(S)gt’:E EI}(S)=E E EEI-I' Iﬁg'ﬁr.
k:l k=1

Remark. Operators of integration and summation were already used to produce various
counerexamples; see ([20], p. 59), ([49], p. 571) and ([43], p. 177). The observation that
I",(S) =1 is due to S. Geiss (unpublished).

7. OPERATOR IDEALS

7.1. Assume that with every operator T° there is associated a scalar sequence
| T ||= A(T) < A,(T) < ...

such thatall maps A, : T' — A_(T') are ideal norms. Given p > 0, we denote by A , the
collection of all operators 7" for which

| T|A , ||:= sup n P A, (T)

1S finite.
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7.2. The following result can be proved by standard arguments.

Theorem. A _isa Banach operator ideal.

p

7.3. Inview of 5.6, the Banach operator ideals 3 |, #1 | and R , determined by the sequences
(G,),(H ) and (K ), respectively, coincide. It follows from

K.(T) < H(T) <G(T) <n'/* || T |
that %, =3, =&, =L . Therefore, we can restrict our considerations to parameters
pwithO < p<1/2.

7.4. We can summarize the operator versions of some famous 1somorphic characterizations
of Hilbert spaces which are stated in Criterions 2.3, 3.3 and 4.8.

Theorem. 3 ,=H,=F&K,=H .

7.5. Next, we establish an immediate consequence of Propositions 3.4 or 4.9
Proposition. The operator ideal 31 | is symmeltric, injective and surjective.
Remark. It follows from 2.5 that the norm

| 7|3, ||:= sup n™? H,(T)

1s injective, As stated in 2.7, I do not know whether it is also surjective and symmetric. Those
who are interested to have all of these properties must pass to the equivalent norms

| T\, |l:=supn?G (T) or |[T|&,|:=supn™K (T).

7.6. Given 0 < r < 2, we denote by T {2) the collection of all operators 7" for which
| THE 2, = sup /72, (T)
r,oo IlI° pn “n
n

1s finite; sée ([33], 2.7). This definition yields a 1-parameter scale of quasi-Banach operator
ideals. In view of

nz,(T) < G,(T) < )~ (D),

k=1

we have

L =2 whenever 1/r+p=1,1<r<2 and 0<p<1/2.

However, in the limiting case » = 1 and p = 0 it turns out that B ¥** := E"; (the
1deal of weakly Hilbertian operators) is strictly larger than 3 = 3 , (the ideal of Hilbertian
operators). As already observed by G. Pisier ([42], p. 571) and ([43], p. 171), the operator of

integration belongs to 1 %% \ 3 ; see Example 6.4 and ([33], Lemmas 1.11, 1.13 and 2.11).
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8. GEOMETRIC PARAMETERS OF BANACH SPACES

8.1. Recall that G (E), H (FE) and K_(FE) denote the values of the ideal norms for the
identity map of the Banach space E'. The Grothendieck numbers I' ( F) are defined analo-

gously.

8.2. For every m-dimensional Banach space M the Banach-Mazur distance to [3* 18 given
by
d(M) = inf {||T|||IT7"||: T €L (ML), bijection } .

Remark. This concept goes back to the «KRemarques» in Banach’s monograph.
8.3. The following result is obvious, by ([31], B.4.6).

Theorem. Let K be a Banach spaceand n=1,2,... Then

H (E) =sup{d(M) : M C E, dim(M) < n} .

Remark. The right hand quantities were considered for the first time by M.I. Kadec/B.S.
Mityagin ([13], Prop. 2.7) when they presented the Lindenstrauss-Tzafriri solution of the
complemented subspace problem [25]. We also refer to ([48], p. 209).

8.4. Let M be any finite dimensional subspace of a Banach space E. Then the relative
Hilbertian projection constantof M in E 1s given by

y(M,E) = inf {|| P|H ||: P € &L (E), projection onto M} .

Remark. To my best knowledge, the first explicite definition of this quantity is given in ([48], .
p. 209). However, it has appeared implicitely in the work of D.R. Lewis [2‘1], T. Figicl/N.
Tomczak-Jagermann [3], H. Konig/J.R. Retherford/N. Tomczak-Jdgermann [15] and G. Pisier
[37] around 1979.

8.5. Next, we formulate an immediate consequence of Theorem 4.12.

Theorem. Let E be a Banach spaceand n= 1,2 ,... Then

G (E)=sup{y(M,E): M CE,dm(M)<n}.

Remark. The right hand quantities were considered for the first time by G. Pisier ([37], p.
4). For a comprehensive treatement we refer the reader to ([48], Chap. 6).

8.6. Let M be any finite dimensional subspace of a Banach space FE. Then the relative
projection constant of M in E is given by

MM,E) = inf {||P||: PeT(E), projection onto M }.
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Remark. This concept can be traced back to the early sixtieth when B. Gruenbaum [8] intro-
duced a quantity which 1s now called the absolute projection constant of a finite dimensional
Banach space.

8.7. Fora Banach space K and n=1,2,..., we define
P(E):=sup{MM,E): M CE,dim(M) <n}.

Remark. Similar geometric parameters were considered for the first time by M.1.Kadec/B.S.
Mityagin ([13], Prop. 27) when they presented the Lindenstrauss/Tzafriri solution of the
complemented subspace problem [25]. We also refer to [14] and ([48], p. 209).

8.8. The following result is an immediate consequence of 5.6, 6.2, 8.5 and 8.7; see also ([48],
p. 210).

Proposition. Let E be any Banach space and n=1,2,... Then

I'(E) XK,(E)<XH,(E)LG,(E) and P,(E)<G,(E).

8.9. It would be extremely important to replace Definition 8.7 by a theorem analogous to the
geometric interpretations given in 8.3 and 8.5.

Problem. Does there exists an ideal norm P, such that (in the sense of 8.1)

P (E)=sup{AMM,E): M CE, dm(M) <n}?

8.10. We stress the fact that the proof of the following inequality works in the complex case
only. I do not know whether the same result, possibly with a different constant, also holds in
the real case.

Proposition. Let E be a complex Banach space and n=1,2,... Then

I (E) < wP,(E).

Proof. Let z,,...,z, € Ug and a,,...,a, € Uy. Additionally, we assume that the (n,n)-
matrix ({z,, a,)) is non-singular. By the principle of related operators ([32], 3.3.4 and 3.3.5),

the matrix ({(z;,a;)) and the operator

T
T .= E”k ® T,
k=1
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have the same (non-zero) eigenvalues, which we denote by A,,...,A_. By a result from

([29], p. 331), we can find a subset K of (1,...,n) with

ni

E Al < |E}*k|
k=1 K

and, subsequently, a T-invariant sﬂbspace M of E such that the operator induced by T" has
precisely the eigenvalues A, with k € K ; ([32], 3.2.23). Since dim( M) < m, there exists a
projection P from E onto M with || P ||< P,(E). Now it follows from

Y el < w7 N | = wjtrace (PT) =
k=1 K

= 7| Y (Pzy,a,)| < nm|| P || < nnP,(E)
k=1

and the inequality of means that
n 1/n 1 &
det ((z;,a,))['/" = (H mi) < =Y NS TP(B).
k=1 k=1

This proves the desired result.

8.11. Combining Propositions 6.3, 8.8 and 8.10, we obtain another important result of this
paper.

Theorem. Let FE be a complex Banach space and n= 1,2, ... Then

P.(E) <G, (F) < E’Hz -:;Pk(E‘) <em(l+logn)P (E).
k=1

8.12. It seems likely that the logarithmic factor in the inequality
(%) G, (FE) <en(l+log n)P, (E)

can be removed.
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Problem. Does there exist a constant ¢ > 1 such that
G,.(E) <cP,(FE)

for all Banach spaces E and n=1,2,...7

Remark. Inequalities of the form
G.(E) < cP (E)”

emerged in connection with the Lindestrauss-Tzafriri solution of the complemented subspace
problem [25]. The exponent « = 32 obtained in ([2], Theorem 6.7) was improved to o« = 5
in ([48], Theorem 29.4). Strangely enough, for infinite dimensional Banach spaces one can
even take o = 2 ; see ([13], Prop. 2.7) and ([48], Theorem 29.1).

We stress the fact that the estimate G, (E) < cP, (E)® with o > 1 18 better than (*)
only in the rare case when the sequence ( P, ( F)) grows very slowly.

The most important step towards inequality (*) was already done in the Thesis of S. Geiss
([4], Satz 2.3.1) who proved that

G, (E) <e(l+logn) max I',(E).
1<k<n

8.13.For0 < p<1/2,welet
H = {E:(nPH,(E)) €l }.
Replacing H (E) by G,.(E), K (E), P,(FE) and I' (E), the classes G, KP, P, and
I" ) can be defined in the same way.
8.14. We denote by L the class of arbitrary Banach spaces.
Theorem. G, , =H,, =K,, =P, =T, =L.
Beweis. This follows from 4.7 and 8.8.

8.15. We denote by H the class of all Banach spaces which are isomorphic to Hilbert spaces.
The following theorem summarizes various characterizations of this class due to J. 1. Joichi
[12], S. Kwapien ([17], [18], Cor. 1, and [19], Prop. 3.1) and J. Lindenstrauss/L. Tzafriri
[25].

Theorem. G, =H, =K, =P, =H.

Remark. Using the 2-convexified Tsirelson space, G. Pisier ([43], Chap. 13) showed that
I’y (the class of weak Hilbert spaces) 1s strictly larger than H .
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8.16. Next we treat the general (complex!) case.
Theorem. G, =H =K =P =T for0<p<1/2.
Proof. This follows from the inequalities stated in 6.3, 8.8 and 8.10.

8.17. The class H enjoys very nice permanence properties.
Theorem. H, is stable under passing to subspaces, quotients, duals and finite direct sums.

Proof. Note that H = {E': I € 21 |} and apply Proposition 7.5.

8.18. Furthermore, we see from 3.6 that the classes H ) behave very well under complex
interpolation.

Proposition. Let p= (1 —O)py + Op, for 0 < py,p1 < 1/2 and 0 < ©® < 1. Then
E, ern and E, € le imply [E,, E|]g € Hp.

8.19. It is unknown whether a similar result holds for real interpolation.

Problem. Let p=(1-©)p,+®@p, for 0 < py,p; < 1/2 and 0 < © < 1. Assume that

Remark. We see from ([49], p. 128) that the answer is affirmative for g = 2.

8.20. For the definition of the concepts « weak type p» and «weak cotype q », we refer to [26],
[34] and ([43], p. 168). The following result is taken from ([26], p. 106) and ([34], 3.14).

Proposition. Let 1/p=1/2+pand1/qg=1/2 —pfor0 < p< 1:2.TheneveryBanach
space E € Hp has weak type p and weak cotype q.

82l.For 0 < p<1/2,welet
H) :={E:(n*H,(E)) €cy} .

Replacing H, (E) by G,(E), K,(E), P,(E) and I',(B), the classes G, K, P and

') can be defined in the same way.

8.22. We denote by B the class of all B-convex Banach spaces, which are characterized by the
property that they do not contain the spaces {7 uniformly. A classical resultof V.D. Milman/H.
Wolfson [28] now reads as follows. See also [35] and [37].

0 vyt o _ - -
Theorem. G/, =H/), =K, =P, =T, =B.

8.23. We conclude this section by formulating an open problem which goes back to G. Pisier
([38], [39] and [40]).
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Problem. Is it true that

H)= | ] H, for 0<p<1/2?
O<o<p

Remark. As shows by G. Pisier ([38], [39]), for p = 1/2, the answer is affirmative in the
setting of Banach lattices.

9. EXAMPLES
9.1. The following result goes back to V.I. Gurarii/M.1. Kadec/V.1. Macaev ([9], Lemma 2).

Example. Let 1 < p < 0o. Then, in the real and complex case, we have

G, (I} = H (1) =nl'/P Pl for n=1,2,...

Proof. It follows from G_([3) = 1 that

H () <G () LT > B G (1) || I: 7 — I ||< o' /P12

On the other hand,
G, (I3) > H,(Ip) > d(Ip) = n'/P~1/2];

see ([48], p. 280).

9.2. We call n=1,2,... an Hadamard number if there exists an (n,n)-matrix A, = (o;;)
such that

o ; =+l and A A =nl,

where I denotes the unit (n,n)-matrix.

All Hadamard number are necessarily multiplies of 4. However, it 1s a long-standing open
problem whether this property also suffices. In any case, all powers of 2 are Hadamard. The
required matrices can be obtained by induction:

A, A
A, = (A“ _E ) and A, :=(1).

n

For more information we refer the reader to [50].
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9.3 Example. Let 1 < p < 0o. Then, in the complex case, we have
L) = K (12) =d'P1210 for n=1,2,...
The same holds in the real case (p # 2) if and only if n is an Hadamard number.
Proof. By 8.8 and 9.1,
L) < K, (1) < H (1) < n'/Pm12

To obtain the lower estimate for 1 < p < 2 and in the complex case, we put

a,; = (alj,...,anj) with ;= exp (21'T — ij).
n

Note that || a,|I% ||= n'/7 . Hence

K, (7)) > T,(I) > |det ({e;,n7 /% a))) |/ =
= n!/7|det (“a‘) 1" = nl /P12,

see also [3]. In the real case, the same argument works if there exists an Hadamard matrix
6= (ay;).

We now assume that K (1) = n'/P~1/2 where n=1,2,...and 1 < p < 2 are fixed.
Then there exist z, = (§,,,...,&;,) € l; and a unitary (n,n)-matrix S = (cri}-) such that

1/2

" 1/2
E 1S oali ) =il (z: 2 ||2)
=1

1=1
This implies that in the following chain of inequality we even have equalities:

1/2
n "sz /

E E EUIJE*[P <

J=1 Lk=1 =1

1/2

c: ﬂlfp—lfz EE |Egijfik|2 =

j=1 k=1 =1

n n 1/2
BRVSY. (zzm) .
=1 k=1

n [ n 12/p 1/2

< nlfPml/2 E i 1P
| k=1 J
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Hence
n n 1l/p n 7 1/2
1/p—1/2 2
Elzaus,klp = n!/P=1/ |Za,,,s,k|
=] =1 Lk=1 =1 _
for j=1,...,nand

IR 11/

 n

2
> 1€ql ) Kl
L k=1 o _k=1 -

for j = 1,...,n. By ([10], Theorem 19), we conclude from the latter set of equations that .
must be a multiple of a unit vector. In view of

K (I <m!/P='12 for m=1,...,n,

the vectors z,,...,z, do not belong to any proper subspace of [;. Thus, by a permutation,
we can arrange that z; = £;e;. Now the first set of equations reads as follows:

11/p 4 1/2

E |U;c;~’fk|F = p'/P=1/ E |Uk_-,-fs='2

L k=1 | k=1

for 7 = 1,...,n. Therefore, ([10], Theorem 18) implies that, for fixed 7, all numbers
|0,;€1 15+ -+ s |og; €, | are equal. We denote the common value by «; .
Usmg the fact that (o;) is unitary, we conclude that

T n
61 =D loy&l® =D oj
j=1 j=1

for 1 = 1,...,n. Thus all numbers ||, ...,|{,| are equal. We denote the common value by
¢ . Using again the fact that (::r:.j) 1S unitary, we get

n
= E Igij£f|2 = mf
i=1

_1/2

Next, |o,;[¢ = |oy;€;| = a; yields |oy;| = 7'/ . Since o;; was assumed to be real, we finally

see that n'/%g;; = +1. This completes the proof for 1 < p < 2. Thecase 2 < p < oo can

be treated by passing to the dual space.
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Remark. In the real case, sophisticated computations show that
() =4"7~1,58, K,(B)=5/3~1,66 and H, ()=3"*~1,73.

9.4. A recent result of H. KOnig/N. Tomczak-Jagermann [16] states that, for all real and
complex Banach spaces F,

P.(E) < n'/* —en1/?,
where ¢ > 0 is a constant. Hence:
P.(I}) <T (1) =nl/?

for all Hadamard numbers n. This shows that P_( E) can be strictly smaller than I' ( E) <
K,(E) < H.(E) < G,(E).

It seems to be extremely difficult to compute the quantity P, ( E) for concrete Banach
spaces. In particular, we have the

Problem. Which is the value of P, (lT) forp#27?

9.5. Following G. Pisier [39], a complex Banach space F is said to be @ — Hilbertian
(0 < ® < 1) ifitis 1somorphic to a space [ E,, H]g obtained by complex interpolation
between a suitable Banach space F, and a Hilbert space H .

9.6. We now formulate an immediate consequence of 8.18.

Proposition. Let0 < ® <l and p=(1—-©) /2. Thenevery © -Hilbertian Banach space
belongs to H .

9.7. We denote by L, the Banach space of all p-integrable scalar functions living on an
arbitrary measure space (£2, ) . The next result is due to D.R. Lewis ([21], Cor. 4).

Example. Let 1 <p<ooand p=|1/p—1/2|.Then L, € H,.

Froof. We treat the case when 1 < p < 2. Then L, = [L,, L, ]g , where © is defined by
1/p=(1-0)/1+6/2.

9.8. We denote by L,( E) the Banach space of all Bochner p-integrable E-valued functions
living on an arbitrary measure space (2, ).

Example. Let 1 <p< oo, p=|1/p—1/2|and ©® = 1—-2p.If E is © -Hilbertian, then
LF(E) belongs to Hp.

Proof. We treat the case when 1 < p< 2. Since E=[E,,H]lg and 1/p=(1-0©)/1+

Ly(B) = L, ([Ey, H]g) = [Iy (Eo) , Lo ()]

9.9. It 1s unknown whether the preceding result extends as follows.
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Problem. Let 1 < p<ocoandp=|1/p—1/2|. Does E € H, imply L (E) €eH,?

9.10. The Schatten-von Neumann classes 8 (H) = U f,“:’(H ) can be viewed as non-
commutative analoga of the function spaces L. Therefore, the next result is closely related
to 9.7. Its original proof is due to N. Tomczak-Jagermann ([47], Cor. 2.10) see also ([22],
Cor. 5.3).

Example. Let 1 <p<ooand p=|1/p—1/2|. Then > ,(H) eH,.
Proof, Use the interpolation argument from 9.7.
9.11. Note that the following result is asymmetric.

Example. Let 1 <p<oo.lf1<p,g< Z,Ihen?tﬁz(ip,lq) c Hp,whﬁre*pz max(1/p—

1/2,1/q— 1/2). However, in the remaining cases J , ( L,,L,) even fails to be B-convex.

Proof. Very recently, G. Pisier [44] showed that 2(,Zp, l,) 15 ©-Hilbertian, where © is the

minimum of o and S definedby 1/p = (1 —a)/1+ a/2 and 1/g = (1 - 8)/1+ 5/2
provided that 1 < p, ¢ < 2. The remaining case follows from ({23], Theorem 3 and Cor. 1).

9.12. Finally, we present an example which shows that the class H , With p > 0 contains
non-reflexive Banach spaces. The following construction is taken from G. Pisier/Quanhua
Xu [45].

Let v} denote the Banach space of all zero sequences z = (&,) for which

o0
| zlv) ||:= E 1€k — €kl
k=1

is finite. Then (v?, c,) constitutes an interpolation couple.

Example. H_((v],c)/2,) ~ 1+ logn.
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