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IRREGULAR SAMPLING AND THE THEORY OF FRAMES, I
J.J. BENEDETTO, W. HELLER (*)

Dedicated to the memory of Professor Goltfried Kothe

Abstract. Irregular sampling expansions are proved in an elementary way by an analysis of
the inverse frame operator. The expansions are of two dual types: in the first, the sampled
values at irregularly spaced points are the coefficients, in the second, the sequence of sampling
functions are irregularly spaced translates of a single sampling function. The results include
regular sampling theory as well as the irregular sampling theory of Paley-Wiener, Levinson,
Beutler, and Yao-Thomas. The use of frames also gives rise to a new interpretation of aliasing.

1. INTRODUCTION

The subject of sampling, whether as method, point of view, or theory, weaves 1ts fundamental
ideas through a panorama of engineering, mathematical, and scientific disciplines. Sampling
is so pervasive that excellent expositions and surveys abound; [BSS] and [Hi2] are two such
papers that are particularly appropriate for our perspective. Alas, our contributions focus on
an important result by K&the [K] (1936), on a new look at Duffin and Schaeffer’s theory of
frames [DS] (1952) in light of the emergence of wavelet theory, arid on effective, elementary,
and unifying methods for irregular sampling in terms of frames.

Kothe was the first to prove that all bounded unconditional bases are equivalent in a given
separable Hilbert space. An explanation of this result and its relationship with the theory of
frames are the content of Theorem 2.5. Section 2 presents a crisp compendium of frame theory
with Theorem 2.5 as its focal point. To titillate the reader during this dry compilation, we’ve
pointed out yet another «first» by Vitali [V] in Remark 2.3. The technical device we extricate
from Section 2 is the inverse frame operators S~ for weighted Fourier frames associated
with the lattice {(na, mb) }, e.g., Definition 2.6 and Theorems 2.7 and 2.8; and this operator
is our basic tool in proving regular sampling theorems.

Section 3 is devoted to classical regular sampling expansions of the form,

(1) f(ty= > f(nT)s(t—nl),

where T > 0 is the sampling rate, {f(nT)} is the set of regularly sampled values of the
signal f,and s is the sampling function. The point of Section 3 is to prove (1) quickly in terms
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of frame decompositions. Regular sampling involves orthonormal bases of exponentials, and
S—1 is used as a multiplier, e.g., Theorem 3.1 and Theorem 3.3. An important consequence
of this line of thinking is a new interpretation and explanation of aliasing in terms of frames,
e.g., Section 3.2.

Since our main goal is to prove irregular sampling expansions analogous to (1), we deve-
lop the theory of weighted Fourier frames associated with irregular «lattices» {(a,,b, )} in
Section 4.

Our results on irregular sampling are the subject of Sections 5 and 6. In Section 5, irregu-
larly sampled values of f are used in the expansions analogous to (1). In Section 6, irregular
translates of a single sampling function are used in the expansions analogous to (1). These two
expansions are dual in the context of frame theory in a way that is explained in the text. The
results in Section 5 use special frames associated with Kothe’s work, and include the comple-
tencss and sampling theory of Paley-Wiener, Levinson, Beutler, and Yao-Thomas. The results
in Section 6 use ordinary frames, and lead to an algorithm providing insight into the role of
irregularly sampled values for the expansions of this section. The irregular sampling of Sec-
tion S involves bounded unconditional bases, and S—! is used in terms of biorthonormality,
cf., our remark above, about Sections 3, on the role of S~

We indicated at the outset that sampling ideas have diverse theoretical foundations and
catholic applicability. As such, the sequel to this paper has two components. First, there is
a critical comparison in Part II of other approaches to irregular sampling, cf., the analysis
by Feichtinger and Gréchenig [FG]. Second, as regards applicability, Part II contains results
dealing with aliasing, the algorithm, stability, and higher dimensions, all in the context of
our frame theoretic approach. We have already indicated our technical direction for aliasing
and the algorithm in Section 3 and 6, respectively. In Part II, the aliasing method 1s fully
developed for the irregular sampling case, and an error analysis is conducted on the algorithm
for various truncations of the inverse frame operator. Qur approach to stability builds on the
ideas of Yao and Thomas [YT], and ties in with the results of Beurling and Malliavin [BM]
and Landau [La]. Our approach to higher dimensions is direct.

Besides the usual notation in analysis as found in the books by Hormander [HO], Schwartz
[S], and Stein and Weiss [SW], we shall use the conventions and notation described at the end
of the paper.

Finally, in this paper we have only proved convergence in the L? norm. All of our results
have been proved for other modes of convergence, and details are found in [H]. Also, we have
deals exclusively with bandlimited sampling functions.

2. RIESZ BASES AND FRAMES

Definition 2.1. a) A sequence {g,} C H, a separable Hilbert space, is a frame if there exist
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A, B > 0 such that

VieH, A|fI* < Kfa)* <BlFP,

where {,) is the inner product on H and the normof f € H is ||f|| = {f,f)!/*. A and B
are the frame bounds, and a frame {g_} istight if A= B. Aframe {g,} is exactifitis no
longer a frame when any one of its elements is removed. Clearly, if {g,} is an orthonormal
basis of H then it is a tight exact frame with A= B = 1.

b) The frame operator of the frame {g,} is the function S : H — H definedas Sf =

S {f,9,)9,-

The theory of frames is due to Duffin and Schaeffer [DS]in 1952. Expositions include [Y]
and [HW], the former presented in the context of non-harmonic Fourier series and the latter
in the setting of wavelet theory.

Theorem 2.2. Let {g_} C H be aframe with frame bounds A and B.
a) S is a topological isomorphism with inverse S~ : H — H.{S™'g,} is a frame with
frame bounds B~! and A~!, and

VEEH, f=)Y (f,8¢.)9,=) ({f9.)8 79,

The first expansion is the frame expansion and the second is the dual frame expansion.
b)If{g, } istight, ||g,|| =1 foralln,and A= B = 1, then {g,} is an orthonormal basis

of H. .

c) If {g,} is exact, then {g,} and {S~'g,} are biorthonormal, i.e

Vm,n, (gm!S_lgn) = '[Smﬂ‘

2.3 Remark. We comment on part b) because it is surprisingly useful and because of a stron-
ger result by Vitali (1921) [V].
To prove b) we first use tightness and A = 1 to write,

19,al* = Ngmll* + D Kgms 9) %3
n#m

and obtain that {g_} is orthonormal since each ||g,|| = 1. To conclude the proof we then
invoke the well-known result: if {g_} C H is orthonormal then it is an orthonormal basis of
H if and only if

vEeH, (IfIF=) I{fa.)*
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In 1921,Vitali proved that an orthonormal sequence {g,} C L?[a,b] is complete, and so
{g, }1s an orthonormal basis, if and only if

2
=1 —a.

t
(2.1) Vi€ [a,b],) || gn(u)du

For the case H = L%[a,b], Vitali’s result is stronger than part b) since (2.1) is tightness with
A =1 for functions f = 1, .
Other remarkable and important contributions by Vitali are hlghh ghted in [B].

Definition 2.4.Let H be a separable Hilbert space. A sequence {g,} C H is a Schauder
basis or basis of H if each f € H has a unique decomposition f = Y c (f)g,. A basis
{g,} is an unconditional basis if

3C such that VF C Z, where card F' < oo, and

Vb,,c, € Z, where n€ F and |b,| < |c,],

Y gl C (D2 casa
nc

nek

An unconditional basis {g, } is bounded if
3A, B > 0 such that ¥n, A <l||g,|| < B.

Separable Hilbert spaces have orthonormal bases, and orthonormal bases are bounded
unconditional bases.

Kothe’s result mentioned in Section 1 is the implication, b) implies ¢), of the following
theorem. The implication, c) implies b), is straightforward; and the equivalence of a) and ¢)
is found in [Y, pp. 188-189].

Theorem 2.5.Let H be a separable Hilbert space and let {g.} C H be a given se-
quence. The following are equivalent:

a) {g,} is an exact frame for H;

b) {g,} is a bounded unconditional basis of H;

¢) {g.} is aRiesz basis, i.e., there is an orthonormal basis {u,,} and a topological i50-
morphism T : H — H such that Ty, = u, foreachn.
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Definition/Remark 2.6. a) Given g € L*(R) and sequences {a },{b,} C R. Define
(T, 9)(t) = g(t —a,) and E, () = e2 ™t  If {E, T, g} is a frame for L*(R) itis

called a weighted Fourier frame with weight g .
b) Fourier frames {Ebm} were defined in [DS] for L*[—T,T). Gabor’s seminal paper

[G] deals with «regular latticed» systems {E_,T. g}, where g is the Gaussian; and it turns
out that the Heisenberg group is fundamental in analyzing the structure of modulations and
translations. As such, the names «Gabor» and « Weyl-Heisenberg» have also been associated
with these systems in the case of regular lattices.

¢c) {E, T, g} is a frame for L*(R) ifand only if {T, (E, g)} is a frame for L*(R).

Also, our weighted Fourier frames will often be defined for L3( R }. As such we note that
(En“Tbmg vV _ EZﬂia,meme_angl
Theorem 2.7. Given g € L*(R) and a,b > 0. Define

G(t) = ) lg(t —ma)[*.

Assume that there exist A, B > 0 such that
(2.2) 0<A<L<G()<B<oo ae . onk,

and that suppg C I where I is an interval of length 1/b. Then {E, ,T, g} is a frame for
L?(R), with frame bounds b= A and b~' B, and

(2.3) VfeL*(R), S'f=-—=

Theorem 2.8. Given g € L*(R) and a,b > 0. Assume {E_ T, ,q} is aframe for L2(R).
Then

(2.4) ST EwT ) = Epa TryS™' 3.

Example 2.9. a) Given g € L*(R) and a,b > 0 forwhichab= 1. If{E_,T, g} is aframe
then it is an exact frame. This remarkable fact (for ab = 1) can be proved using properties of

the Zak transform which we now define.
b) The Zak transform of f € L*(R) is

Zf(z,w) =0a'? " f(za+ ka)e’ ™
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for (z,w) € R X R and o > 0. It turns out that the Zak transform is a unitary map of

L*(R) onto L*(Q),Q =[0,1) x [0, 1).
¢) If {E_,T g} is aframe for ab = 1, it is a bounded unconditional basis (part a) and

Theorem 2.5); and, in particular, the frame decomposition
VFfEL*(R), f=) CnnBrmiTmd
(Theorem 2.2.a) is unique. We shall verify that

(2.5) | Cmn = {187 By Toa9)

1 1
—_ f / Zf( .’I?,D;J) E-ZﬁimIE—Zﬁiw drduw .
o Jo Zg(r,w)

First, with the hypotheses that {E_,T, g} is a frame for L*(R) and ab = 1, we compute
VF € L*(Q), 8,F = F|Zg|*,

where S, : L?(Q) — L*(Q) is the frame operator for the frame {Z(E,,,T,,g) }. Thus,

> ~1 _4f
(2.6) Vfe L (R), S§;(Zf)= ZoF

Next, using (2.6), we compute

VfeL*(R), Zf=8,58;'(Zf)

= E <§i=Emﬂ.> Emnzg!
VA ! !
where E,, .(z,w) = ™™ *™™ Consequently,
\/ p) _ Zf' -1
fE L (R)] f*_ E ElEm’n Z (Em_ﬂzg)

Zf
- E <EE= Em,n> Embngr

so that (2.5) is obtained by the uniqueness of the representation,
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3. REGULAR SAMPLING AND WEIGHTED FOURIER FRAMES

The theme of this section is to prove classical sampling results by frame methods in the case
that the inverse frame operator S~! is a multiplier.

The Paley-Wiener space, PW,, 1s the subset of L?(R) whose elements are -
-bandlimited, i.e.

PWq = {f € L*(R) : supp f C [-Q,Q]}.

Clearly the elements of PW(, are entire functions.

1
Theorem 3.1. Given T,S2 > 0 for which 0 < T < oR Then

(3.1) VfEPWy, f=T) f(il)Tgdy.q inL*(R),

where d, o is the 2w dilation of the Dirichlet function

sin ¢
a(t) = —,
i
where f(nT') isthevalue of f at nT' € R, and where T d, ., is the translation

sin 27 (t — nT)
w(t — nT) *

Tar G (1) = dypq(t —nI') =

! R 1
G 0)iE % S0 hatg = el and [lgll, = 1. Seta = T and

b=2Q sothat ab= 2T7T€ < 1. Note that

Proof. Let g =

~ 1
Y gy — mb)]? = 5q %€

suppg C [—2,Q], and |[-Q, Q]| < 1/a. Thus, by Theorem 2.7, {E,_ T, 9} is a frame.
Consequently, by Theorem 2.2.a and Theorem 2.8,

(3.2) Vi€ LX(R), f=3Af EpT S 9)E, T,y in L*(R).
Since supp g is compact, we have

Vh € L2(R), S 'h=2TQh
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by Theorem 2.7; and, hence, (3.2) becomes
(3.3) Vf€L*(R), [=2TQY (f EpTmd) T Epmsg in L*(R).

If f e PW, then

1
~ —nT), form=20
(3.4) (f) EpaTrs) = { a7
0, form#0.
The sampling formula, (3.1), follows from (3.3) and (3.4). "

The hypothesis, that f € PW,, was essential in both parts of (3.4); and the above proof
shows that only «t-information» (i.e., m = 0) is required in this case. When f is not £2 -
bandlimited so that aliasing occurs, phase information contributed by m# 0 is required in
the frame decomposition of a signal. To quantify this remark, we define the aliasing pseudo-
measure, o, o, on R as the distributional Fourier transform, o, o = A/ g, where each ¢ is
fixed and

Agg = 3 (2MC2™0 _ 1) (T, o1,) € L°(R).

Calculation/Definition 3.2. Let f € L2(R) and assume 27°Q = 1. Writing (3.3) as a sum,

E + E . 'we compute

m=0n m#0n

(3.5) O =TY  f(D) Tgdypq(t) + T Y (f % a0) (i) Tipdy rar (1)

The aliasing error of f at ¢ for the low pass filter d, o 1S

ae(f,t) =T Y (f*0;0) (M) T dyra(t).

Formally, standard calculations give

(3.6) lae(f, )l < 2 f Fldr.

|7|>€

In the following result we use sampling kernels s with more rapid decay than d,,, . The goal
is better computational efficiency for low pass filters; the price to be paid is more sampling.
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1
Theorem 3.3. Given T, > 0, for which 0 < T < —=, and g € S(R) with the

2Q°
. . -1 1| . - -1
properties that suppg C [ZT’ZT] g=10on[-Q,Q], andg > 0 on (ﬁ,*ﬂl U
1
[Q,ﬁ>.5ﬂ
F\V
G(y) =) |g(y—mb)|* and s(t)={=] (1),
(D= lar-mb)P and s = (&) @
1 ~
whereﬁ—k%gb{ ?.Then{] < A< G(yv) € B<oo,se S(R),supp s =
1

sSuppg,s = o on [—£2,Q], and

(3.7) VfePW,, f=T)Y f(nT)Tgs in L*(R).

Proof. The assertion about G and s follow from our choice of b.
Set a = T so that |supp g| = 1/a. Thus, using the fact, A < G(v) < B, and Theorem
2.7, weseethat {E_T, g} is a frame. Since supp g is compact, we have

P

~ h
Vh e L*(R), S 'h= T

by Theorem 2.7; and, hence, we have the frame decomposition

(3.8) VFELP*R), F=TY {f BTy Eng T

where we have used the fact that S~ (E_ T.,9) = B, T,yS~ g (Theorem 2.8).
If f € PW,,, then (3.4) is again valid since g = 1 on [—,Q]. The sampling formula
(3.7) follows from (3.4) and (3.8). &

Example 3.4. a) In Theorem 3.1, {E_T,.,9} is a tight frame with frame bounds A= B = 1
in the case 27Q = 1, where a = T and b = 2Q. Clearly, (E_T,,9, E,,T,9) is 1 if

(m,n) = (p,q) andis 0if m# p. If m = p and n# ¢ then this inner product is

EE 73 2T )Y m(n—q)

2TQn(n—q)

sin(27Qnw(n—q)).
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Thus, {E_T, .9} is an orthonormal sequence if and only if 27°Q2 = 1. Consequently, by
Theorem 2.2.b, {E_ T, ,g} is an orthonormal basis if and only if 27°Q = 1.

b) Suppose 2TQ < 1. To construct g € S(R) satisfying the conditions of Theorem
3.3 we proceed as follows, cf., [H] for a different construction depending on the Pythagorean
theorem.

We begin in the standard «distributional way» by defining

__#e—=hl*)
[ ¢(e—|7[*)dy’

V()

where & € G“"(ﬁ) vanishes on ( —oo, 0] and equals e=1/7 on [0, 00). Thus, Y, € Cj’“(ﬁ)
is an even function satisfying the conditions, suppy, = [—¢,¢] and [+,.(4)dy = 1. Next

set

1 ~
"’bU,V: H_IV*IU"'V’ U,VL‘»’__:R}

Vi

so that v, , 1s 1 on U and vanishes off of U + V — V. The function g will be defined 1n
terms of g as g = Yy y * ¥, where we shall now specity €, U, and V given 27€Q < 1. Let

2T
— 1 : . .
by setting v = d 5 u, where w = 57 + £. These choices are necessitated by a simple

geometrical argument, and the resulting function g satisfies the desired properties.

1
U=[—u,u], where u € (Q. ——-) is arbitrary, and let € = u — . Choose V = [ —v,v]

4. WEIGHTED FOURIER FRAMES FOR IRREGULAR LATTICES

In the case of irregular lattices, the following result is the analogue of Theorem 2.7 for R.

Theorem 4.1. Given Q > 0 andlet g € PW,. Assume that {a,},{b,,} are real sequences
for which

(4.1) {E, } 1sa frame fﬂ’rLz[—Q,ﬂ],
and that there exist A, B > 0 such that

(4.2) 0<A§G(’r)£8{ma.e.ﬂnﬁ,

where

G(v) =) laly = b)I*
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Then {E_ T, g} is aframe for L?(R); and {E, Tbm'ﬁ} is a tight frame for L2(R) if and
only if {E, } is a tight frame for L[ —Q Q] and G is a constant a.e. on R.

Proof. I = [-Q,Q] andset I, = I+b,,. Forfixed m,{T, E, } isaframe for L*(I,,) with

frame bounds A;, B, independent of m. Thus, forall h € L?*(R) for which supp h cI,,
we have

(4.3) AflhlZay € D OKRT, B ) 1P < Billbllzaqr,y,

Take any f € L*(R). Because of (4.2), g € L""(ﬁ); and, hence, Zm_f = fTbm'E €

-

L*(I,,). Also, since g is € -bandlimited, h,, . vanishes off of I, . Substituting Zm,f into
(4.3) and summing over m, we obtain

(4.4 A ST 3R, < SOSUA(T DT, E )P < B Y IFT, T,

We now compute
(F, (T, DT, B, )= (f.T, (GE,))

and, using the fact that ¢ is €2 -bandlimited,
SPR Gy = [IFDPC 6= b P

By these calculations, as well as (4.2) and (4.4), we obtain

(4.5) AaNAE <SS KE T, E, 9P < BBIIfl;-

Thus, {E, Ty g} is a frame for L2 (R). The characterization of {E, Ty g} asatight frame
follows immediately from (4.5). "

Corollary 4.2. Given the hypotheses of Theorem 4.1 and set I, = [—S2,Q]+ b, . For each
fixed m,{T, E, } isaframe for L* (1) withframe operator S, cf., (4.3), {E, T, g} is

a frame for Lz(ﬁ) with frame operator S, and

vhe L*(R),  Sh=) T, §S.(hT; ).
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Proof. We compute

=Y "7, 3S,(hT, 9).

If «g» is any Borel measurable function for which G(v) < B a.e. on ﬁ, then g €

L"“(ﬁ). The converse is a part of the following result.

Theorem 4.3. Given Q > 0. Assume that {a_},{b,,} are real sequences for which {E, }

is a frame for L*[—Q,Q], and that there exist d, D > O such that

(4.6) Vm, 0<d<b,,, —b,<D<2Q,

where lim b_ = foo. Suppose g € PWq has the properties that g € L*(R) and

m—+oo

A= inf{lg(M)|? : X € I} > 0 for some interval I C [—Q,€Q] having measure |I| = D.
Then {E, Tbmﬁ‘} is a frame for L*(R).

Proof. Tt suffices to verify condition (4.2) of Thcorem 4.1.

20
For each ~, G(~y) is a finite sum; and, in fact, this sum has at most [T} + 1 terms.

Thus,
Yy, Gy < ( [7] ; 1) 1]l = B < oo

and the upper bound is obtained.
For each y € R there is a b_ suchthat y —b_ € [. Thus,

G(y) > gy —b,)|° >A>0,

and the lower bound is obtained. o
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Remark 4.4. a) Consider condition (4.1), used in both Theorem 4.1 and 4.3.
a.i} A sequence {a_} C R has uniform density A > O if there exist constants L and d
such that

and
Vngm, lao,—a_|>d>0.

Duffin and Schaeffer [DS] proved that if {a_} has uniformdensity A > 0 and0 < 22 < A
then {E, } is a frame for L*[—£2,Q]. For a given sequence {a,} C R let Qg be the least
upper bound of all €2 for which {Eﬂﬂ} is a frame for L?*[—Q,Q]; Qg is the frame radius
of {a,}. Duffin and Schaeffer’s theorem can be rephrased and refined as follows: if {a,}

A
has uniform density A > O then 2 > 5

Important work on this topic is due to [La; J], cf., [H]. We mention the following fact which
follows from [DS; J]. Suppose { E, } is an exact frame for L*[—Q,Q]. Then {E, } isnota

frame for L*[—Q,,Q,] forany Q, > Q, and {Eﬂ,} is an inexact frame for L*[—Q,, €, ]
for every 0 < Q, < Q. In this latter case we can remove any finite number of arbitrarily
selected elements of {a_} and still have a frame for L*[-Q,,Q,].

1
a.ii) If o, = na and a = ——— then {E,, } is an orthonormal basis of L*[-Q,Q]. The

1
sequence {ma} has uniform density A = —.

a
: 1
b.i) Given the hypotheses of Theorem 4.1 in the case a, = na and a = B Then
(4.7) VfeL*(R), S'f=——1L
’ 2Q G
1 :
To verify (4.7) note that { IO Em} is an orthonormal basis of each L% ( I..) and that

fT, 3 € L*(I,,). Since {E,,T, g} isa frame for L?(R) we have

S-}?E ;:5:(?1 EmeHE)EmTﬁmg

m n

(4.8) = E(Tbmﬁ) (E(fﬂj, E,., )Em)

=2QfG.
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Using S—!  instead of f in (4.8) we obtain (4.7).

b.ii) In Theorem 3.3 we used the commutativity of the operators S~' and E_ T, in
proving the sampling formula.
. 1
Now suppose we have the hypotheses of Theorem 4.1 in the case a, = na and a = 50

Then by part b.i) we have (4.7), so that

E T, g
1 _ na~ b,
ST(ELT, 9) = T
On the other hand,
1 E_ T, g
_1.--.= na m

so that the operators S~ and E,,, T, are not commutative for irregular sequences {b,,}.
Example 4.5. Given the hypotheses of Theorem 4.1. Then

vfeL}*(R), f=Y (f,SUE,T, D)E,T, 3 inL*(R),
and so
(4.9) Vf€ L*(R), f(t) =) c (T, () inL*(R),

where
c () = Y (f, e 2™ tnS (B, T, §))E, (1).

With various further hypotheses, (4.9) will be a «sampling» formula, cf., Theorem 6.2. The

point we make now is that the frequencies for Fourier frames o R provide the franslation
points on R for sampling formulas.

5. IRREGULAR SAMPLING - SAMPLED COEFFICIENTS AND EXACT FRAMES

The theory of non-harmonic Fourier series was developed by Paley and Wiener [PW, Chapters
6 and 7] and Levinson [L, Chapter 4]. Related work preceding [PW] is due to G. D. Birkhoff
(1917), J.L. Walsh (1921), and Wiener (1927). The Paley-Wiener and Levinson theory has
been reformulated and analyzed in terms of irregular sampling by Beutler [Bel; Be2] for
completeness and Yao and Thomas [YT] for expansions. The Yao and Thomas expansion
was discovered independently by Higgins [Hil] using reproducing kemnels; there is also the
interesting new work by Rawn [R]. In this section we shall state and prove this irregular
sampling expansion by frame methods. The coefficients in the expansion are the values of the
given signal at the given irregularly spaced sampling points, cf., Section 6.

Whereas we implemented S-1 as a multiplier in Section 3, in this section we shall invoke
a formula, viz., (5.1), related to the fact that { S g} is the unique biorthonormal sequence
associated to a given exact frame {g_}, cf., Theorem 2.2.c.
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Proposition 5.1. Let H be a separable Hilbert space and let {g,} C H be an exact frame

with inverse frame operator S~'. Then

(5.1) VfeH, S'f=) (fih)h, inH,

where {h_} is the unique biorthonormal sequence associated with {g,}. In particular,
{S~'g.}={h_}, and so S~ is the frame operator of the dual frame {S1g.}.

Proof. Since {g_} is exact, {g,} and {S~'g,_} are biorthonormal (Theorem 2.2.c); and since

{g.} is complete, we see that {s-! g, } is the unique biorthonormal sequence associated with
{g9,}. (5.1) follows immediately from Theorem 2.2.a. B

Theorem 5.2. Given Q >0 and {a_ } C R, lett_= —a_, and assume {E, } is an exact

frame for L?[—Q,Q]. Define s, (t) interms of its involution 5,(t) = s,(—t), where

Q
(5.2) Vt € R, En(t)=f h (7)e*™dy,
-0

and where {h,} is the unique biorthonormal sequence associated with { E, }. (In particular,
s, € PWq ). Then

(5.3) VfePWqo, f=)» f(t)s, inL*(R).

where s_(t) = s (—t) € PW,.

1

Proof. Let g = 201

d,.q andset b = 202 m. Note that

1
G("f) —_— E |§(’}’ — bm)lz = Eﬁ" a.e.

and suppg C [—Q,Q]. Thus, since {E_ } is a frame, we can apply Theorem 4.1 to obtain
that {E_ T, g} is aframe for Lz(ﬁ) with frame operator S. In particular,

(54) VYhelL*(R), h=Y (hE,T, 5)S(E,T, 3 in L*(R).

Similarly to (3.4), we obtain

I .
(Fm EEHTZHmﬁ) = (QQ)UZ f(_ﬂﬂ):l fm=0
0, im0
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for f € PWg.
Let S, be the frame operator for the frame {7, E, } for L*(I_), where I =
[—€2,Q]+ b . By Corollary 4.2, we have

(5.6) Vhe L2(R), Sh=Y T, §S,(hT, 9 in L*(R).

From (5.6) and the definition of g we compute

- 1 -
Sf=5q 2. k(1 —22m)S,(f() (a)(- —2Qm)) (7)

= 8 F()
T 2Q U0/
for f € PW, where the second equality follows since suppj?g [—€2 Q2]. Thus,

]

1
5500/

(5.7) VfePW,, SFf

1
i.c., the action of S on LZ[—Q, €] can be realized by the action of Z_QS“ on that same

subspace of L2(R).
Using (5.7), we can write

VfePW,, f=8'Sf

Ly, =
- EES Sl’}f:
so that, if we replace fby Sg ! f, we obtain
S'=2Q87" on L*[-Q,Q1l
Therefore, since g € PWq,
STE, T,,d) =S (E, 9)
=2QS;'(E, 9)
= (2Q)'* S (E, 1(q))

= (2Q)'/? E(Eaﬂ! he)(~0.01Pm

= (2Q)/*h_,
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where the penultimate equality depends on the exactness hypothesis and Proposition 5.1. Sub-
stituting this information into (5.4) and (5.5) gives the reconstruction,

1

(20172 in L°(R),

f(—a )(2Q)/*h

n

VfePWq, f=)

13

which, in turn, yields (5.3). =
Remark 5.3. Levinson [L, Theorem 18] proved that if > 0 and {a,} C R satisfy

1
(5.8) sup [n—2Qa | < T

then {E, } is complete in L*[—€,Q] and has a unique biorthonormal sequence {h,}.

Kadec (1964) [Ka] provided the direct calculation proving that {Euﬂ} is a Riesz basis, 1.e.,

exact frame, if (5.8) holds, cf., [Y, pp. 34-36] for a characterization to ensure that complete
sets with associated biorthonormal sequences are Riesz bases.

The bound «1/4» in (5.8) is best possible [L, Theorem 19].

The explicit formulas in the following result are proved in [PW, pp. 89-90 and pp. 114-
116] and [L, pp. 48 ff]. The calculations by Paley and Wiener were refined by Young (1979),
e.g., [Y, pp. 148-150]. The remainder of the proof is referenced in Remark 5.3.

Theorem 5.4. Given Q > 0 and {a,} C R, and assume (5.8). Then {E, } is an exact

frame for L*[ -2, Q] with unique biorthonormal sequence {h,}; and s, defined by (5.2),
)

s(t)
s'(a ) (t—a,)

(5.9) 5,(1) =

where

n =T

(5.10) E’(t)=(t—a0)]:[<l—£) (1—{1—,5—).
n=1

5.5 Example. Note that the sampling functions s, defined in Theorem 5.2, are given by

s(1)
st )(t—1t)"

s (1) =
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ome i) ()
n=1

where

n

and they have the property that

(5.11) Vm,n 5,(t,) = (hy, By )a = S

This property of sampling functions is usually described by saying that {s_} is a sequence
of Lagrangia interpolating functions.

6. IRREGULAR SAMPLING - IRREGULAR TRANSLATES OF A SAMPLING
FUNCTION

Our basic result in this section, Theorem 6.2, 1s dual to the sampling theorem, Theorem 5.2,
in the following way. Exact frames were required in Section 5 and the sampled values of the
signal were explicit in the dual frame expansion. Theorem 6.2 will use general frames, and
the frame expansion will only require the irregular translates of a single sampling function.
The dual frame expansion was global in Section 5 and the frame expansion is local in this
section.

The following fact is clear.

Lemma 6.1. Given f, f_ € L*(R), and assume f = f, in L*(R). If g € L=(R) then
fg=Y f.gin L*(R).

Theorem 6.2. Given Q > 0 and {a,} C R, lett = —a,, and assume {E, } is a frame

for L*[-Q,,Q,1, for some Q; > Q, with frame operator S. Let g € S(R) have the
properties that suppg C [—Q,,Q,]1 and g=1 on [-Q,Q]. Then

(6.1) Vi€ PWq, f=3 (S (flay) B_)i—a 0,T: 8 € L*(R),

where s = g. (We choose « s » since it represents the «sampling» function).

Proof. Since {E, } is a frame for L*[-Q,,Q,] and suppf C [—Q,Q], we have

(6 2) f=rlka,
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In this expression, we note that S—!, being positive, is self-adjoint so that the frame expan-
sion in Theorem 2.2.a gives rise to (6.2). Also, the L*[—-Q,,Q,] convergence from our

frame hypothesis can be taken to be in L? (ﬁ) by extending all functions to be zero outside
[—€,,Q,].

We have f = fg on R since g=1 on [—-Q,Q] and f =0 off of [—Q, Q]. Also,
g (87 (flay), B, )i-0,00F, Lay)

=Y (ST (flq)), B, )i-q,0,1F. La,)d inL*(R)

by Lemma 6.1. Thus, since suppg C [ —€,,Q,], we obtain

- E(S-l(flml]),Euﬂ)[__nl o E. 3 inL*(R).
Taking the inverse transform gives (6.1). B

The following result allows us to be more explicit about the coefficients in (6.1) in the
case of exact frames and the Levinson (and Kadec) condition (5.8).

Theorem 6.3. Given Q >0 and {a,} CR,lett = —a,_, and assume

1

sup |n—2Qa, | < 7

for some Q, > Q. Then {E_ } is an exact frame for L*[—Q,,Q,] with frame operator S

and unique biorthonormal sequence {h_} .Further, if we define s, and s on [—-Q,,L,] by

(5.9) and (5.10), then (3 )" = ?1_“ (where h, = 0 off of [—£2;,£2,]) and the coefficients of
(6.1) are

vn, (ST'(fliay)), Eoy )—a a = (F(2),5,(D)),
where f € PWg,.

Proof. The exact frame and biorthonormal sequence conclusions follow from Theorem 5.4, as

well as (5.9), (5.10), and the relation (5.)” = h_. Letting H = L*[—Q,,Q,] in Proposition
5.1, we have

VF € LZ[—Q”Q]}; S_I(F) = E(F: hm)[—ﬂl,ﬂl]hm‘
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Consequently, by orthonormality,

Vﬂ, Sﬂl(Eﬂ,) = 2<Eun!hm>[—ﬂl ,ﬂl]hm

=( u"!hn}[ﬂﬂl,ﬂl]hn
= h,.

Therefore, setting h_ = 0 off of [—Q,,€Q,] and noting that 5 is real-valued, we compute

(S—l(fl'{ﬂl})lE—t')[wﬂl,ﬂl] = (f, STH(E, ))—a,.a
= {f: hn>[#nl,nl]
= (f, h)R
= (f, ha)r
= (f(1),5,(—=1))
= (f(1),8,(1)),

for each f € PW,. B

Algorithm 6.4. It is possible to estimate the coefficients in (6.1) without dealing with exact
frames. In so doing, we shall see to what extent these coefficients contain information from
the sampled values f(1,).

Let {Eﬂu} be a frame for L?[—Q,,Q,] with frame operator S and frame bounds A and

B. Since

2 B—A
(6.3) “I-A+BSHgA+B{1’
we have
(6 4) S—!= 2 i(f 2 S)k
’ _A+Bk=ﬂ A+ B ’

where T : L2[—-Q,,Q,] — L*[-;,Q,] is the identity map, the norm in (6.3) is the
operator norm, and the convergence in (6.4) 1s the operator norm topology on the space of
continuous linear operators on L? [—Q,,Q,] (into itself).
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Setting ¢t = —a,_ and using (6.4), the coefficients in (6.1) become

(6.5) = (ST (fliay), B_ -, 0,

oo 2 k .
A+ B E <(I_ A+ B ) (fl(ﬂ1))’E—tn>
[-; £} ]

k=0

for f € PW,,Q < ;. If we truncate the expansion (6.5) after the k = 0 term, then

“n = A+Bf(”

NOTATION
The Fourier transform f of f € L'(R) is defined as f(q) = [ f(t)e~2™"dt, where « [ »

designates integration over the real line R; f is defined on ﬁ(: R) and f is the inverse
Fourier transform of f. The Fourier transform is defined on L2(R), and, for fixed & > 0,

PW, = {f € L*(R) : suppf C [-Q,Q1},

where suppf is the support of f A function (or distribution) f, whose Fourier transform
exists, is Q -bandlimited if suppf C [—-Q, Q1.

Besides the LP(R)-spaces and the Schwartz space ¥ (R), we deal with the space
C>(R) of infinitely differentiable functions and its subspace C°(R) whose elements have
compact support.

« Y » designates summation over the whole discrete group in question, €.g., over Z x Z
where Z is the group of integers. The function 1 is the characteristic functionof S C R, |S]
is the Lebesgue measure of S, and 1o, = 1;_g ;. The function §_, isdefinedasOif m# n

and as 1 if m = n. The dilation f, of the function f is f,(t) = )xf( \t), and the translation
T, f s T, f(1) = f(t —t,). Finally, the exponential function E, is E (1) = p2wiat
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