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A CHARACTER-THEORY-FREE CHARACTERIZATION
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Abstract. The existing proofs of the characterization of the Mathieu group M,, by the cen-
tralizer of one of its involutions make heavy use of the theory of group characters. There was
a strong feeling that in small cases like this character theory was absolutely indispensable fo
make up for the poor local structure faced with in such situations. Up to now, the characteriza-
tion of M, has served as an illustration of the power of the theory of exceptional characfers.
Here, in the course of the post-classification effort to simplify proofs, we show that M,, can
be treated in a completely elementary and group theoretical way while carrying out each step
of the argument in detail.

INTRODUCTION

The objective of this paper is to present a character-theory-free proof of the following result:

Theorem. Let GG be a finite nonabelian simple group which has the following two properties:
(a) The center Z of a Sylow 2-subgroup T of G is cyclic;

(b) if z is the involution in Z , then the centralizer C of z in G is an extension of (z)
by the symmelric group of degree four.
Then G is isomorphic to M,, or L,(3) .

This theorem was stated in [6] as an easy consequence of a special case of a result of
Richard Brauer [2] proved by W. J. W/ﬂng [20; theorem 6]. Both authors made use of mainly
character-theoretical methods. For a typical proof of theorems of that genre in the character-
theoretic mode, the reader is invited to study [13; § 5, pp. 341-366]. In this paper we employ
a method introduced by H. Bender [1], an abstract definition for the Mathieu group My,
discovered by J. A. Todd [18], and a presentation of the projective special linear group L4 (3)
which can be found in § 3. Along similar lines, an elementary and completely character-
theory-free proof of a characterization of the Mathieu-group M,, by the centralizer of a 2-
central involution has been obtained in [9]. As for such characterizations of M,, and M,,
done by Z. Janko [14], it has been shown in [10] that one has not to recourse to the theory
of exceptional characters; as for an analogous characterization of M,, [7; § 5] it has been
proved in [8] that one can do without invoking a block-theoretic result of R. G. Stanton [15]
the proof of which has never been published in detail.

Mathematics subject classification (Amer. Math. Soc.): 20 D 05 and 20 D 08.
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1. PREPARATORY LEMMAS

Lemma 1.1. The group C is isomorphic to GL,(3).

Proof. Assume that C splits over (z). Then, a Sylow 2-subgroup of C, which obviously is a
Sylow 2-subgroup of &, would not have a cyclic center. This contradicts (a). There are only
two possibilities for a central non-splitting extension of a group of order 2 by %, . These are
G'L,(3) and a group with a generalized quaternion group of order 16 as a Sylow 2-subgroup.

Assume by way of contradiction that T was a generalized quaternion group of order 16.
Since each element of 7% is a root of the involution z, two elements of T are conjugate in
G if and only if they are conjugate in €(2) = C. Applying [5; 7.3.4] we compute

T=TNG = (z7"y|z,y € T,z #nd y conjugate in G) =

= (z7'y|z,y € T,z and y conjugate in C) C C'.

The fact that C/{(z) is isomorphic to X, yields |C'| = 23 -3, contrary to T C C’. Thus
C = GL,(3), and the lemma is proved.

In what follows we shall identify C with GL, (3) using the following correspondences
with entries from G F(3):

(2 0 1 0 1 1 1 1
z— T — G — ,d —

0 2 0 2 2 1 0 1

We are able to compute the table I of conjugacy classes of C.

Table I

—_:-E'}ement x o(z) %2 |Co(z)] lcclo(x) | ;Eg(m)
1 1 24.3 1 C
2 2 24 .3 1 C
t 2 22 12 (z) x (t)
d 3 2.3 8 (d) x (2)
a® 4 2 23 6 (a)
dz 6 2.3 8 (d) x {z)
a 8 23 6 (a)
a~! 8 23 6 (a)

48
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Lemma 1.2. The group G contains precisely one class of involutions, precisely one class of
elements of order 4, precisely one class of elements of order 6, and precisely two classes of
elements of order 8.

Proof. We know that T" is a Sylow 2-subgroup of &' which contains a cyclic group T of
order 8 as a maximal subgroup. A lemma of Thompson [16; 5.1.8] yields that each involution
in G is conjugate to an involution in 7). But the only involution in 7; is z. Hence, &G
contains precisely one class of involutions.

Obviously, elements of order 4, 6 and 8 lie in the centralizer of a suitable involution.
Therefore, the group G contains precisely one class of elements of order 4 and precisely one
class of elements of order 6. Assume by way of contradiction that all elements of order 8 were
conjugate in G. Then, a and a~! would fuse in G. Since a* = (a~!)* = z, we see that this

conjugation should take place in C, which - however - 1s not the case. The lemma 1s proved.

Lemma 1.3. The normalizer of (d) in G is a splitting extension of a 3-group K of order at
most 27 by the four-group (z,t). Furthermore, we have K = (Cy(z)|z € {2,2)*), and K
is of exponent 3.

Proof. We have € (d) = (d) x (z) and IN 5({d)) = (d)(t) x (2) . Obviously, {z) isa Sylow
2-subgroup of € (a). Otherwise, a subgroup of order 4 in C would centralize d, which 1§
not the case. Therefore, we get €(d) = K{z), where K is anormal 2-complement of € (d)
and of IN ((d)) . This is a direct consequence of a transfer lemma of Bumnside [5; 7.4.3]. The
four-group (z,%) acts on K . Hence, the Brauer-formula [19; 1.1] - the proof of which can be
obtained as an easy consequence of Thompson’s order formula [11] - yields

| K| - |¢K(<3:3>)|2 = |Cr(2)]| [Cr()] |Cx(22)].

Obviously, we have |T ,({z,t))| = 1. Since the centralizer of an involution in & is of
order 48, we obtain |K | € {3,3%,3°}.

From the order of C we get that K is generated by elements of order 3. Since the order
of K 1is at most 27, we obtain from [5; 5.3.9] that X 1s of exponent 3.

Lemma 1.4. The normalizer of {z,t) in G is isomorphic to X, . In particular, C({z,t)) =
(z,t). All four-groups in G are conjugate.

Proof. We have € ((z,t)) = (z,t), and N »((z,t)) is isomorphic to Dg with center (z).
Similarly, N ((2,1)) NC(t) = D;g. Itfollows IN((z,t)) & Z, . Since all four-groups which
contain the involution z are conjugate in C, and all involutions are conjugate in &, the last
assertion follows as well.
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In what follows K denotes the maximal odd-order normal subgroup of N ({d)) . Appli-
cation of 1.3 yields that the order of K is equal to 3, 9, or 27. In the following sections we
shall make use of the notation introduced so far.

2. THE CASE |K|=9
In this section we argue under the assumption |K|= 9.

Lemma 2.1. The normalizer of K in G is a splitting extension of an elementary abelian
group of order 9 by a semidihedral group of order 16. Further, C(K) = K and K is a
Sylow 3-subgroup of G. All elements of order 3 in G are conjugate in 5.

Proof, QObviously, the 3-group K is abelian. Application of lemma 1.3 gives that K is
elementary abelian. Denote by ¢ an element of K* which is centralized by an involution of
(z,t) \ {z). Then, we have {d,q) = K. Since K liesin C(d) = K(z), we see that K is
selfcentralizing.

Assume by way of contradiction that 33 divided the order of N ( K). Then, K lies in
a subgroup K, of order 27 of &, and there are at least six elements in K conjugate to d

under N(K). Let x be anelementin Z(K,) N K*. Clearly, z 1s not centralized by an
involution in &G. Since {z,t) acts on K, we see that z is conjugate to at least four elements
in K. Hence, z and d would be conjugate in G. This contradicts the fact that 33 does not
divide the order of N ({(d)) . Therefore, the 3-group K is a Sylow 3-subgroup of .

From a lemma of Burnside follows that d and ¢ are conjugate in N ( K'), since they
are conjugate in . Therefore, we have N(K) D K(z,t). Note that IN(K) must be a
{2,3 }-group by the order of GL,(3). Hence, N(K) = KS, where S is either a dihedral
group of order 8 or a Sylow 2-subgroup of .

By way of contradiction we assume that S had order 8. Then, the element d has precisely
four conjugates lying in K . These are d, d~!, g, and ¢~' . Hence, the element dg of K is
not centralized by any involution in &, and we obtain €(dg) N IN(K) = K. Therefore,
each element in K* would be conjugate to dg in N ( K) , which, however, is not possible.
The assertion follows.

Lemma 2.2, Let x be an element of order at least 3 in N(K) . If o(z) = 4, assume that
C(z) C N(K). Then, we have N 5({z)) C N (K). The only elements of N (K)* which
are centralized by involutions of G \ N( K) are involutions.

Proof. Let § be a Sylow 2-subgroup of N ( K) containing z, and let r be an element of
order 8 in S. Then, the involution r* acts fixed-point-freely on K, and r* = r> holds.
We are able to compute the conjugacy classes of S and of N (K):

S:1-1+1.7* 44 242 .72 44 .2r42 . 7+2 .17

N(K):1-149 -7 412 -2+8-d+18 72 +36 -2r+24 -dz+ 18 -r+ 18 - v 1.
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Wehave o(r) =8,0(2) =2,0(d) =3,0(z2r) =4,0(dz) =6.

Since N ({d)) C N (K) and all elements of order 3 of N( K) are conjugate in N ( K),
the assertion follows for elements of order 3. |

The element dz represents the unique class of elements of order 6 in IN( K) . One easily
sees that N ((dz)) = (dz)(*rd') holds. This yields N ((dz)) C N(K).

Obviously, the centralizer of an element of order 4 is cyclic of order 8. Therefore, we only
have to look at »?. Since ('rz) 1s normalized by §, it follows IN ( ('rz}) C N(K).

Let z be an element of order 8 in N ( K) . We have €C(z) = (z). Together with the fact
that z is not inverted in G we get N ({z)) C N(K).

Since the centralizer of an element of order 4 is cyclic of order 8, the last assertion follows
immediately. The lemma 1s proved.

Lemma 2.3. The order of G is equal to 2% - 3% .5 . 11.

Proof, Put
J = set of all involutions in G,

H=N(K),

b, = number of cosets Hg ¥ H such that |[HgNJ| = n,

n

f=WJI/IG:H)) =1=|H|/|C]-1=2.

We want to determine the numbers b for n > 2. For this purpose we have to look only
at the involutions in G \ H which invert a nontrivial element in H . Note that 2.2 completely
describes such elements.

Let z be an element of H* which is inverted by an involution outside H. By 2.2 the
order of z is equal to 2 or 4. First we assume o(x) = 4. Then, we have H N C(z) = (z).
The normalizer of (z) in &G is a Sylow 2-subgroup of G, and € ,(z) ¥ Zg. The normalizer
of {x) in H isisomorphic to Qg . Therefore, z is inverted by precisely four involutions none
of which lies in H. Assume next that = is a 2-central involution in H. Then C(z) N H
contains precisely five involutions. Hence, z is centralized by eight involutions of G \ H.

Finally, we look at the case that z is an involution which does not lie in the center of a Sylow
2-subgroup of H. Then, € ,(z) is of order 2% -3 and contains precisely seven involutions. It
follows that z is centralized by six involutions of G \ H .

Let v and w be two different elements in H* with v ¢ (w) and w ¢ (v). Assume
that v and w were inverted by the same involution 1 of G \ H. We distinguish four cases
suggested by 2.2.

Case 1. Here, we have o(v) = o(w) = 2. Then, 1 centralizes the element vw of H .
Applying 2.2 this yields that vw is also an involution. We obtain (v, w) = E, , and therefore,
it follows € (v) N C(w) = (v, w) by 1.4. This gives the contradiction 1 € C(v) N C(w) =
(v,w) C H. Case 1 is not possible.
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Case 2. Here, we assume o(v) = 2, and o(w) = 4. Then, 1 centralizes the involutions
v and w? . Case 1 yields v = w?,ie. v € (w).

2

Case 3. We have o(v) = 4, and o(w) = 2. Thus, 1 centralizes the involutions v* and

w. Case 1 forces v2 = w,s0 w € (v).

Case 4. Here, we have o(v) = o(w) = 4. Thus, [v%,i] = [wz,i] = 1, and case 1
implies v> = w?. Then, we have v,w € O,(C(v?)). Remember that O, ( C(v?)) &
O, (C) is a quaternion group. Compute (vw)® = v'w' = vw™! = vlw?w = vw.
Obviously, vw is an element of order 4 in H . The structure of C yields 1 = (vw)?*. This is
not possible, since 1 does not lie in H . Hence, case 4 does not occur.

Summarizing the above results we get that a coset of H different from H cannot contain
precisely three involutions and that it cannot contain more than four involutions.

Now, we are able to compute the numbers b forn > 2. Wehave b; =b_ =0 (m > 5).
The subgroup H contains precisely 36 elements of order 4 which are inverted by an involution
of G\ H. Therefore, we have precisely 18 cosets of H in G which contain exactly four
involutions. Since a 2-central involution of A is centralized by four of these 36 elements
of order 4 and by precisely eight involutions of G \ H, we have that each involution of
G\ H, which centralizes a 2-central involution of H , acts invertingly on a cyclic subgroup
of order 4 of H which contains the 2-central involution. These involutions in G\ H have
been considered above.

Now, to compute b, , we have only to look at the twelve non-2-central involutions in H .
Each of them is centralized by six involutions of G \ H . Therefore, we count

A result in [1] forces

by < fTI([JNH|+by+2by +3by+..) —1—by—by —by —...=

1 1
=E(9+12+ 36+0+3-184+40)—-1-36-0-18= 5

Therefore b, = 0.
We are able to compute the order of GG':

Gl=|-ICl=(JNH|+) i-b)-|C|=
ieN
=(|[JNH|+2 -by+4-b,) |C|=

=(21+2-36+4-18)-48=2%.32.5.11=|M,,|.

The lemma 1s proved.
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Lemma 24. If ¢ is an element of order 11 in (G, then the normalizer of (€) in G is a
Frobenius-group of order 5 - 11. The group G contains precisely two classes of elements
of order 11.

Proof, Lemma 2.1 and the structure of C yield that C(e) is a {5, 11}-group. Sylow’s
theorem gives that IN ({¢)) has order 5 - 11. Now, the assertion directly follows from a
transfer result of Burnside.

Lemma 2.5. Let f be an element of order 5 in G. Then C(f) = (f) and N({f)) is an
extension of (f) by a cyclic subgroup of order 4. All elements of order 5 in G are conjugate
in .

Proof, Application of lemma 2.1, 2.4, and the structure of C yield that € ( f) 1s a S-group.
Therefore, € ( f) = (f) holds. The theorem of Sylow completes the proof.
Now, we are able to state the following lemma.

Lemma 2.6. The conjugacy classes of G are uniquely determined, and we list them in table
Il. Here, f denotes an element of order 5 and € an element of order 11,

Table 11

Element x o( ) Co(x)] leclg(z) | Co(x)
1 1 24 .32.5.11 1 G
z 2 24 .3 165 C
d 3 2 .32 440 K{z)
a? 4 23 990 (a)
f 5 5 1,584 (f)
dz 6 2.3 1,320 (d) x (2)
a 8 27 990 (a)
g~} 8 2° 990 (a)
: 11 11 720 (€)
€ 11 11 720 (€)

7,920
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Lemma 2.7. Assume that G contains a subgroup of index 12. Then, G is isomorphic to
M]l -

Proof. The group G acts on the cosets of a suitable subgroup M of index 12in . Hence, we
may and shall assume that G is a subgroup of A,;, which acts transitively on the set of twelve
symbols = {1,2,...,12}. Since a Sylow 11-normalizer of A;, is a Frobenius-group of
order 55, we may further assume that

a=(1,2.3.4.56,7,8,9,10,11) and
pg=1(1,4,5,9,3)(2,8,10,7,0)

lie in G, and that {«, 8) is a Sylow 11-normalizer of G. We have
o =a o =,{35 = 1.

From lemma 2.5 we get the existence of an element ~ of order 4 in G so that 7 = 8°.

We have G = {a, ,~), namely: Assume false. Then U = («, 8, ) is a proper subgroup
of G the order of which is divisible by 2% -5 - 11. The theorem of Sylow yields |U| =
2% .3 .5 .11. Hence, a Sylow 2-subgroup is cyclic of order 4. From a transfer lemma of
Burnside [5; 7.4.3], we see that U has a normal 2-complement, say X . Then, a Sylow 11-
subgroup of X is normal in X . It follows that G contains an element of order 33, contrary
to 2.6. This proves G = (&, 8,7) - |

Since G = {a, ,7) acts on Q transitively, and since we may replace « with y8°(1 <
i < 4) , one easily sees that we have only the five possibilities Q},‘, for ~:

v =1(1,2,4,10)(3,7,5,6)(8,9)(11,12);
1 =1(1,2,5,6)(3,7,9,8)(4,10)(11, 12);
v =(1,2)(3,7,4,10)(5,6,9,8)(11,12);
v =1(1,10,3,2)(4,6,9,7)(5,8)(11,12);
v =(1,8,5,2)(3,6,9,10)(4,7)(11,12).

We compute o( o™ By;) = 35, o{afy,) = o(afys) = 10. Since G does not contain
elements of order 35 or 10, we have v € {~,,7, }. Obviously, the following relations hold:

D) o'=pf=q'=1,0f=0",pi=p (1<i<2);

(i) ((®)*43)? = (B])? = (2 Py,)’ = 1;

(i) (a’43)° = (B13)? = (afm)’ = 1.

A result of Coxeter and Moser [4; p. 99] implies G = {&,8,7) ¥ {a,8,1) T (o, B,
v, ) ¥ My, . This proves the lemma.
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Theorem 2.8. The group G is isomorphic to M, .

Proof. For the purpose of this proof we change our notation completely and use only struc-
tural information obtained so far. Let K be a Sylow 3-subgroup of G and denote by H its
normalizer in G. Since H 1s an extension of A = Ejy by a semidihedral group of order 16,
and since C(K) = K, the group H 1s uniquely determined up to isomorphism. Studying
Todd’s presentation for M, 1n [18] we see that we are able to find elements a, b, ¢, and e 1n
H sothat H = (a,b, c, e) and the following relations holds:

i a*=1,0"=1,a*=b,a"=0a""!,

(i) ¢ =1,c*=(bo)*, c®=(ac)?,

(iii) e =1,a=ab, b¢=b"", ct =c.

Note that o* = b% = ¢ = ¢* = 1 means here that o(a) = o(b) = 4 and that ¢ and ¢
are involutions. Direct computation shows that K = (a”c, aca) holds. The centralizer of a?
is isomorphic to GL,(3). Since C(a?) N H = (a,b, e) is a Sylow 2-subgroup of H, it is
easy to see that there is an involution d in G'\ H so that

(iv) &> =1,a%=a"", b%=ab, (ed)’ = 1.

It follows € (a®) = {(a,b,d,e) = GL,(3).

It 15 our aim to determine the order of cd. Since cd i1s inverted by an involution, for
example by ¢ or d, we get that o(cd) is equal to 1,2, 3, 4, 5, or 6 from 2.6. Since ¢ iies In
H , but d does not, 1t follows that the order of cd i1s not equal to 1.

We split our argument into five cases:

Case 1. Assume o(cd) = 2. By the proof of 2.3 the coset Hd # H contains precisely
four involutions, namely ad, a*d, a’d, and d. Since cd is an involution, we get cd € (a)d.
Hence, the element ¢ lies in (a) which is not possible, because a?c is an element of order 3
in . We have shown that o(cd) # 2.

Case 2. Here, we have 00(cd) = 4 . Using the relations in (iii), and (iv) we get

(cd) % = c®ed°% = e = edcdee = edcd.

Hence, edcd is an element of order 4 which is centralized by the involution c. It follows
e(dcd) € O,(C(c)) by the structure of the centralizer of an involution in G. Hence, we

have e(dcd) € H, consequently (cd)? € H and cdc is an involution in Hd. The fact that
Hd+# H contains precisely four involutions forces cdcd = a%. But (cd)? centralizes ¢ and
a® does not. This contradiction shows that the possibility o( cd) = 4 does not occur.

Case 3. Now, we consider the case that the order of ¢d is equal to 6. Then, the involution
(cd)?® doesnotlicin H , namely: if the assertion were false, then the involution ( ¢d) > d would
lie in Hd. But Hd contains precisely four involutions, and this implies (cd)® = a? which
is against o(ca®) = 3. Thus, (cd)® € C(c) \ H.
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We have a2, (cd)® € € (d). Hence, the order of a%(cd)? is 1,2,3,4, or 6. Remember
that an element of order 8 is not inverted by an involution in . If (cd)? centralized a? , then
(cd)? would liein € (a2c),against (cd)® ¢ H,but €(a%c) C H. Hence, o(a®(cd)’) ¢

{1,2}.

Assume next o(a?(cd)3) = 3. Put A = {c,a?,(cd)’). We know that the relations of
the following diagram hold in A:

Oo—O0—O
c a (cd)’

Thus, A ¥ Z,. Note that A contains {a*,c) = X, as a proper subgroup. From the
relations in (i) to (iv) we obtain

(cd)® “ = d(ca®c)da? cd = da®c(a® da?) cd = da?cded =
= a’dcded = a*c(cd)’ € A.

Hence, there is an element of order 6 lying in A, contrary to A = X,. The order of
a’(cd)’ is not equa] to 3.

Assume now o(a%(cd)’) = 4 . Since d centralizes a 2(cd)? ,wehave d = (nz(cd) )¢ =
a?c(dcded)a? (ed)? . It follows

d = deded = ca®(d(dc)3)a? = (ca?c)dedea® =

= a’¢( a’ d)r_‘:dcuz = a*cd( ﬂzc) dca? = (ﬂzc)dcaz

which, however, is not possible, since d is an involution and o(a®c) = 3. This forces that
a?(cd)? is not an element of order 4.

Finally, we have to treat the case that of a2(cd)?) = 6. Since d centralizes a?(cd)’,
the structure of the centralizer of an involution in G implies d = (a®(cd)?)?. Hence,
(a?cdcdc)® = 1. We have obtained the following diagram |

Note that a2ded = d(a?c)d holds. Put B = {(aZ,c,dcd). Let B* be the abstract group
generated by a2, ¢, and dcd so that the relations implied by the above diagram together with
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(a?.c-(ded) -¢)° = 1 hold. We make use of the Todd-Coxeter-enumeration-method described
in [4]. It follows that the order of B* is 54, and therefore |B| € {2-3,2 .32 }. Inany case, B
is 3-closed and lies in N ({a’c)) C H . Note that (a*,c) & Z, is a subgroup of N ({a*c)).
This proves (cd)? € K , since (cd)? is an element of order 3 of H . Consequently, cd € H,
since cd centralizes the element (cd)? of K, and we conclude d € H which, obviously, is
a contradiction. We have shown that o(a?(cd)’) = 6 does not occur.

Therefore, we have obtained a contradiction to the assumption that the order of cd would
be equal to 6.

Case 4. Consider the possibility o(cd) = 5. Here, the relations described by the follow-
ing diagram are obviously satisfied:

Let B* be the abstract group generated by a?, ¢, and d together with the relations between
these generators given in the above diagram. Then, we have B* = Z, x Ag. Since an
involution does not centralize an element of order 5 in G, it follows {(a*,c,d) = A, and
consequently (a?cd)® = 1. Itis easy to verify that the abstract group C* - defined by the
above diagram together with the additional relation (a%cd)> = 1 - is isomorphic to L,(11).

We refer to [3] where these defining relations can also be found. This implies {a?,c,d, e) &
L,(11),and G contains a subgroup of index 12. By lemma 2.7, the assertion follows in this
case.

Case 5. Here, the order of cd is equal to 3. A result of J. A, Todd in [18] gives that
(a,b,c,d,e) is isomorphic to M,, . Since |G| = |M|,|, we have G = M,.
The theorem 1s proved.

3. THE CASE |K| = 27
Here, we argue under the hypothesis |K | = 27.

Lemma 3.1. A Sylow 3-subgroup of GG is extra-special of order 27 and exponent 3.

Proof. By way of contradiction we assume that K was abelian. Application of 1.3 yields that
K is elementary abelian. Obviously, we have C( K) = K. Hence, the order of N(K) /K
devides 24 - 32 . 13 . We split our argument into two cases.

Case 1. Here, K isaSylow 3-subgroup of G. Note that (z,t) actson K and that € ({d))
lies in the normalizer of K . Therefore, the factor group N (K)/K isa {2,13}— group,
and its order is divisible by 4. Furthermore, the element d has at most 26 conjugates under
the action of IN( K'), and it has at least six conjugates under N ( K) , namely the elements in
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C K(z)# uc ﬂr(t)“* U (EK(zt)# , since these are conjugate in . This follows immediately
from a lemma of Burnside. We obtained

IN(K)/K| e {2%,2%-13}.

Since GL,(3) does not contain a subgroup of order 22 .13, it follows [N (K) /K| = 24.
Let T} be a subgroup of order 8 of IN( K') containing {z,t), and let = be an involution in
Z(T,) N(z,t). Then, T} actson C ,(z) which is group of order 3. Therefore, an element
of order 3 in € ,(z) is centralized by a group of order 4. This contradicts the structure of
€ (d) . Note that (d) and C ;(z) are conjugate in G. Case 1 does not occur.

Case 2. Here, the order of G is divisible by 3. Note that by assumption K is still
abelian. We get that K is normal in a suitable subgroup of order 34 of G. We have € (d) C
N (K) and the fact that d has at most 26 conjugates under the action of N ( K') . Therefore,
we compute

IN(K)/K|€{2*-3,2%.3%,2%.3,2% .3},

In what follows we shall rule out these possibilities.

Case 2.1. Here, we consider |[N(K)/K| € {2° -3,2% .3}. Let T, be a subgroup of
order 8 of N ( K') which contains (z,t),and let z be an involution in Z(T}) N (z,t). Then,
a contradiction follows as in case 1.

Case 2.2. [N(K)/K|= 2% -32%. The factor group N = N(K)/K actson K. Since
(z,t) normalizes 0 (IN (K)), it follows that 0 (N(K)) = K and 0(¥ ) = 0,(XN) = (1)
holds. Hence,we see that 0, (X ) = 0;,(X ) isagroupof order 2 or4. In any case, an element
p of order 3in N centralizes an involution r in 0, (). Therefore, p centralizes € ()
which is a cyclic group of order 3 conjugate to (d). We see that (d) would be centralized by
a group of order 3* in G which is not possible.

We have shown that the cases 2.1 and 2.2 do not occur. In what follows we have to deal
with the case [N (K) /K| =22 -3.

Put ¥ = N(K)/K. Since 0(X) = (1), we getthat 0,(N) # (1). Let p be an
element of order 3 in N . Assume that p centralized an elemeni r of order 2 in XN . Then,
we get a contradiction in the same way as in case 2.2. Hence, 0, (X ){p ) is isomorphic to
A, , and so, the normalizer of K in G is an extension of K by A, . Since 0; ,(N(K)) =

K (z,t), the Frattini argument yields that this extension splits.
Denote by P an element of order 3 which acts on {z,t) so that 2P = t. Under p we have

Ci(2) = Ci(t) o Cx(2t).

Hence, there exist elements ¢ and r of order 3 in K, so that {g) = € (1), {(r} =
Cy(zt),and p: d — ¢g-— r — d hold. Note that D = K (p) is a Sylow 3-subgroup of
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N ( K). One easily sees that K is the only abelian subgroup of order 27 of D as Z (D) =
(dgr). This forces IN (D) = D, and consequently, DD is a Sylow 3-subgroup of G'.

By a lemma of Burnside the 3-central elements dgr and (dgr) ™! are not conjugate in G .
The element gr is not conjugate to d in G, since such a conjugation would be performed 1n
N ( K) ; but d has only six conjugates under the action of IN ( K) and ¢r is not among them.
Further, we get that gr 1s not a 3-central element, since it 1§ inverted by the involution 2.

We have obtained the following result: there are precisely four GG-classes of elements of
order 3 passing through K with representatives d, gr, dgr, and (dgr)~!; note that these
elements are also representatives for the N ( K)-classes of K* . We have C(d) = K(z),
C(gr) NN(K) = K,and C(dgr) NIN(K) = C((dgr) " ) NN(K) = D.

We are now able to determine the structure of C(gr). Put A = C(gr),and N =
N ({gr)) . Since z inverts gr, we have N = A(z). Obviously, the order of A is odd. We
know that N( K) N A = K. Note that K is a Sylow 3-subgroup of A. A transfer lemma of
Burnside yields that A has a normal 3-complement, say X . Since X = 05,( A) , we sec that
X is a normal subgroup of N . Denote by R the subgroup {gr,qr~')X of A. Obviously,
the involution 2z acts on K. Since C(z) N N = (z)(d) holds, it follows that the action of
z on R is fixed-point-free. Therefore, the group R is abelian. The element ¢ of order 3 is
contained in K. This yields £ C €(gq) = K(t). Consequently, we have E C K , since R 1S
of odd order. By the definition of R we get R = (gr,qr—"') and X = (1). Further, we have
N ({g7)) = K(=2).

Let H be the subgroup K{z,t) of G. The order of an element of H is always equal to
1,2,3, or 6. The above result yields that elements of order 3 or 6 in H* are not inverted by
an involution of G\ H ; note that K {z,t) is normal in N ( K) . Furthermore, the involutions
of H are the only elements in H* which are centralized by an involution of G \ H . These
facts are basic to the following computations.

Let z and y be two different involutions in A . Assume that there was an involution ¢ in
G\ H which centralizes both z and y. Then, we have 1 € € (zy) . Therefore, the element zy
of H isoforder2, and {x, y) is a four-group. Hence, itfollows 1 € C({z,y)) = (z,y) C H,
contraryto1 € G\ H.

We are 1n a position which allows to apply the method of H. Bender [1] introduced in § 2
with respect to the subgroup H of . We use the same notation as in 2.3.

From the above results we get b, = 0 for + > 3. Each involution in H is centralized
by a subgroup isomorphic to 2, x Z, in H . Furthermore, there are precisely 27 involutions
lying in H . Thus, we compute b, = 3 - 27 = 81. Hence

2 X 22

This imphes b; < 4. Obviously, the group A acts regulary on the set of all involutions z
of G\ H with €C(z) N H = (1). But the number of these involutions is b, . Therefore, the
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order of H devides b, , and so b, = 0. Now we are able to compute the order of G

IGl=|C|-(JJNH|+b; +2 -bz)=2"'l 3.(27+0+2-3-27) =

=24.3%4.7,

Let S be a Sylow 7-subgroup of G. Then, S is not centralized by an element of order 2.
The theorem of Sylow yields

IG: N(S)| e {2 -34,2°).

Assume first that |IN (S)] = 2 -3*.7 . Here, a Sylow 3-subgroup D, of G normalizes S.
The theorem of Sylow forces N (D,) "IN (S) D D,, contrary to the fact that N(D) = D
holds. If [N(S)| = 7, then a transfer lemma of Burnside [5; 7.4.3] gives a contradiction to

the simplicity of &G |

We have arrived at a contradiction to the main assumptinn. It follows that K is not abelian.

Obviously, the center of K is equal to (d), since K liesin €(d). As K is nonabelian,
it follows K' = Z( K) = ®( K) . Further, K 1is of exponent 3 by 1.3.

Assume by way of contradiction that K was not a Sylow 3-subgroup of &G. Then, K is
a normal subgroup of a suitable subgroup K, of order 3* of G. Since (d) = Z(K), it
follows that K, liesin ©(d), contrary to K € Syl;( €(d)). The lemma is proved.

Lemma 3.2. Let 8 # (1) be a group generated by elements » ,x ,g ,z,t,u and s with the
following relations:

(3) 23=r3=g3=1,rdr=3,g7'rg =27 g7 2g =2,

(i1) 22 =1, (zx)? =1, 2>z =d, (zg)* =1,
(i) 12 =1, (zt)? =1, (tr)? =1, (12)* =1, tgt =g,
(iv)u?=1, uzu =2t, uru ="',

(v) g2 = l, sx8 =t, 8gs =i‘.‘rh1l (us)’ =1, (u:q)3 =1.

Then ® is immarbhfc to L,(3).

Proof. Coset enumeration yields that the order of the abstract group ® * defined by the above
relations is equal to 24 - 33 . 13 which is the order of L,(3).
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Note that L;(3) & SL,;(3) holds. With the identification

1 0 07 71 2 07 1 0 07 1 2 07
»x—- |0 1 0|, z—-|0 1 O|,g—=]0 1 O0},—>}10 2 O],

0 2 1] 0 0 1 1 1 1 L0 0 2

S — . i

2 1 07 0 1 17 1 0 07
t -0 1 0|, u— {0 2 Of,ands — |2 2 O,

0 0 2. 1 1 0 0 0 2.

with entries from G F(3), the above relations are obviously satisfied. Hence, we get & =
®* = L,(3). This completes the proof.

Lemma 3.3. The group G contains a subgroup isomorphic to L;(3) .

Proof. Let R, be the elementary abelian subgroup (C ,(2), € ,(t)) of order 9. Denote by
P, the normalizer of R; in . Obviously N({(d)) C P, and C(R,) = R,. Consider
the group N( @ ,(2)). Since (d) and C 4 () are conjugate in G, there exists an extra-
special subgroup L of order 27 such that N ( € ,(t)) = L{z,t). Clearly, L{z,t) # K(z,1),
R, = KNL,and R, isnormalin (K, L). Thus, P, /R, is not 3-closed and contains a four-
subgroup. This forces P, /R, = GL,(3). Since zt acts invertingly on E, , the subgroup
R,{z,t) lies normal in P, , and the Frattini argument yields that P, splits over R, .

Similarly, if P, = N(R,) with R, = (Cx(2), Cx(2t)) then C(R,) = R, and P, is
a splitting extension of R, by GL,(3). We remark that ¢ acts fixed-point-freely on F, .

In what follows we shall show that (P, P,) is isomorphic to L,(3). Since P, is a
splitting extension of R, by a group isomorphic to GL,(3), and since C(R;) = R;, we
can choose elements ¢, r, and s in P, sothat R, = (d,q), P, = (d,q){r,2,t,s), and the
following relations are satisfied:

D L=r=¢@=1,=d=4d, ¢ =dg,
) 22=1,(2n)?=(2¢)*? =1, d*=d,

() t* =1, (2t)* = (tr)* =(td)* =1, ¢' =g,
(V) s*=1,2"=t,¢°=d7".

The relations in (I) imply 79 = rd~' . Obviously, we have N ({d)) = {d, ¢, ){z, 1), hence
K = {(d,q,r). The group R, isequalto (d,r). Let X be a complement of R, in P, with
(2,t) C X . Then X is isomorphic to GL,(3), and consequently X contains an involution
u which acts on (z,t). Since ¢ acts fixed-point-freely on R, , the element u interchanges z
and zt. Because z and 2zt are not conjugate in P, , the involution v cannot lie in P, . Note
that 2tR, € Z(P,/R,). We have

(Cp,(2)" = Cpq (2%) = Cp (21),
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hence & € {r,r~'}. Interchanging v and tu if necessary we may and shall assume that
d* = r~! holds. We remark that P, = (d, q,r, 2,t,u), since (d,q,7,2,t)/R, & Z; X Z, is
a maximal subgroup of P, /R, = GL,(3).

Now we are able to describe the action of u, 2, and ¢ on R, . Compute

uwid—r ! —d,

zid—dr—ort,

g:d—dr—d'r—odr—or

One easily sees that (uzq)? € C(R,) = R, . Hence, the order of uzq is equal to 3. This
follows from the fact that K is a Sylow 3-subgroup of G which does not contain an element
of order 9.

Both u and s lie in N ({z,t)) which is isomorphic to Z,. Their action on (z,t) is
described by

u:t—ot,2z— 2t
s:t— 2,2t — 2t.

Thus (us)® € C({z,1t)),and the order of us is equal to 3 or 6. But a group isomorphic
to X, does not contain an element of order 6. So, we have obtained o(us) = 3.

Summarizing the above results we get

(V) ut=1,2%=2t,r"=d"', (uzg)> =1, (us)’ = 1.

Lemma 3.3 yields - together with (I) to (IV) - that {P,, P, ) = (d, ¢, r, 2,1, 8, u) 1S iISOMOr-
phic to L, (3). The lemma is proved.

Theorem 3.4. The group G is isomorphic to L;(3).

Proof. By the preceding lemma, the group G contains a subgroup M i1somorphic to L;(3) .
We have |C ,,(i)| = 48 for any involution ¢ in M. Hence €, (1) = € (1) for all these
involutions.

Assume by way of contradiction that M was a proper subgroup of G. Clearly, |M| is
even, |(,eq M?] 1s odd, and N (7™) = T holds for a Sylow 2-subgroup T of M . By a
lemma of Thompson [17; 5.35], there exists a subgroup M, of M so that the order of M,
is odd and M = M, C(;) holds for a suitable involution ; of M . Hence, the order of M,

is divisible by 32 - 13. But L, (3) does not contain such a subgroup. This contradiction
completes the proof.

4. THE CASE

K|=3

Finally, we have to handle the case |K| = 3. Here, K 1s a Sylow 3-subgroup of &, and
all elements of order 3 are-conjugate in G . By 1.4 the normalizer of {z,?) in G is isomorphic
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to Z,. Denote by r an element of order 3 in IN({(z,t)) with 2" = t. Further, let g be an
involution in N ((2,t)) which inverts r» and centralizes z. Since all elements of order 3
are conjugate in G, there exists an element [ of order 2 in € ((r)). Then, [ centralizes g.
Note that IN ({d)) is isomorphic to Z; x Z, . Denote by U the subgroup of G generated by
z,t,r,g and [,

Lemma 4.1. The subgroup U of G is isomorphic to Xs .

Proof. We have z,l € C(g). Since all involutions in G are conjugate, it follows o( zl) €
{1,2,3,4,6}. Obviously, the order of 2l is not equal to 1. Put S = (z,t){r,g). Then,
S=L,.

Assume by way of contradiction that (z[)* = 1 held. Then, we see that | lies in C((z,
g)). But (z,g) is selfcentralizing. Therefore, [ is contained in {z,t,7,9) = §. But no
involution centralizes an elementof order3in S = X, ,contraryto L € SN C(r).

Now, we assume o( zl) = 3. Since r acts fixed-point-freely on (z,t) and centralizes [,
we compute 3 = o( zl) = o(tl) = o(ztl). Hence, the relations 2? = > = t2 = (z1)? =
(tl)° = 1 force {z,t,1) & Z,. By the structure of X, it follows o( ztl) = 4, contrary to
(ztD? =1.

Next we assume o(zl) = 4. We know that g lies in €(2[). Therefore, we have g =
(z1)? . Compute

St=(z,t,7,g) = (L2, ltl, 7, g) = (lzl, (1z])7, 7, g) =

= (29,(29)",1,9) = §.

Thus, the element | normalizes S'; hence it normalizes the characteristic subgroup (z,t) of
S as well. But S is the normalizer of (z,t) in G. Hence, [ lies in S, which, however, is not
possible.

We have shown that the order of z[ must be equal to 6. Since g liesin € ({zl)), it follows
g = (20)? . Taking into account the structure of € (g), we compute

(l""'('.'*'g))3 = zlzr(gzlzrg) zlzrg = zlz(rzlzr*l)zlzrg = zlzztlztzlzrg =
= zltltlzrg = 2t(tl)° zrg = 28((21)*) 2rg = ztr~ ' (grzrg) =

ztr ' el = 2t(rarT!) = 2tat = 1.

Here, we have used the equations 29 = 2t = 2, 2" =t,t" = 2t,(2t) " =2, 9=, 9= r~},

22 =13 =1,and (z1)? = g. We have obtained the following diagram:

o—O0—0—o0
( I* r¢g ¢
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Hence, the subgroup W = (I, 1*,rg, g) is isomorphic to Zs as S C W. Obviously, W is a
subgroup of U, and (I, r, g) lies in W . Further, we have

I¥ll* g = zlzlzlzg = (20)°zg = gzg = 2,

consequently z, 2" =t € W. This forces U = W, and the assertion follows.

Lemma 4.2, Let w be an element of order 5 in U . Then the normalizer of (w) in G is an
extension of € (w) by a cyclic group of order 4. For any u € C(w)*, we have C(u) =
C (w) . The order of € (w) is equal to 25 and the order of G is equal to 2% -3 - 5% . 13.

Proof, The normalizer of (w) in U is equal to {w)(y) with a suitable element y of order 4 in
U,and C,(w) = (w). Denote by F' the centralizer of w :n G'. Since |F| is not divisible
by 2 or 3, we see that the involution y? acts fixed-point-freely on F'. Hence, F is abelian
and y? acts invertingly on F. It follows €(z) = F for all elements z in F* . Put p = |F)|.

As in § 2, we apply the method of H. Bender and put H = N ({(w)) = F({y). We use
the same notation as in 2.3. The fact that €(z) = F holds for any element z in F* yields
that an involution which inverts an element of F* liés in H , and so, only elements of order
2and 4 in H* are inverted by involutions of G \ H . From the structure of the centralizer of
an involution in G we get that the only elements of H* centralized by involutions of G'\ H
are involutions. Compute - arguing similarly as in the proof of 2.3

by =, b5=0,b,=4 -9, and b, =0 for j > 4.

Assume ¢ > 25. Then, we have f=(4 -¢)/48 — 1= (p — 12) /12 . Hence,

- 12
({p+4-w+3-go)—l-4-rp—w=< -8—5)—@—1‘
w— 12

12
w— 12

by <

If o > 25, then clearly p > 35, and

12
o< (== .8-5).p—1

contrary to b, > 0. The case ¢ > 25 does not occur. Hence, in this case, p = 25 . Compute
b, <762/13 < 59.

Since b, is the number of all involutions 1 in G\ H with C(1)NH = (1),itfollows b; = 0.
Hence,

Gl=|C|-(JJNH|+b +2-b,+4-b,) =
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If we are able to rule out the case ¢ = 5, then the assertion will follow.

Assume by way of contradiction that ¢ = 5 held. Consider the subgroup U of G. Note
that U & XZ.. The fact that ¢ = 5 and that all elements of order 5 in U are conjugate in U
yields that involutions are the only elements of U* which are centralized or inverted by an
involutionof G\ U .

Let =z and z* be two different involutions in U . Assume that 1 is an involution in G\ U
which centralizes both z and z*. Then, i € C(zz") . The above result yields (z,z*) = E, .
Hence, 1 € C(z,z*) = (z,z*),conraryto 1 € G\ U .

We are able to apply the method of Bender again using the same notation as before. Here,
we consider the subgroup U in the role of H. Obviously b, = 0 for 1+ > 3. Note that
U contains precisely two classes of involutions with centralizers in U isomorphic to D or
Z, X X, . Hence, we have

by =15 -4+ 10 -3 =90.

Further, we compuie f = [U|/48 — 1= 2. This yields

2
by < -é—(15+10+90)—1—90 <0,

contrary to b, > 0. We have shown that p = 5 does not occur. The lemma is proved.

Lemma 4.3. A Sylow 13-normalizer of G is a Frobenius-group of order 2% - 13.

Proof. Obviously, a Sylow 13-subgroup is selfcentralizing. Hence, the assertion follows by
the theorem of Sylow.

Lemma 4.4. Let F be a Sylow 5-subgroup of G. Then, the normalizer of F' in G is a
splitting extension of the elementary abelian subgroup C(F) = F of order 25 by SL,(3).
All elements of order 5 of G are conjugate. The group G contains only elements of order 1,
2,3,4,5,6,8,and 13.

Proof. The fact that C(F) = F and |F'| = 25 is a direct consequence of 4.2. Note that F' is
either cyclic or elementary abelian, and that 22 .5% divides |IIN (F)|, but 13 does not. The
theorem of Sylow yields [N (F)| € {2° -3 .5%,2% .5%}.

Consider the case |[IN(F)| = 2% - 5%. Then, G has precisely six classes of nontrivial
5-elements. This forces that &' contains precisely 18,720 elements, contrary to 4.2.

We have shown that IN ( ) isof order 22 -3 .52, Clearly, F' is elementary abelian, since
C(z) = F holds for any z € F* . Moreover, all elements of order 5 are conjugate in G. Let
¢+ be an involution in IN ( F") . Then, 1 acts invertingly on F', and F'(:) is a normal subgroup
of N (F) . The Frattini argument yields N ( F) = F(1)( €(1) N IN(F')), and consequently
N(F) = Cppy (1) F. Clearly €(1) NF = (1),and Cypy (1) is asubgroup of index 2 in
C (1) . Hence, we have Cppy(2) = SL,(3).

The last part of the assertion is an easy consequence of § 1 and the preceding lemmas.
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Theorem 4.5. The group G does not exist.

Proof. Let F' be a Sylow 5-subgroup of G. Denote by B the normalizer of F' in . Then,
B is a splitting extension of F' by a subgroup isomorphic to SL,(3) . Up to isomorphism,
such an extension is uniquely determined. We may regard G as a permutation group on the
set Q ={0,1,2,...,25}. The elements of  stand for the 26 conjugates of B in G'. We
identify 0 € 2 with B. Note that B is a maximal subgroup of G with |G : B| = 26 . An
element of order 5 in G is contained in precisely one conjugate of B. Hence, F' acts on the
set  \ {0} transitively. Thus, we may and shall assume that F' = (v, w) with

v=(1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)
(21,22 ,23,24 ,25)

and
w=(1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)
(5,10,15,20,25). |

Denote by ¥ the symmetric group on €2 . Since F' actson Q \ {0} transitively, we have
Cy(F) = F by [12; I1.3.1]. Furthermore, we see that IN ¢ (/') 18 a splitting extension of F

by GL,(5) as follows. In £ we compute that Ny (F) N Ty (v) is a group of order 2% .57 .
Note that 5% divides the order of € (v), and that

u=(6,11,21,16)(7,12,22,17)(8,13,23,18)(9, 14,24, 19)
(10, 15,25, 20).

lies in Ny (F) N €Cy(v). An analogous conclusion is admissible in €y (w) . It follows
that all elements in F* are conjugate under IN s (F). The fact that Ny (F) N Cyx(v) 1S

a group of order 22 - 53 forces that Ny (F) is an extension of F' = Cy(F) by GL,(5)
which obviously splits over F'. Since GL,(5) contains precisely one class of subgroups
isomorphic to SL,(3), we may and shall assume that B = (v, w)(h, k, ¢) with

h=(2,4.5 3)(6,11,21,16)(7,14 25, 18)(8,12,24 20)(9, 15,23, 17)
(10, 13,22, 19),

k=(2,11,5,16)(3,21,4,6)(7,13,25,19)(8,23,24 9)(10,18,22, 14)

(12,15,20,17),
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and

c=(2,9,22)(3,12,18)(4,20,14)(5,23,10)(6,8,19)(7,11,15)(13,21,24)
(16,17,25).
Note that (h, k) is a quaternion group and that S = (h, k, c¢) is isomorphic to SL,(3). Put

N = N ,(S). Then, N is isomorphic to GL, (3) . This forces the existence of an involution
¢+ in N so that the relations

=1, hK=ht k=hk! =c"

are satisfied. Since G = (B, 1), the element 1 interchanges the symbols O and 1 of 2. Note
that both 0 and 1 are fixed under S, and that O 1s stabilized by B. Since § acts on the set
{2,3,...,25} transitively, it follows by the proof of [12; I1.3.1] that 1 is uniquely determined
by the image of 2 € Q under ¢ which then has to lie in {2,3,...,25}. Only twelve of the
24 possibilities for the choice of 1 respect the above relations. Since we may replace : with
th? , we have only the following 6 possibilities 4; for i:

i, = (0,1)(3,4)(6,16)(7,24)(8,25)(9,22)-
.(10,23)(11,21)(12,14)(13,15)(17,19)(18,20),
i, = (0,1)(2,3)(4,5)(7,17)(8,19)(9,18)-
.(10,20)(11,16)(12,22)(13,24)(14,23)(15,25),
i, = (0,1)(2,7)(3,14)(4,18)(5,25)(6,19)-
(9,15)(10,16)(11,22)(12,20)(13,21)(17,23),
i, = (0,1)(2,8)(3,12)(4,20)(5,24)(6,9)-
.(7,25)(10,13)(11,17)(15,16)(19,22)(21,23),
ic = (0,1)(2,9)(3,15)(4,17)(5,23)(6,24) -
(7,18)(8,21)(11,12)(13,19)(14,25)(16,20), and
i, = (0,1)(2,10)(3,13)(4,19)(5,22)(6,14)-
(7, 11)(8,20)(9,23)(12,24)(16,25)(18,21).
Compute o(vi;) = 10, o(vi,) = 16, o(vi,) = 60, o(vi,) = 133, o(vis) = 12, and

o(vig) = 105. This contradicts 4.4.
The theorem is proved.
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