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INTRODUCTION

It is well known, that a partial differential operator P( D) with constant coefficients 1s sur-
jective in C*°(£2) if and only if the open set 2 is P-convex (see e.g. [10], section 10.6),
which means, that the supports of 7" and P(—D)T have the same distance to the boundary
of Q for T € C*°(Q)’. The proof of this result is easy, since C*°(£2) is an F'-space and
the closed range theorem can be applied. The more difficult topological structure of the space
()’ of distributions does not allow the application of this theorem, nevertheless a similar
characterization of the surjectivity of P( D) in Z(Q)’ holds, involving also the singular
supports of 7" and P(—D)T for T" € C*(£2)' ([10], Corollary 10.7.10). In both cases,
P( D) is surjective, if £ is convex.

The situation changes completely, if Gevrey classes I' {8}(Q) of ultradifferentiable func-
tions are considered. It was noticed by E. De Giorgi [9] and L. C. Piccini [15], that sim-
ple partial differential operators may not be surjective in the space of real analytic functions

A(RN)y = (T{I}(RY)), and L. Hérmander [11] then characterized the surjectivity of
P(D) in A4(RY) by means of a Phragmen-Lindelof principle valid on the characteristic
variety of P(—z) . Sufficient conditions were proved by K. G. Andersson [1], L. Cattabriga
(6] and L. Cattabriga and E. De Giorgi [8]. Nonquasianalytic Gevrey classes where consid-
ered by L. Cattabriga [7] and G. Zampier [18]. Recently R. Braun, R. Meise and D. Yogt [4,5]
used the results of D. Vogt [17] on the projective limit functor to characterize the surjectivity
of P(D) in nonquasianalytic classes & {m}(ﬁ) of ultradifferentiable functions of Roumieu

type again by means of a certain Phragmen-Lindeldf principle. Their result implies the same
characterization for surjective partial differential operators in /. Komatsu’s ultradifferen-
tiable functions & ‘M }(Q) , 1f the conditions (1.2) (see section 1) and (M2) (of H. Komatsu

[12]) are assumed.

One topological reason for the more difficult behaviour of partial differential operators in
& {w}(ﬂ) and & (M }(Q) seems to be, that these spaces then are isomorphic to the IN -fold

product of the dual of a power series space of finife type (see [3] and [14]), while the distribu-
tions are isomorphic to the N -fold product of (s)’ ([16]), the space ( s) of rapidly decreasing
sequences being the model space of an infinife type power series space. Now it was observed
in [14], that there is a change of type for the spaces & (M, }( 2), infact, for «large» ultradiffer-
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entiable classes defined by sequences like M, = e, 1<b<2,& (3} (£2) 15 isomorphic

to the dual of a power series space of infinite type (see 1.3 for more examples). So the ques-
tion arises, how the surjectivity of partial differential operators can be characterzed for these
classes of ultradifferentiable functions of Roumieu type and this problem will be solved in the
present paper.

We generally assume, that (M,),,, satisfies the conditions (M1), (M2°) and (M3’) of
H. Komatsu [12] (see section 1). The main condition for the results of this paper now 1s the
following:

Vk>13n>1: M) — km(t) > M(t/n)

(1.1)
M(t/k) > M(1) — nm(t) for large ¢

(see section 1 for the notation and easy sufficient conditions). Assuming (1.1), it is shown,
that the partial differential operators behave in & v }(£2) similarly as in P()'. Infact, we

also consider the ultradistributions &7 (M y(£2)" of Beurling type and we will prove, that the
surjectivity of P( D) in E’{Mﬂ}(ﬂ) is equivalent to the surjectivity of P(D) in & ,, ()

and it can be characterized by means of P-convexity and several (equivalent) P-convexitly
conditions for singular supports (see Corollary 3.4). It turns out, that the surjectivity of P(D)
is gouverned by singular support conditions involving m({) rather than M (t), as could be
guessed from the results of G. Bjorck [2] on the surjectivity of P(D) in & ,(£2)". Alsowe
get surjectivity in the spaces defined on convex sets. So the result 1s like 1n the classical case

of distributions. This is most striking in the special case, where M, = e , ¢ >0, which s
maximal with respect to condition (M2’). In fact our result implies, that in this case P(D) is
surjective in E’{M 4(£2) (orin D y(2)"), if and only if P(D) is surjective in Z(Q)",

1. PRELIMINARIES

The aim of this paper is to study the surjectivity of partial differential operators in spaces
of ultradifferentiable functions and ultradistributions (defined by some sequence (M,),)
in the sense of H. Komatsu [12]. The notation connected with these notions is that of [1_2‘,
especially, |
M(t) :=sup (In|t| °My/M, |a € N,) , t € C,

is the function associated with (M), ,
m, =M/ /M, fora>1

m(t) :=max{a|m < |t|}, t € C.
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We will generally assume in this paper (without explicit reference), that (M), satisfies
the conditions of logarithmic convexity (M1), stability under differential operators (M2’) and
non quasianalyticity (M3’) of H. Komatsu, that is,

(M1) m, 18 increasing
(M2 m(t) > blnt—1/b for some b > 0
(M3') (1/mg),51 € 1.

The definition of ultradifferentiable functions and ultradistributions 1s now as follows ([12]):

Definition 1.1. Let Q@ ¢ RN be openand K cc RV .
a) ultradifferentiable functions of Beurling type

&y (Q) = {f €C™(Q) |VK CC QVC > 0:
pex(f) = sup { |D°f(z)|CI/M | e € Ny, z € K } < o0}

Driy () = { F € &, (RY) [ supp f C K }

@(Mn)(ﬂ) = m H]d @{Mn}(K)

li
KccQ
b) ultradifferentiable functions of Roumieu type

&y (@) = {f €C®(Q) |VK CCQIC < 1:pox(f) < m}

YD (K) = {f € g{Mn}(RN) | supp f C K}

D, (Q) 1= Jim_ind F,, \(K).

We will also need ultradifferentiable functions defined by growth restrictions on the Fourier
transformations (se¢ [2] and [3]) using a positive weight function w .

Definition 1.2. &, (K) := {f € D(K) |Vn>1: [|f(z)|e™Pdz < m}

g(u)(ﬁ) .= {fE C™(Q) | of e-@f{w)(ff) for any SOfE-@(u)(K)}-
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Any of the above spaces is endowed with its natural topology, duals are always considered
with their strong topology. This is nota (FS)— or (DFS)-topology for & ,, ()" and

& (M }(Q) . 50 the closed range theorem cannot be applied to show the surjectivity of partial

differential operators in these spaces, making the problem considered here nontrivial.
The main condition on the sequence ( J"./fﬂ)mzﬂr 1s the following, which is related to the
linear topological structure of the spaces & oy (82) ([14]):

Vi >13n > 1:M(t) — km(t) > M(t/n)

(1.1)
M(t/k) > M(t) — nm(t) for large t.

Indeed, this condition means, that & (M }( €2) is isomorphic to the N -fold product of the dual

of a power series space of infinite type ([14], § 4) and this seems to be the basic reason for
our results in section 3, which totally differ from the «classical» case of the Gevréy-sequence
M, :=a%, s > 1 (see the introduction).

(1.1) implies that

(1.2) J3C > 1:m(2t) < Cm(t) for larget
or equivalently:
(1.27) JCeN :2m, < m,, forlarge a

(see [14], Proposition 4.1 and Theorem 4.4). Therefore we also get from (1.1) (by [14], The-
orem 3.1)

V> 13k > 1:M(nt) < M(b) + km(t)

(1.3)
M(t) + nm(i) < M(kt) for large t.

The following condition ([14], (4.5)) is sufficient for (1.1) and can easily be verified in con-
crete cases:

(1.4) 3C > 1Vk >1:m(kt) < Cm(t) for large {
or equivalently,
(1.4") JCeENVE>1:km, < m,, forlarge a.

(1.4’) implies that

(1.5) a’ = 0(m,) for any s,
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that 1s,
M, > (a!)? for any s and large a.

So the classes &?'{M }(Q) and E’(M y(£2) contain any of the Gevrey classes ris}Q), if

(1.1) holds. The sequence (M,),., then is increasing rather fast and we are dealing with
«large» classes of ultradifferentiable functions and «small» spaces of ultradistributions. This
is made more precise by the following examples:

Let M, := e®¢("9) with G € C'(R,) and suppose that

(1.6) G(t) + G'(t) < Ce* for some C and large t

(1.7) G' is increasing and unbounded .

Then (M,),,, satisfies (M1) and (1.4°) (and therefore (M3’) by (1.5)). (M2’) follows from
(1.6).

Examples 1.3. @) M_ := e, 0 <c,1<b< 2.
b) M, :=ex(na’ 0 <c 1<b.
) M, = ecdlina)lna)® ' ¢ 1 <,

With b = 1 (and ¢ > 1) in Example 1.3b) or 1.3c) we get the Gevrey sequence, which

certainly does not satisfy (1.1). So Example 1.3¢) shows that sequences with (1.1) need not
be very far away from the classical case.

The Fourier-Laplace transformof T' € &', (R Ny''is defined by

T(2) 1= F(T)(2) = (T, e @)

with (z,2) := Y z,2, forc € RY and z € CV.

Let K ¢ R be convex and compact and let

Hp(t) :=sup {(z,t)|]r € K}

be-its supporting function. Let

E’(Mu)(ﬁ')’ '= {T € E(Mn}(]RNH supp 7" C K} (similarly for ('?;"'{Mn}(ff)’)*

We then have the following Paley-Wiener theorems («P-W theorems» for short), if (1.1) holds.
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T € & 34, (K)' if and only if

(18) In>1Ve>0:|T(2)| < C.exp (He(Im 2) + e|Im z| + M(2) + nm(2)) .

Moreover, if H( K, &) denotes the space of entire functions bounded by the right hand side
of (1.8) for some =, then

(1.9) S is continuous from g’mn)(ff)’ into H( K, €)

(1.10) ' is continuous from H(Bgfz,sﬂ) into &, ,(B,)’,

where B, := {x € R"||z| < &} (to prove (1.10) use the closed graph theorem, (1.16) and
(1.14)). Similarly we get from (1.1) (and [13]):
I € S’{Mn}(f{)‘ if and only if

(1.11) Vn >1,e>0:|T(2)| < C,, exp (Hx(Im 2) + e|Im z| + M(2) — nm(z2))

& (my(K2)' is defined in the following way:

(1.12) & m () 1= {T € &4y (Q)]3n 2> 1:|T(2)] < ne™™ ;|+m(£)}

So we take the Paley-Wiener theorems as a definition in this case. Of course this is the dual
space of & (my (£2) under reasonable assumptions (e.g. as in [3] or [2]), but we will not need
this 1n the present paper.

The Paiey-Wiener theorems for ultradifferentiable functions are easier (see [12], Theorem
9.1): Let (1.1) be satisfied again.

f € Dy,,(K) if and only if

(1.13) In > 1:|f(2)| < C,eHKUIm 2—M(z)+nm(z)

f € .@“{Mn](f{) if and only if
(1.14) Vn > 1: |f(z)| < CHEHK”’” 2)=M(z)—nm(z)
Moreover, the topology of @{Mn}(f{) and @{Mﬂ(f{) may

(1.15) be defined by the L,—norms or the sup — norms corresponding

to the weights in (1.13) and (1.14), respectively.
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For T € Ef{Mu}(]R”)’ and ¢ € @{Mu)(RN) we have

(1.16) (T, p) = <2w)“”ff<z>@<—m)a:c.

[ndeed, both sides are continuous on & (M }(RN ), - For the right hand side this follows

from (1.9), (1.14) and (M2’). This proves (1.16), since (1.16) holds for T € (R "), and
Z(R") isdensein &, y(R")' (use Theorem 6.10 in [12]).

2. CONVOLUTION AND SINGULAR SUPPORT
ForT € &, y(RY) and H € &,,(R")' we define convolution by

T x H := FYF(T)F(H)).

T x H is defined by (1.8) and (1.12)and T x H € &, ,(R"™)’. We also have

(2.1) supp (T" x @) C supp T+ supp ¢
(use regularization and prove (2.1) for H € & ( Mﬂ)( R ") using a resolution of the identity
and the P-W theorems). For p € &, (R Ny we get from (1.16):

22) T+ H,p)= (T + H,0) = @)™ [ T(2) A(m)p(-0)dz

{M,}
the F-singular support of T' (denoted by F' — ss(T) ) is the complement of the largest open
set Q, such that T'|o € F(Q).

Definition-2.1. Let F' be one of the sheafs & Emy OF & gy ForT € &y, }(RN)"

For a function [ defined on R¥ let

ps(L, p) = sup {|5(2)[e" D™Dz € RV} for p € T, (RV).
ForTe &, ,(RY) and H € &, (R")’ (and vice versa) let

B.(H,p) = (T*J‘?,fp} for @E@(Mn}(l{”).
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Let B,(y) = {z € RY| |z —y| < €} and B, := B_(0). We consider the following
estimate (with € > 0, z, € RY and d fixed):

(2.3) JC(H) >0Vp € @(M,)(Bs): |Br(H,p)| < C(H)py(L,p).

Lemma 2.2, Let (1.1) be satisfied.

) Tog @ &y —8(T) forT € &, (RN, if

1) (2.3) holds with L(x) = M(zxz) forany H € g{Mﬂ}(BE(ID))I or if

i) (2.3) holds with L(z) = —M(z) forany H € &, 1(B.(z4))".

b) 1) 2o & &y y—ss(T) forT € '@{M,}(RN) , if (2.3) holds with L(x) = 0 forany
H e &y y(B(z))'.

i) xy ¢ Dy, —88(T) forT € &, Mﬂ)(R” ), if (2.3) holds with L(z) = O forany
H e @’{Mu}(BE(mﬂ)) .

Proof. a) I) We can assume without loss of generality, that x, = 0. Let
BT . H — BT(H) = BT(H'.I )

be the linear mapping from & Mﬂ}(BE)" (resp. & (m,}(B,;)) into the dual of the normed
space

E:= (.@{Mn}(BE),pd(L,-))_

The graph of By is closed by (2.2). Since & Hﬂ)(BE)’ and & ( M,}(Be) are ( DF'S)-spaces
(by (M2")), B, is continuous into E’. With

¢_ (FM, H) := sup { |F ()| eFM—mmiw)—elIm wl/2 | ) G:N}

we get the following estimates from (1.10) and (1.15):
(2.4)
Yo >13C >0 Vp, H € Dy y(B,,) ¢ |Br(H,0)| < Cq_(FM, H)py(L,p).

Here and in the following the upper sign corresponds to the cases a) i) and b) i).
II) Let G, := [[;<, m(;/4), Where [ ] is the GauB bracket. Then (G ), satisfies (M3’),

Using (M2') it 1s easy to see that
(2.5) G/(t) is equivalent to 4 M(1).

Let p € & (B, ;) bechosen such that ¢ = 1 near 0. For z € CV let
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p,(x) = p(z)et?).

If B,(€) :=[o(T x,)T(€) € Li(RY), then
(ZW)‘”'/‘B;(E)G& (BT 2)

by the Fourier inversion formula, since T * , € (RN forT e & ( Mﬂ}(R My by (M2).

So we have to estimate the L,-norm of B_(£) as a function of 2z to estimate (pT) (2).
II) Let (V). satisfy (M1) and let V' be the associated function. Fix j > 0. (2.4)
implies that

VAMIOB,(€) = sup |(GO)° [ (T + 2*0,)] O/ (M) <

sup <

c<a l<h

<T x Do=<((Dlp),) (2)le—cl2ll D*=H((Dep)_)(27)l2 =1 >1
M,_qViy | M Vs

< Cyswp g, (¥M,D° ((D%),) 2X12)M/ (Vg Myy) ) %

< suppy (£M, D* ((D*)_ 2)P2F1/ (My¥y))) =

a,b

=C, sup |p(w — 2)] eV (A w—2))+ M(2jw)FM(w) —nm(w) ~|Im w|/2

wedWN

X Sup IﬂB(I + E)' EM(ZJ'(I+€)J+V{ZIJ:EL(I)+dm{I)_

IER"‘jr

a)i) Take V = 0 and L = M. (1.3) implies that for any j and n' there are n and ;' such
that

(2.6) M(2jw) — M(w) —nm(w) < (j'—m)m(w) < —nwm(z) + (n—j)m(w — 2)

M(z)+dm(z) < M(d"(z+¢&)) + M(d"¢).

The choice of ¢ now implies that for any j and n' (with fixed d" )

|1B,(§)] < GIEM(d"E:’_MU@—H’m(:J .
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S0 T € .@(m}(]R”) by (M2’) and II).
a) 11) Take V. := H;‘ <a ™(;/2] (i.e. V 1sequivalentto2M) and L = M. (1.1) implies
that for any ; and »/ there is n such that

(2.7) M(2jw)+ M(w) —nm(w) <2M(w/(27)) <2M{(w—-2)/n)+2M(z/1)

—-M(z)+dm(z)+ V(2z) < —M(x)+dm(z) + 2M(C,1) <
< M(d'z) < M(d"(z+ €)) + M(d"x).
By the choice of ¢ we get for any 7 and »' with fixed d"

|B (E)I < C] E—ZM(:)+2M(I[€)+M(d".f)-dM{jf)
This shows that T € &,,,(R") as above.
b) Take V=M and L = 0. By (1.3) we get
M2z) + dm(zx) < M(d"z)
(2.6) implies (in the case b) 1)), that for any n' and j

B,(£)] < e~ MA—ntm()+M(&")-M(jE)

(2.7) implies (in the case b) ii)) that for any n’ and ;

IBE(‘E) | g Ez M(z/n)—M(2)+ M(d"§)-M(j§)

So b) follows in any case from the P-W theorems, (1.1) and (M2’).

The main notion connected with the surjectivity of partial differential operators is now
contained 1n the following definition, which generalizes the notion of P-convexity for singu-
lar supports ([10], Definition 10.7.1).

Definition 2.3. Let Q@ cC RY be open. Let E be contained in & (M ](Q)’ and let F' be

one of the sheafs &y, Dy y and & .
L2 15 called P-convex for F-singular supports in E («P-convex for (F, E) — ss»), if
forany K CC Q thereis K' CC S such that forany T € E:

F—ss(P(-D)T) CK=F—-3s3(T) C K

Lemma 2.4. Let Q@ C R"Y be open and let (M) ., satisfy (1.1). If Q is P-convex for
(E(mys & (my) — 85, then Q is P-convex )

i) far(g(uﬂw@{ﬂ,}) — 8s and

ii) for(.@{Mn}} g(u,,)’) — 88,
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Proof. Let K cC Q and K, = {z€ R¥|d(z,K) <e}.LetT € D 11 (2) (tesp.
Teé‘?mu}(ﬂ)‘)and

&y — ss(P(~D)T) C K (re,sp. Dy — 35(P(=D)T) C K)
with fixed K CC Q. If € 1s so small that K, CC £2 we get

T x H € g’(m}(ﬁ)' and P(~D)T = H| _K,, C g’(m)(f{h)
forany H € & ,,,(B,)’ (resp. H € _@{M 1(B,) ). By assumption this implies that

Emy — (T + H) C(K,,) CCQ

forany H € S’(Mu}(BE)’ (resp. H € @{M,}(BE) ). Let € be so small that

K = [(K,)'], ccQ.

Let z, & K . We can assume, that zo = 0. Then T satisfies the assumption of Lemma 2.1
b) for z, , hence

8’(““) —ss(T) C K ccQ ( resp. @:{M,} —~ss(T) C K cc Q).

This proves the lemma.

3. SURJECTIVITY OF PARTIAL DIFFERENTIAL OPERATORS

In this section  always denotes an open set in RY and P(D) is a partial differential
operator with constant coefficients.

Theorem 3.1. Let (Ma)agn satisfy (1.1). Q is P-convex for (& ., é?f’(m)) — ss if P(D)
IS surjective in

1) @{Mﬂ)(ﬂ)’ modulo @{Mn}(ﬁ)"
or in
1I) S’{Mn}(ﬂ) modulo ‘?EM,}(Q)‘
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Proof. Let G(Q) := _@(Mn}(ﬂ)’ and F(Q) := .@{Md}(ﬂ)’ in case i) (resp. G(Q) :=
g’{Mn}(Q) and F\(Q2) := g”mﬂ(ﬁ) n case 11)). We generalize the proof of Theorem 10.7.6

in [10] (see also Theorem 3.4.11 in [2]). Let G, (£2) and F,,(£2) be the sections in G({2)
(and F'(£2), respectively) with compact support in £2 .

I) Choose an increasing sequence of sets K ; CC £, which is cofinal for the compact sets
in Q. If Q is not P-convex for (&, &) — ss,thereare K CC Q, T; € &y (),
Z; € 2 and g; > O such that we have (see the proof of Theorem 10.7.6 in [10]):

(3.1) &y — 88(P(=D)T}) C K

(3.2) Z € g(m) = SS(I})

(3.3) o, ¢ (K;+ B, ) U (2B, + supp T,) for j > &
(3.4) (Supp T}*'st)u(ff"’zBEl) CcC 2.

By the definition of & ,(£2)’ there are s, > 0 such that
(3.5) D_, (0,T}) := /]ﬁ(z) le™™ P dz < oo.

Let Hy :=0.1If H;_; € Go(R") is choosen, we choose a;_; by the P-W theorems (1.8)
and (1.13) such that

(3.6) Pa, (::M, H}'—-l) = sup 'ﬁj_l(E)le:FM(I}—&J-_lm(I] < 00.
zeRY

Here and in the following the upper sign corresponds to case i). We can assume that

Q; is increasing and unbounded .

Since Z; € e%‘]m) — ss(Tj) , we can apply Lemma 2.2 a) and obtain H; € Go{ BE_(mj}} such
that

(3.7) VO, >0 3p € Dy ((B,) : {T;* H;,0)| > Cipg (£M,9),
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where B := C(s; + a;_;) with the constant C from (1.2).
Let H =) H;. Then.H € G(L2), since the sum defining H is locally finite by (3.3).

I) Since P(D) is surjective in G(£2) modulo F(£2),thereare W € G(£2) and h €
F(Q) suchthat P(D)W = H + h, that1s,

(W, P(~D)¥) = (H,¥)+ (h,¥) forany ¥ € F,,,(Q).

Ifp € _@’(Mn}(BEt) ,then T, x ¢ € -@{M,}(Q) by (3.4), (2.1) and the P-W theorem (1.14),
and we obtain from (2.1) and (3.3):

(W,(P(=D)T}) xp) = Y (H;, T, * @)+ (h, T} * p)
i<k

(2.2) implies:

() (Tex He,9) = (b, Texp) — Y (H;, Ty *p) + (W,(P(=D)T}) * 0).
i<k

III) By (3.4) we can choose @ € .@{M')(Q) such that ® = 1 near supp (T, * ¢) . Then
®h € F,(2) and (2.2) and the P-W theorems (1.11) and (1.14) imply

I(h, Ty )| = (P h, Ty xp) EGJ;P,&*(ZZM,@)-

By (3.5), (3.6)-and (2.2) we get

E (H;, Ty * p)| < Cypp (£M, ).
j<k—1

IV) Choose x € -@(M,](K + le) such that ¥ = 1 near K . Then
Tpy:=(1=x)P(-D)T, € & ,,,() and py(0,T,,) < oo for any d

by (3.1). By (3.4) choose & € @{ME)(Q) such that @ = 1 near supp (T}, * ). Since
OW.€e Gy(2) we get

pdﬂ(::M, W®d) < oo for some d,.
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This implies that

(W, Tk x )| = (WP, T *p)| <Cpg (M, p).

Choose & ¢ D y(L2) by (3.4) such that ® =1 near K + Bs, . Then there are d; > 0
(andependent of £!) such that

p_o (FM,®W) < 00 and §_g, —d,(0,xP(~D)T}) < oo

by (M2’), (1.2) and (3.5), since by (2.2)
F(xP(—D)T,) gy = X * P(—z) T}

C is the constant from (1.2). This implies that

(W, (P(~D)T, = Tyr ) x 9| = HBW,xP(~D)Ty )| <

< C;;Pcakmﬁd,l(:M: ‘F’) < Cgpc(aﬁak_l)(::M: p) =

— pﬁk(::M] (){J)' for lﬂfgﬂ }C,

since ¢, Increases to oo.
V) Finally, (¥), III) and IV) imply that for large k there is C, such that

(T, * Hy, @)] < Cypg (M, ) forany p € &, (B,),
contradicting the choice of H, in (3.7).

In analogy to the Theorems 10.7.8 and 10.7.6 in [10] we can now characterize the rela-
tive surjectivity for P( D). Surprisingly, the relative surjectivity of P(D) in _C?EF{ M )(Q)’

modulo @{Ma}(ﬂ)’ and in %’{Mn}(ﬂ) modulo 8’(%}(9) are equivalent, if (1.1) holds.

Theorem 3.2. Let (M) ., satisfy (1.1). The following are equivalent:
i) P(D) is surjective in D, ,(Q)' modulo F,, (Q)’
i) P(D) is surjective in %’{Mﬂ}(ﬂ) modulo c‘fmu)(ﬂ)
ii1) € is P-convex fur(gj(m}, gzm}) — 88
iv)  is P-convex for(%’wﬂ),_@'wﬂ}) — 88

v) Q Is P-convex f{}r(@{M },,EEM) — 85



Surjectivity of partial differential operators in classes of ... 383

Proof. «1) => i11)» and «ii) = 1ii)» by Theorem 3.1

«ili) = 1v)» and «iil) = v)» by Lemma 2.4

«1v) = 1)» and «v) = 11)» 1s proved similarly as Theorem 10.7.8 of [10]. We only give
some details concerning «v) = ii)». Since & { Mﬂ}(Q) is reflexive (e.g. by the results of

[14]), we only have to show (in analogy to (10.7.16)’ in [10]), that for any f € z'f{Mn}(Q)

there are C' > 0, a continuous seminorm g on &), 1(£2)’ and asequence @, € &',/ ,(Q)
with locally finite supports such that

(38)  |f(v)| +p(v) < C(g(P(=D)v) + Y |®.(v)|) for any ve &, (Q)’

where (e.g.)

p(v) = sup {|{£,v)| | f € &y, (R), VK CC Q1 py () < 1}

(see Definition 1.1). Notice that for K = @ we may take X' = @ in 3.2v) by the Malgrange-
Ehrenpreis lemma. The space V; (see Lemma 10.7.9 in [10]) is now defined by

V}- ‘= {v - c'%”(Mu}(Q)" | supp v C K;-H,P(wD)u c .@’{M“} ( K}._l) p(v) < m}
with the seminorms
!
{p(v),fﬁ(P(—D)u) | a continuous seminorm on &, ( K,_, ) } |

V; isan (F))-space and '@{Mn}( KJ-_I)’ 1s an ( F'S)-space. Moreover, E(Mn)(ﬁ \ K}_l)
contains a sequence, which is dense in & { Mﬂ}( Q\K }_1) (by the sequence space representa-
tion proved in [14], which is based on Fourier series). For this part of the proof of «iv) = 1)»
we need, that é?;"’{Mu}(Q \K;-_l )! contains a sequence, which is dense in @(Mu] (Q2\ K}_l ).

This also follows from [14]. This 1s enough to complete the proof of (3.8) as in Theorem
10.7.8 in [10].

The sequence M, = e is maximal with respect to our general assumption (M27). It

was first noticed by D. Vogt [16] (see also [14]), that we have the following linear topological
isomorphisms in this case:

& () ~ D () ~ D(Q) ~ ((9))"

where (s)-1s the space of all rapidly decreasing sequences. As a corollary of Theorem 3.2 we
obtain the unexpected result, that the relative surjectivity of partial differential operators also
coincides for these three sheaves:
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Corollary 3.3. Let M, := e, ¢ > 0. The following are equivalent:
1) P(D) issurjective in _@(MH)(Q)" modulo @{Mn}(ﬁ)"'
ii) P(D) is surjective in g{Mﬂ}(Q) modulo E’{Mn}(n)
i) P(D) issurjective in D(2)' modulo C*(Q)
iv) S 1s P-convex for singular supports.

Proof. P-convexity for singular supports (see Definition 10.7.1 in [10]) is just P— con-
vexity for (C*®,C'*®) — ss in our notation, which is the same as P-convexity for

(Ef{m}, g”(m)) — ss, since m(t) is equivalent to Int for M, = e (M,),5o satisfies
(1.1) by Example 1.3. So the equivalence of 1), ii) and iv) is contained in Theorem 3.2, and
the equivalence of 111) and 1v) 18 the classical case considered in [10].

The main result of this paper now is the following corollary of Theorem 3.2, which char-
acterizes the surjectivity of P( D) in é"f{Mﬂ}(Q) and _@'(Mn)(ﬂ)’.

Corollary 3.4. Let (M), satisfy (1.1). The following are equivalent.

1) P(D) issurjective in _@{Mn)(ﬂ)’

1) P(D) issurjective in E{Mn}(ﬁ)

iij) 2 is P-convex and P-convex for (&, Em)) —ss,for (&, PE’{M }) — 88 0
fOf (@{Mn}! gEMn)) — 38.

Proof. «i1) = 1i1)» The mapping
(3.9) L: &y (Q) x C®(RY) - C®(Q),(f,9) - f+4la,

is surjective by the closed range theorem. Since R Y is P-convex, (3.9) and ii) imply, that
P(D) is surjective in C°(L2), hence £ is P-convex. The remaining statement follows
from Theorem 3.2.

«1il) = 11)» P-convexity implies by regularization:

VK CcC Q 3K’ CCQV’I‘EE’(M“)(Q)’: supp P(-D)T C K= supp T C K

So P(D) is surjective in & (M (§2) Dby the closed range theorem. ii) now follows from

Theorem 3.2.
«1) = 1ii)» Forevery f € _@{Mn}(ﬂ)’ thereis T € &, ()’ such that P(D)T = f.

As in Theorem 10.6.6 of [10] one proves that this implies that

VK CCQ3IK' CCQVpePD,,,(Q): supp P(-D)p C K = supp pC K"
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This implies P-convexity by means of regularization.
«ii) = 1)» Since the mapping

L: D (RY) x C®(Q) = Dy, (Q),(f,9) = fla+ 9,

is surjective and P(D) is surjective in &, }(R” )’ by the usual ( F')-space arguments,
P-convexity of  implies the surjectivity of P(D) in & (M }(L‘a)‘r . Now 1) follows from
Theorem 3.2.

The surjectivity of P(D) is gouverned by m(t) and not by M(t). If (M,),5, and
(EJGED have equivalent functions m(t) and m(?) , the surjectivity of P( D) 1n ‘%“’{Mﬂ}(ﬂ)
and in g{ﬁn}(ﬂ) is equivalent, though the classes &?{ME}(Q) and g{ﬁn}(ﬁ) may be the

distinct (see the remark after Corollary 3.5).
The equivalence of i) and iii) (except for the statement on (& (M.} & (m.y) — $8) holds

in general, if only (1.2) is assumed. Only & { Mu}(R N has to be substituted by the space @
of all ultradistributions ¢ such that

|p(2) | gCe"M(’)*“’“(")“‘”’“ 2l for some n.

This is not the space & (M }(R” ) of H. Komatsu in general. In fact, if (M), Ssatisfies
(M2), then & coincides with &,,,(RY)" and & ,(R") isjust &, ,(R"). So the
notions of P-convexity for (& .y, &(m) — ss and (&, ,,2) — ss both coincide with

P-convexity for ( & (M) & E M) — ss and the equivalence of 1) and iii) then is just the result,

which also can be obtained from the paper of G. Bjorck [2]. One also sees, that the relative
growth of M (t) and m(t) is important, when changing from condition (1.1) to condition
(M2). Of course, 11) 1s not equivalent to 1) and iii) in general by the results of R. Braun, R.
Meise and D. Vogt [4, 5].

Corollary 3.5. Let M, = e, ¢>0.The following are equivalent:
i) P(D) issurjective in 2, \(L2)’

1) P(D) Is surjective in %’{Mﬂ}(ﬂ)

i) P(D) is surjective in 2(£2)'
1v) Q 1s P-convex and P-convex for singular supports.

Proof. This follows from Corollary 3.4 in the same way, as Corollary 3.3 follows from
Theorem 3.2,
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2

Notice that the ultradifferentiable classes for M, = e°® are distinct for different ¢, while
the surjectivity of P( D) coincides, since m(t) is equivalent for any ¢ in this case. The same
remark applies to general ( M, ), satisfying (1.1) and the sequences N, := []...m{;/q,

¢ > 0, since N is equivalent to cM in this case.

Proposition 3.6. Let (M), ., satisfy (1.1).
Let K cC R" beconvexand p € & \(R"). Then &, — ss(p) C K if and
only if there is d > O such that forany n> 0 thereis C_ > 0 such that

(3.10) I Imz] <n(m(2)+1) = |p(2)] < CHEH-"'{I’“ 2)—-M(z)+dm(z)
Proof. The necessity of (3.10) follows similar as in Theorem 7.3.8 in [10]. The proof of
sufficiency of (3.10) 1s even simpler than in [10], since we can use the Fourier inversion

formula and Cauchy’s integral formula directly: Let z, € K and A > 0. We have by (1.3)
M(Az) < M(z) + C;m(z2) for some C;.
With C from (1.2) choose 7 € R¥ such that
He(m) —(n,z4)+ C(Cy + d) < —B,
where B 1s chosen by (M2’) such that
e 5™ e L (RY).

We may substitute m(t) by an equivalent C*-function also denoted by m(t). Let I :=
{z+inm(z) |z € RV},

o) = @ [ otaretenla

Using (3.10) we get
sup { [ (z0) | AP/ M, |6 € N, } <

<c, -/EHH-(ﬂm(I)HEG:[+d}m{I+iﬂm(:r})-{n.Ig)m(I)dm <

<C, /E(Hm:w(cl+d)—<n.:ﬂ}3m(x)dI <C, fe‘ﬂ"“(ﬂdm < oo
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since (1.2) and (M3’) imply by Lemma 4.1 in [12], that
m(z+ mm(z)) < Cs+m(2z) < Cg + Cm(z) for any z.

This shows that p € & m,( K), since the choice of 7 is locally uniform with respect to
I .

A standard application of Proposition 3.6 now shows, that P( D) is surjective in & { Mﬂ}(ﬂ) ,

if 2 1sconvex and 1f (M), satisfies (1.1). Of course, this is in contrast to the case, where
(M,),5o satisfies (M2) ([4, 5]).

Corollary 3.7. Let (M), satisfy (1.1) and let L2 be convex. Then P( D) is surjective in
@{MJ(Q)’ and in &’{Mu}(ﬁ).

Proof. 2 is P-convex. Let f € .@{M‘:}(Q) and let K CC £ be convex. Let gjm{,) _
ss(P(—D) f) be contained in K. Then P(—z)f satisfies (3.10) by Proposition 3.6 and
the Malgrange-Ehrenpreis lemma shows, that f also satisfies (3.10), so & (M) ~ ss( f) 1S
contained in K by 3.6 again, and Q2 is P-convex for (& M) Y (m.)) — ss. The conclusion
now follows from Corollary 3.6.
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