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SMOOTH POINTS OF THE POSITIVE PART OF THE UNIT BALL OF C(K, E)
R. GRZASLEWICZ, H. H. SCHAEFER

Dedicated to the memory of Professor Gottfried Kothe

Abstract. Let K be a compact Hausdorff space and let E be a Banach lattice. By C( K, F)

we denote the Banach lattice of E-valued continuous functions on K . The aim of the pa-
per (*) Is to characterize explicitly the smooth points and quasi interior points of the positive
part of the unit ball of C( K, E) . Then we transiate this result to the space of compact op-
erators K(E,C(K)). We describe also extreme points of the positive part of C( K, E) .

The description of smooth points as well as extreme and exposed points gives us additional
knowledge about the geometry of an important class of convex sets in functional analysis. In
this paper we would like to use this tool for the study of the geomeftry of the positive part of
the unit ball of various well-known Banach spaces. In Section 1 we collect general facts about
supporting points, smooth points and quasi interior points of the positive part of the unit ball
of an arbitrary Banach lattice. Singer [6] has described the extreme points of the unit ball of
the space dual to the space C( K, E) of continuous functions from a compact set K into a
Banach space E . In Section 2 we adapt his proof to get an analogous characterization of the
extreme points of the positive part of the unit ball of the C( K, E) (*), where E is a Banach
lattice. Sundaresan [8] has described smooth points of the unit ball of C( K, F) . In Section
3 we continue this for the positive part of the unit ball of C( K, E). Moreover we give a
characterization of quasi interior points in B, (C( K, E)) . Then, in Section 4 we apply these
results to the space of compact operators K(E,C(K)).

1. BASIS FACTS

Let E be a Banach space and let E* be its dual. By B( E) we denote the unit ball of F.
If moreover E' is an ordered space then we denote the positive cone by E, , and the positive
part of B( E) we denote by B, ( E). For a closed convex set () we put

Q' ={{:E—-R:{€E" inf{(Q) <sup{(Q)}.

(*) Wntten while the first author was a research fellow of the Alexander von Humboldt-Stiftung at Mathematisches
Institut der Eberhard-Karls-Universitit in Tiibingen.
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If F is areal Banach lattice then ( B, (E))* = E*\ {0}, because £&(B,(FE)) = {0}
implies £(B(E)) = {0} (more generally, this is true for every ordered Banach space with a
total positive cone).

Defimtion. We say that q; € Q) is a smooth point of a convex set () C FE if there exists a
unique (up to multiplicative constant) £, € Q* such that £,(qy) = sup &,(Q) . The set of
all smooth points of () we denote by smooth Q).

If Q 1s the unit ball of E then smoothness of a point ¢ €  means that the norm is
Gateaux differentiable (weakly differentiable) at ¢. We need consider smoothness of support
points of ) only. Recall that a point g, € Q is a support point of Q if there exists £ € Q*
such that {(gy) = sup £(()) and we say that { supports @ at g, . By supp Q we denote
the set of all support points of (). Obviously, in general not all elements of ¢ belong to
supp Q. An element which 1s not a support point is called a quasi-interior point of (). The
set of all quasi-interior points of () we denote by ¢-int Q (i.e. g-int Q@ = Q \ supp Q).
Note that if Q = {z,}, then z, € ¢-int Q. We have smooth Q C supp Q = Q \ ¢-int Q.
Obviously z € g¢-int B(FE) if and only if || T l< 1 (i.e. g-int B(E) = intB(E)), and
T € g-int B, ( E) implies || z ||< 1.

We shall henceforth suppose that E is a real Banach lattice.

Remark 1. Let z € supp B,(E) with || z ||< 1. If 5 supports B,(E) at z then
n(z) = 0. Moreover, Az € supp E, forall A > 0. If n supports E, at z then n(z) = 0.
Indeed, we need consider only the case || z ||€ (0,1). Then n(z/ || = ||) <

sup n(B,(E)) = n(z), so n(z) < 0. Moreover 0 = n(0) < supn(B,(E)) = n(zx).
Hence n(z) = 0. For z € E, we use the same arguments,

Remark 2. Let.|| z ||= 1. If o € smooth B_(E), then az € g-int B (F) for a €
(0,1).

Indeed, to get a contradiction suppose that ¢ € smooth B, (FE) and az € supp B,( E)
for some o € (0,1). Then there exists 5, supporting B, (FE) at ax. By Remark 1 we
have n,(z) = 0. On the other hand, by the Hahn-Banach Theorem, there exists 7, such

that sup n, (B(E)) = sup n,(B,(E)) = ny(z) =|| n ||= 1. Obviously n, ¥ 7, ,50 z ¢
smooth B _(E).

Remark 3. If 5 supports B, (E) at z € smooth B, (E) with || z ||= 1 then n(z) > 0.
Indeed, smoothness of z combined with the Hahn-Banach Theorem guarantees that

n (2) =||n|[>0.

Remark 4. If z € ¢-int B, (E) then az € ¢-int B, (E) fora € (0,1/ || z||).

Indeed, to get a contradiction suppose that B, ( E) is supported by n at ax. Because of
| ¢z ||< 1, by Remark 1 we have n(az) = 0 > sup n(B,(E)), so then n(z) = 0 >
sup n(B,(E)),1.e. x € supp B, ( E), contradicting z € g-int B, (E).
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Remark S. If € supports B, (F) at z and £, # O, then £, supports B, ( F) at z, too.
Hence if £ supports B, (E) at z € smooth B_(E),then¢{ =¢, > 0.

Indeed, we have &, (z) = sup{&(y) : 0 < y <z} < &(x);hence £(z) = €,(z), which
means that £, supports B, (F) at z. Smoothness of = implies uniqueness of the supporting

functional, i.e. £ = £, .

Remark 6. Let z € supp B, (F) be such that az € ¢-int B, (E) forsome o« € (0, 1) .
If n supports B,(F) at x then n= 17, .

Indeed, suppose that nn_ # 0. Then oz € ¢-int B, (E) implies that 7_(az) > 0 so
n_(z) > 0. On the other band 7, (z) = sup{n(y) : 0 <y <z} =n(z) (n,(z) < n(z)
by supporting property and 7, (z) > n(x) by definition of 7, ), so _(z) = 0, and we get
a contradiction.

Remark 7. Let £ € smooth B(E) and let ax € ¢g-int B, (E) forsome o € (,0,1).
Then z € smooth B, (E). |

Indeed, let z € smooth B(E) and let oz € ¢-int B, (E) for some o € (0,1). To geta
contradiction suppose that z ¢ smooth B, ( E) . Then there exist two different functionals 7
and ¢ with equal norms which support B, (F) at z. Because x € smooth B( E) we have
| z]|l=1 and z € supp B,(E) .

By Remark 6 n = n, and £ = £,. We have n,(z) =|| 5, ||= supn,(B(E)) and
£.(x) =|| &, ||=sup &, (B(E)), hence 1, and £, support B( E) and z € smooth B( E),
a contradiction.

Remark 8. z € smooth B, (E) with || z ||= 1 implies z € smooth B(E).
Indeed, 1if z 1s not a smooth point of B(FE) then there exist two different functionals
supporting B( E) at z which also support B, ( F) at z.

Remark 9. If () is convex then g-int Q) is convex, too.

Indeed, to get a contradiction, suppose that there exists 2z = Az + (1 —A)y € supp @ for
some z,y € g-intQ and A € (0,1).

Then there exists a non trivial functional n € Q* supporting Q at z, i.e. 7n(2) =

sup n(Q) . Wehave n(z) = An(z)+(1-A)n(y) < rsupn(Q)+(1-X) sup n(Q) = n(2),
O n(xz) =n(y) =n(z) =sup n(Q). Hence =,y € supp @ and we get a contradiction.

Remark 10. If =,y € ¢g-int B_( E) then Az € g-int E, forall A > 0, and conversely if
r € g-int E, then Az € g-int B, (E) forall A € (0,1/ || z||) . Therefore we have

it B(F) Ng-int E, = g-int B, (F) and
it B(E) N supp B,(E) =11t B(E) N supp E,

Remark 11. Let || z ||< 1. Then z € smooth B,(E) N it B(E) if and only if Az €
smooth E, forall A > O if and only if Az € smooth E, for some A > 0.
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Indeed, let || z ||< 1. If z ¢ smooth B, ( E) then there exist two different functionals
m, (1 =1,2) supporting B (FE) at z. By Remark 1 n,(z) = 0, so 5, supports B, at Az
for all A\ > 0, too. Hence Az ¢ smooth E, .

Now if Az ¢ smooth E, forsome A > 0 and || z ||< 1 then there exist two different
functionals n; (¢ = 1,2) supporting E, at Az. By Remark 1n,(z) = 0 ie. 7n; supports
B,(FE) at z,too. Hence x ¢ smooth B, ( F).

Remark 12. Let z # 0. If z € smooth B, (E) Nint B(E) (orif z € smooth FE, ) then
z/ || = ||¢ smooth B,(E).

Indeed, let n support B, (E) (or E, )at z. Then by Remark 1 n(z) = 0 and n supports
B,(E) at z/ || = ||. The existence of a second functional is gudranteed by the Hahn-Banach
Theorem applied to B(E) at z/ || z ||. Hence z/ || z ||¢ smooth B,(E).

Remark 13. Let z € smooth B, (E) with || z ||= 1. If n with || n ||= 1 supports
B,(F) at x then n € ext B(E*). Moreover > 0 and n € ext B, (E™).

Indeed, by the Hahn-Banach Theorem and by smoothness of x, we must to have n(zx) =
1. If n were not extreme then there would be two distinct i, 7, suchthatn = (n,+17,) /2.
Because n;(z) <1 (¢ =1,2) we would get n; =|| n ||= 1 1.e. n; would be two distinct
functionals supporting B, ( E) at z which 1s impossible. By Remark 5, we have n > 0.
Hence n € ext B, (E").

Remark 14. Let z € smooth B, (E) with || z [|< 1 (or z € smooth E, ). If n supports
B,(E) (E,)at x then —7 belongs to an extreme ray of E*.

Indeed, let n support B, (E) at x with || z ||< 1. ByRemark 1 n(z) =0,s0 —n > 0.
Suppose that —n = ayn; + aym, Where oy > 0 and 1, € EY. Then n,(z) = 0, s0 —n;
supports B, ( E) at z. Because z € smooth B, ( F), n, = \;n for some constants ;. Hence
—mn 18 an element of an extreme ray.

Note that z € ¢g-int E, if and only if the ideal generated by z (the principal ideal E_) is
dense in E, or equivalently, if the order interval [0,z] = {y: 0 <y < z} istotalin E (see
(5, 11.6. Corollary 1].

2. THE DUAL SPACE OF C(K . E)

Let A beacompact Hausdortf space, and let /£ be a Banach lattice. By C( K, E) we denote
the Banach space of all continuous functions from K into E equipped with the supremum
norm. For f € C(K,E) wehave f > 0 if f(k) > O forall kK € K. The dual space
C(K, E)* can be represented as the space of all set functions ~ defined on the Borel sets
B C K with values in E* countably additive, of bounded variation and regular, endowed
with the usual vector operations and with the norm

[yll=Var 7= SHPE; 1A |1
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where the supremum is taken over all finite Borel partitions (A,) of K (see e.g. [2] or [7]).
The equivalence between these spaces is given by the relation

f(f)=/x(f(k),dfr(k)), f € C(K, E).

Note that Variation of ~ 1s finitely additive with respect to disjoint sets (1.e. EHE v o=
U

Vﬁrq + VET ~ for M, L disjoint).

Lemma. Letto ¢ € C(K, E)* correspond the set function . Then ¢ > 0 if and only if
v(B) € E for all Borel sets in K .

Proof, Obviously if v(B) > 0 for all Borel subsets of K then for every positive simple
function f we have fK(f( k),d~(k)) > 0, so also for every positive f € C(K,E) asa
limit of positive simple functions. Hence & > 0.

Now suppose that £ > 0. FixaBorelset B and 0 # z € B, ( F) . Because the subspace
C,={h®z: h € C(K)} of C(K,E) is equivalent to C(K), there exists a Radon
measure u, on K such that {(h® z) = fK h(k)dp (k). The measure p . is positive since
£ >0.Wehave [v(B)](z) = u (B). Hence v(B) > 0.

Singer [6, see also7,11.1.4. Lemma 1.7,p. 197] proved that ¢ € ext B(C( K, E)*) ifand
only if £ is of the form ”?@’Skﬂ (.e. &E(f) = n(f(ky)) ), where k, € K and n € ext B(E").

We adapt his proof to get an analogous result for the positive part of the unitball of C( K, E)*.

Proposition 1. Let £ # 0. Then ¢ € ext B_(C(K, E)*) if and only if there exist n €
ext B,(E) \ {0} and k, € K suchthat { = n®§, .

Proof. Assume that { # 0 with ||  ||= 1 is not of the form n ® §, , where k, € K and
n € E*. For £ there exists a measure « defined on the Borel sets of K such that

€)= [ (F(B,ax(R),  FEOUK,B) with Vgry=1
K
Then from the proof of Lemma 1.7 in [7, II.1.4 p. 197] it follows that there exist two

disjoint open neighborhoods U; of k(1 = 1,2) suchthat V; € (0, 1), where V; = V{?rfi.

We define z € C( K, E)* by

:ﬂ(f)=V1/ (f(k),d’r(k))—sz (f(k),d~(k)).
U, U,
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We have || z ||= 2V;V, > O and || £ ¥z ||= 1. Because £ > 0, by the lemma
above, we have &, > 0 (W open or closed subset of K ), where £, is defined by £y, ( f) =
Jw (f(k),d~(k)), f € C(K, E) and ¢ corresponds to ~. Therefore

E+x=(1- VZ)EUI +(1+ Vl)gg1 + EK\(U,UU;} >0
Analogously we get £ — z > 0. Hence ¢ ¢ ext B,(C(K, E)*). Therefore we have
proved that every ¢ € ext B,(C(K, E)*) 1s of the form n ® 6,,;ﬂ where n € B,(E").
Because (1, ® 6ku + 1, ® 5kﬂ)/2 = ((n + m)/2) ® Sku , extremality of £ implies that
n € ext B,(E*).
Now suppose that { = n® 4, , where n € ezt B,(E) \ {0} and k, € K . Suppose that
£ = (& +&)/2 where €. € B,(C(K,E)*). Then || £ ||= 1. Let ~, be the set function
corresponding to §;. Obviously for every neighborhood U of k, we have

1=V V +V 2 < 1 =1
ar 4 < (Var v+ Var 1) /2 <1, 50 Var v,

And, by additivity of the variation, VU‘ET v; = 0. Therefore §; is of the form n; ® &,

where n. € B,(E*). Because n € ext B,(E),wegetn=mn, =mn, and { = {, = §, 1e.
Ecext B.(C(K,E)").

3. SMOOTH AND QUASI INTERIOR POINTS IN B, (C(K,FE))
Theorem 1. f € ¢g-int B.(C(K,FE)) ifandonlyif f(K) C g-int B (FE).

Proof. Suppose that f(K) C ¢-int B,(E). Then 0 <|| f ||< 1. If ¢ supports B, (C(K,
E)) at f then, by Remark 1, £(f) = 0. Therefore £(B,(C(K,E))) < &(f) =0, 1.e.
—£ > 0. Put
M={{€B,(C(K,E)") :£(f) =0}
Note that if ¢ with || € ||< 1 supports B, (C(K, E)) at f,then —¢ € M, and for every
element £ € M we have sup(—€)(B,.(C(K,E))) = &(f) = 0. Obviously M 1s a closed
bset of the w*-compact set B,(C(K, E)*). The set M is a face cf B, (C(K, 6 E)*).
Indeed, let £ = af; + (1 — ), where {; € B,(C(K,E)*),1=1,2,a€(0,1). Then
£(f) = 0,50¢& € M. Therefore ext M C ext B,(C(K,E)*). Let { € ext M. By
Proposition 1 £ is of the form £(h) = n(h(k)),where k € K, h € C(K,E),and n €
ext B,(E*). Wehave £§(f) = n(f(k)) =0.If0 #n€ B,(E*),then n € (B,(E))*.
For n € (B,(E))* wehave n( f(k)) # 0,because f(k) € ¢g-int B, ( E) . This implies that
n=0.Hence{ =0,andext M = {0} with0 ¢ (B,(C(K, E)))*. By the Krein-Milman
Theorem M = {0}. Therefore f € g-int B, (C(K, E)).
Now suppose that f(k,) € g-int B, ( E) for some k,. Then f(k,) € supp B,(E) and
there exists 7, supporting B, ( E) at f( k). Itis easy to check that { = 15 ® ﬁkﬂ SUppOrts

B,(C(K,E)) at f.
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Corollary 1. f € ¢-int C, (K, E) ifandonlyif f(K) C g-int E, .

Theorem 2. Let f € B,(C(K,E)). Then f € smoothB,(C(K, E)) if and only if there
exists a point ky € K such that f(ky) € smoothB,(FE) and f(k) € g-int B, (E) jor all

k+ k.

Proof. Suppose that for different points k; k, we have f(k,) € supp B,(E),:1=1,2.
Then there exist (not necessarily distinct) functionals n, € B, (E)* supporung B, (E) at
f(k;) . We obtain two different functionals ¢; = 1, ® 6, which support B, (C(K, E)) at f,

.. f 1s not a smooth point.

Now suppose that f( K) C ¢-int B, (F). Then by Theorem 1 f is not smooth. Thus if
f 1s smooth, then there is exactly one point k, such that f(k,) € supp B,(E).

Now suppose that there exists k, € K such that f(k,) € supp B,(FE) and
f(K \ {ko}) C g-int B,(E). Let £ with || £ ||= 1 support B,(C(K,E)) at f. Ob-
viously if f(k,) ¢ smooth B, (F) then we can find two different functionals £, = 7, ® O,

1 = 1,2, where n, supports B,(FE) at f(ky),m # m., || n ||= 1. Hence f ¢ smooth
B,(C(K,E)).

Therefore we can now assume that f(k,;) € smooth B, ( E). We consider two cases: 1)
| (ko) |l< 1,and 2) || f(ky) ||= 1.

1) Inthiscase || f ||< 1 and by Remark 1 £( f) = 0. Hence for every supporting functi-
nal ¢ with normal equal toone, —§ € M. Every z € ext M 1s of the form z(-) = n(-(k)),
ke K,ne B,(E*). Because f(k) € q—inlB+(E) forall k # k, ,we getthat z = n@ﬁkﬂ .

By the Krein-Milman Theorem every elementof M (sp also every supporting functional, too)
1s of this form. Because f(k,) € smooth B, ( F), the functional n i1s determined uniquely,
hence sois £,1.e. f € smooth B, (C(K, FE)).

2) In this case for « € (0,1) by Remarks 2 and 4 af( K) C g¢-int B,(FE) and, by
Theorem 1, af € g-int B, (C( K, E)). Hence aé(f) = £(af) <sup (B, (C(K,E))) =
£(f). This implies that £(f) > 0. We have ¢, (h) = sup{£(g) : 0 < g < h} < £(f) =
E.(f) forall h € B,(C(K,FE)) ie. £, i1s non zero and supports B, (C( K, E)) at f. Put

N ={x,/ || s, ||: « supports B,(C(K,E)) at f}.
One can easily check that
N={k € B,(C(K,E)") : v(f) =||cl]l=1}.

The set N is a weak* closed face of B, (C(K, E)*) and ext N C ext B,(C(K,E)*).
Every x € ext N isof theform k = n® 6§, k, € K, n € B,(E). Since f(K \ {k;}) C

g-int B, (E) we have k;, = k;, and n = n, is a unique functional with norm one supporting
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B,(E) at f(ky). Therefore N has only one element {, = 7, ® 6, . Consider {_ = {, —¢.
We have ¢ _(B,(C(K,E))) > 0= £_(f). Hence —¢_ supports B,(C(K,E)) at f.
Suppose that £ # 0. Then —¢_ € (B, (C(K,FE)))*. Since af € ¢g-int B,(C(K, E))
fora € (0,1) weget 0= ¢ _(af) <sup(—{_)(B.(C(K,E))) =(—-£_)(f) =0.

This contradiction shows that {_ = 0. Therefore £ = A{,, A € R, 1e. f € smooth
B,(C(K, E)) . This ends the proof.

Corollary 2. f € smooth B,(C(K)) if and only if there exists a unique ky € K such that
f(ky) =0 orland f(k) € (0,1) forall k# k.

Here we should add a result from a well-known Banach’s monography [1, p. 168]: «Let
f € C(K) (K - compact metric space). For given k, € K the inequality |f(ky)| > |f(k)|

for every k # ko holds if and only if lim,_,, W=2I=Wll exigis for every g € C(K) ».

4. THE SPACE OF COMPACT OPERATORS K(E,C(K))

We denote by K(FE,C(K)) the space of compact linear operators from the Banach lattice
E into C( K) with the usual operator norm. Heinrich [4] announced a result which we can
briefly write:

T € smooth B(K(FE,C(K))) if and only if there exists a unique k, € K such that
T*6y, € smooth B(E*) andT*6, € vt B(E*) forall k # k, .

We can prove an analogous result for the positive part of the unit ball using Theorems 1
and 2 and the well known fact that we can identify C( K, F*) with K(E,C(K)) (see [3,
V1.7.1, p. 490)).

Theorem 3. T € smooth B, (K (FE,C(K))) if and only if there exists a unique k, € K
such that T*6, € smooth B,(E*) and T*6; € g-int B,(E*) forall k ¥ k,. And
T € q-int B.(K(E,C(K))) ifandonlyif T*b, € g-int B,(E*) forall k € K. Moreover,
T eq-int K. (E,C(K)) ifandonly if TS, € q-int E} forall k € K .

Proposition 2. Let K be a compact uncountable Hausdor{f space. Then

g-int B, (C(K)*) = @ and smooth B,(C(K)*) =0.

Proof. Let K satisfy the assumption of the proposition. It is well known that C( K )* coin-
cides with the space of all regular Borel measures on K . Fix 4 € B, (C(K)*). Let {B_}
be an uncountable family of disjoint Borel subsets of K (for instance singletons). Then there
exist at least two disjoint sets By, B, in {B,} with u(B,) =0, 1= 1,2 . Itis easy to check
that £, supports B,(C(K)*) at u, where £, is defined by £,(p) = —p(B,), ¢ € C(K)*.
Hence p € supp B, (C(K)*),but u ¢ smooth B,(C(K)*) and u ¢ ¢-int B,(C(K)*).
Because p was arbitrary we get that the setsg-int B, (C( K)*) and smooth B,(C(K)*) are
empty.
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Proposition 3. Let K, K, be compact Hausdorff spaces and let K, be uncountable. Then

g-int B, (K(C(K,),C(K,)) =@ and smooth B, (K(C(K,),C(K,)) =0 .

The proof is clear from Theorem 3 and Proposition 2.
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