Note di Matematica Vol. X -ns1, 157-213(1990)

ON PRODUCT DECOMPOSITIONS
OF COMPLEX SPACES
C. HORST

INTRODUCTION

Every connected complex space Ul admits a maximal decomposition Ul =1 U; x . . . x U]
with indecomposable U,/ # C?| and it is naturel to ask whether (or under which conditions)
thesel factors are unique. When considering] this question, onel is of coursel tempted to copy the
number-theoretic procedure, i.e, given two decompositions, to try a first to find a common
factorl and then to drop it. However, just this simplification tums out to be the reall problem.

For general complex spaces, little can be said astowhen X x Y 21 X x ZlimpliesY 2 Z|
Even in the compact case, no counterexamples were known until 1977. Then T. Shioda [12]
and, some four years later, G. Parigi [10] presented various examples of compact complex
manifolds Y % Zl such that X x Y 21X x Z] for some torus X . Shioda’s manifolds Y and
Z) are tori as well, and Parigi’s examples are total spaces of fibre bundles with finite structure
group and torus basis; we shall denote this clasd of complex spaces by 7

Roughly during the same period, diverse criterial for cancellability in the category of re-
duced connected compact complex spaces) have been proven ([1]] [4]] [13])] It tumed out thad
in thig situation, Shioda and Parigi had already] more or less exhausted the scope of counterex-
amples.

As was shown in [S]| X x Y 21 X x ZlentailsY 2 Z]if {X, Y, Z}j ¢ ] Conversely,
for every X @ ] therel exist non-isomorphic Y, Zlsuchthat X x Y ® X x Zl (see [11])] The
proof of the above cancellation result simultaneoudly yielded the uniqueness of the maximal
decomposition for compact varieties that are not contained in %]

We shdl now generdize the situation of [5] in several respects] Firstly| non-reduced com-
plex spaces will be admitted] and the compactness condition will be weakened; for instance]
in the cancellation problem, we only require onel of the factors X, ¥, ZI to be compact. As one
of the main results, we obtaini that then the cancellation theorem of [5] carries over word for
word (Theorem 5.2.1). Again] the proof brings about a (partiadl) answer to the decomposition
problem: In any maximal decomposition of a connected complex space, the compact factors
¢ % and the product] of the otherl ones are unique (Theorem 5.3.2 and Theorem 5.3.4).

In the last chapter| we are concemed with a different type of generalization, which is
inspired by the fact that in all counterexamples to the cancellation problem, the varieties Y
and Z] are still isogeneous, i.e. they can both be covered finitely by some common S. Thus
ongl is led to suspect that Y and Z are isogeneous, if 0 are X x Y and X x Z] This is
indeed the case, if at least ongl of the factors XY or Z is compact (Theorem 7.2.3). Asa
by-product of the proof, we obtain again a congenial decomposition result (Theorem| 7.3.1).
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It is easily seen that both the cancellation and the decomposition problem boil down to
the following question: If X x Y 2 U x V is an isomorphism between connected complex
spaces, what is the relation between the individual factors?

To cover aso the non-reduced case, it is necessary to consider at first the correspondd
ing local problem, where X, Y, Ul and V are replaced by germs of complex spaces with
dim X =0. Itisshown that X x Y and Ul X V admit a simultaneous subdecomposition, i.e.
that there exist isomorphisms X = X, x X, Y =Y, xY,, U= X, xY,,V 2 X, xY}
(compare Theorem 1.4.1). The same assertion holds, if X, Y| U] V are again complex spaces
with dim X = 0 (see Ch-pter 4). This latter result starts the induction on dim X in the proof
of Theorem 5.1.5, which states that X x Y and Ul x V with X compact admit a simul-
taneous subdecomposition, if e.g. {X, Y, U] V} ¢ 1 The induction step is brought about
by a construction presented in Chapter 3, which assigns an isomorphism X x Y12 U x VI
to the given one, such that X x Y and Ul x V admit a simultaneous subdecomposition,
if sodo X xY and U x V] it tumns out that dim X! ¢ dim X if {X,Y,U, V) ¢ S
The background niaterial for this latter conclusion as well as for the construction of the isod
morphism X|x ¥ & U x V is compiled in Chapter 2, the contents of which can be summed
up as follows:

a) For every connected space S, there exists a largest compact connected complex Lie
group A(S) acting holomorphically and effectively on S.

b) If therel exists a holomorphic S — A( S) that maps the orbitl of some positive-dimen-
sional closed complex subgroup T of A(S) onto T'| then Sl € 7]

Even for a reduced compact X ¢ .7 the unique indecomposable factors given by The-
orem 5.3.4 are in general not unique a§ subspaces of X , i.e. an automorphism of X need
not be a producy of isomorphisms between the indecomposable factors. The relation between
Aut (X) and the automorphism groups of the factors is investigated in Chapter 6. It turns out
that the situation simplifies considerably, if X is a projective variety.

Finally) when dealing with the isogeny sStuation, we start again| with' connected complex
spaces X x Y] Ul x V which are now assumed to be isogeneous. Pursuing a similar line of
reasoning as in Chapter 5, we show:

a) Therel exists a torus of maximal dimension which is a common isogeny factord of X, Y]
Uland V.

b) If this torus is zerodimensional, then there exist isogenies X' ~ X, Y’ m Y] U ~
U, V]~ V such that X1x YI™MU! x V.

To this latter isomorphism, we can then apply the results of Chapter 5.

I am grateful to 0. Forster and H.W. Schuster for the interest they took in this work,
which has beenl accepted as a Habilitationsschrift by Universitatl Miinchen] furthermore | am
indebted to Dean Victory for linguisticl and stilistic advice)
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0. PRELIMINARIES
0.1. Categories with (co-)products

Let # be a category with a (co-)product ® | For A, B € # the canonical morphisms
A®B - A AGB - B(A— A®B,B — AQ B) will be denoted by p,,p,| (j,7,)
or, if unambiguous, by py, py (74, 7). or smply by p (). Byl J4 g or, if the meaning] is
clear] from the context, by J we denotel the natural isomorphism A @ B — B @ A, and we let
J{:=J,.. Moreover, for every permutation arof { 1,. .., n}/welet J|= J, ) O, A=

On Abegivenby pjl ,..;,Pg| (g, --+1J5,)]
If Z @ 4 isa final (initial) element, then py: A Z 5 A(j{: Ao A G 2Z)is
an isomorphism for all A € % . If Z is a zero object, we denotel by abuse of notationl the

morptiism A% 402 2%" Ao 5,8 5 A0B(AGB =402 = 4,408 =B)
by ', jd (P pa)orby jal 74 ( 4, pg)| Therel will be no confusion with the previous j| p,
since we shall always consider only ong category at a time with exactly one fixed product
(coproduct) that is nota coproduct (product).

A e A isafactorof Ae A, if A= A QA" forsome A" € 4. If A hasdfinal
(initia) object Z, we shall say that A @ _# is indecomposable| if every factor # Z1 of Ais
isomorphic to A. A decumposition of A€ £ isanisomorphism A — A, @... @ A]in
A

A final (initial) object Z1 € # is a semi-zero object, if Mor( Z, A) # 8( Mor( A, Z) # 0)

for all Ae _# . If _# has a semi-zero object Z | then a morphism A A B iscalled constant]
if it admits a factorization ¢ = (A — Z = B)|

0.2. Complex spaces and holomorphic mappings

021 Let U= (|U], &y),V = (|V], 8,) be complex spaces and let f = (|f|,, f): Ul —
V be holomorphic. If [l is reduced] we do not distinguish between Ul and [U| and between
f and |f|| We let dy(U)} := minl cim, U.

ug

A (closed or open) complex subspacel U’ of [l will be indicated by the symbol U’ <
Ul (which also denotes the inclusion map); if U’ is reduced, connected and compact, we
sometimes write U’ — U. If [/l is a complex Lie group and U’ — [J] is a subgroup, we

(rec)

employ the symbol U’ O U.

For V' < V we denote by f~1(V’) the largest subspace S of [J] such that there] exists
a holomorphic factorization f|d = (S = V' <4 V)| If U" <1 Ul such that f|; is proper,
then therel exists a smallest complex subspacg] S of V such that f|U’ admits a factorization
through| S — V| and it will be denoted by f( U’).

fl isaquotienq Map, if it satisfies the following condition: For every open V' ¢ V and
every holomorphic g : f~1(V’) — W that factors set-theoretically through| f| f-1(vy | therel
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exists a unique holomorphic factorization of g through f| IENULE

If f]isproper with Stein factorization (U 3 8¢ —{u V), then 74 is a quotient map.

fisacovering, if [J] is connected and if f isfinite and locally biholomorphic. Coverings
are quotient maps.

Let ¢ : [U] = S be a map of sets. We shall say that thel analytic quotient ¢{: Ul = S
exists, if S can be endowed with a complex structure such that ¢ = |g | for some holomorphic
quotient map g: U1 = S.

Suppose that £ is finite and factors through ¢ If ¢ defines an analytic equivalence] relation
on Ul (ie, if {(v]u) eUx U: ¢(u)= ¢( u)} isanaytic), then the analytic quotient
¢ Ul— S exists (see [8]) Proposition 49. A 13).

0.2.2. The cartesianl product of complex spaces is a product in the category of all complex
spaces, and C is a semi-zero object. For y € V and every complex space W1, we denote

the constant holomorphic map W1 — C® 1 {v} < V by [v]. For (u,v) € U x V we le{
J = (dy,[v]) U= Ux V,j) = ([u] ,idy): V = Ul x V, if the meaning is clear
from the context. If g : UIx V — W is holomorphic, then the partial mapsg o j,, g 0 j|
will be denoted by g( #4.), 9( ., v)] respectively. Let g : Ulx V — A X B be holomorphic,
(u,v) € U x V. Then we let lg := p, o g and rg := pg 0 g; moreover, when no ambiguity

arises, we let v:=llg 0, v:drgoj, udlgoj/andu:drgoj,.

Lemma. Let g ! Ul x W — V be a holomorphic map between connected complex spaces,
andlet A ¢ U x W with |py|(A)= |U|and |py|(A) = W]

If| f]is constant on some open neighbourhood of A , then all partial maps f (., w) , f (u, )
are constant.

Proof] For symmetry reasons, it suffices to consider the partial maps f( ., w) ; therefore we
may assume that W is reduced and irreducible. Given (u, w) € 1 X W, we havel to show
that f( ., w) is constant on every infinitesimal neighbourhood of w ; thus we may assume
U,d = {u}. By assumption, therel exists a non-empty open subsct W’ of W such that f|;;, 1
is constant. Hencel f is constant, sincel W isreduced and irreducible. 0

0.3. Products of groups

Although the groups considered in what follows need not be abelian, we denotel the group
composition by a +- -sign] Then every group homomorphism G x H| — G' x H' is given
A
d
ambiguity can arise, we do not distinguish between at and a1 0 p; G and j-( G) etc.). The

by a matrix Q: ] with ¢t € Hom( G, G’) etc. Note that v + g = 8 + & (when no
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composition of two such homomorphisms is given by the product (j ?, J . (jj 6 )

(where o/of + f'y = 'y + &'dl €tC.).

0.3.1Lemma. Letd: G xH — G’ x H" be an isomorphism of groups given by (a ?) ;
I'T

) - & ,6!
and led ¢~} be given by (7; " ) _

If caor alis injective, then so is §1or 86'| respectively; the same assertion holds) if|
«injeciivey| is replaced by «surjectives»|

Proof] Let @ be injective, and let b’ @ Ker§s'| Then hl = Af/( ') + 68'( h') = 48 ') .
IN§'(h)=0,then0=qaf'(h’) + p&'(h) =af(h), whence g/( h’) = 0 and therefore
b= ~B8(h) = 0.1f ¢’aisinjective, then the equation 0 = o/af'( h') + &/BE'(N') =
daf'(h) - p68(h)=a'af () again yieds g'( h') = 0] whence p1= 0.

Let of bel surjective and let h' g H’. Then g'( h') = &'( g') for some g g ¢’ and
therefore h' = 8§8'( ") + 4B/ ) = 66'( ") + 4a/(g") = 66'( h') = 6+'(g") = 60 8'( h') —
7(g)) alm6. If & is surjective, then f'( h') = o’a( g) for some g € G| and hence k] =
66'(h7) + 4B'(h) = 88'( ") + ya'a( g) = 68'(h’) — §~'a( 9) = 68'( ") + §8'y(9) € Im SS'.

¢
0.3.2 Lemma. Let ¢ be g5 in 0.3.1.
Forallm,n€ N, themap GxG — G, givenby (g,,9,) — (&'@)™(g;)+(8'7)"(g;) ]

is a surjective homomorphism of groups.
If (B'~)|™ = 0 for some n, then ( &' «)™is an isomorphism for all m.

Proof] Frqm o'a+ By =id 5 weinfer & aff'| = B'va'oland henceid 5 = (a'a + f'9) ™" =
((d’a)™ + (B'7) 0 )= (B'y)%0 x* + (da)” o | with suitabled homomorphisms , yf
that commute] with g'+f and o' @] This proves everything. )l

0.3.2.a Corollary| Let g: VX W —V x W be an endomorphism of K -vector spaces, and
assume that g |, ,= X . id, , for some 0 AN € K|

Iflw v xw B W)™ = 0 forsome n, then thecomposition goj, op, |Im g —Img

is an isomorphism.
Proofl Let V' :=Im g; W’ := Ker g and define ¢ : V' x W —V x W by ¢( v'| w') :=

vl + w'. Then ¢ is an isomorphism the inverse of which is given by (v] w) (‘H cg(v,w) |

(v, w) —§<g(v,u.')), If ¢ is represented by the matrix (a ?) with inverse
9
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Q:{l F;H , then 4B (w) =7 (H ‘9(0'“’)) = H -pw(g(0,w)){ thus (48" = O for

some n. By 0.3.2] ¢/al is an isomorphism, since (/7)™ = g'(48) ™ = 0. This proves
. 1 , 1 )
the assertion, since &'a( v') = o/( py (V) = Pyi (;‘ ~g(py(v), Oj]: X{ ~9(py(v"),0)]
<

0.33 Lemma. Led G, X H; DG X HyD>...DG|XH]D...be a sequence of subgroups
such thad

(%) Rur =R, N(G,.| x H,,,) for RE{G,H},neN

Denore by PJ the homomorphism
Gn+4 P&"i Gmi PiﬁiHmﬁ ﬁl")IMIIJ-}Y|-;+1 _l'-’{,', GnJ.

IfP,oP,Jo...0P 4] =0forsome nK €N, then G | x H|= G .| x H,.{ forall
m>0.

Proof] By assumption, the diagram

Gos '™ G4 '™ H, = H, I G

N fil M N N

Gl g Goi i H = H_, & G,,

is commutative forall n > 2. Thus, if P, o...0 P,,,, = (] forsome n,k, then P o...9
Pnsag = 0 for all m > n with m — = even.

Furthermore, G, N Gyl = G N (G x Hypp) NGyl = G N Gd Hiy 0
Hiy = Hid O Hig i Gypey v Hyl = Gy | MV (Gyf % Hy) 0 Hyy = Gy M Hy| and
Gz 11 Hypul = Gy Hyy| foralll X 1. Therefore, we obtain a commutative diagram

G, x H, > G, xH) ) Gy x H, DL
1| kan xkanl ]| id xkan | kan xkarl

G} x H] D GyxH) D Gy x Hj ...

where G,?.I*-J = Gz;.,.l/(GJ ﬁHz),Him = Hz;”/(]f] ﬂH2)| and ]{ﬂ = HZI/(HJ nHz| +
G, N H,) (note that G, N G, and G| N H, commuie).
Clearly, the lower line of this diagram again satisties the condition (*))

Letnow n k € N with P,o...0P_,, = 0; obvioudy, we may assume that n is even.
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For 1 @ N with 2 > n, consider the commutative diagram

Guua A Gy S Hyd S Hy| 5 Gy
Il | kar 1 Xan | kan |
Gua S Gy B Iy S Hy| S Gy

p r
Thearrow Hj,,| — G,jisinjective, sinceH; NH, = Hy| NHy| = Ker(Hy,,, il Gyl

Furthermore, thearrow /{3, — H3,, | id injective] since szm(H‘ NH| +G N H) =
Pc,
p”ﬂ-](hr2£+ll ﬂ H2£+?J+ Gudn !!2‘4_21 = }{21_'_10 112£+ﬂ: KB[(HZHJ ‘_+| sz)l

Now apply thesame construction to thesequence Gix Hi D G, X Hy| D Gy x H{ D .
with (7 and H interchanged; this yields a commutative diagram

Gy x Hj D G, xH; D Gy x H; B. ..
l kanxkm 1kanxid l kanxkm

G} x H{| 3 G xH; O Gy x Hj) ...

with the lower linel again satisfying (*)]
Hence, for n and 1 as above] we obtain

Gora = Gyuy S Hyd S Hyy| % Gy

|| | kan ! xan | kan [
G21+4 L’I szhj, — }[;h’)J = }‘I'.;.IHI = GZJ
! ! I ! 1

G;H‘i — glffJ — HI;H?] — th‘] - GSJ

whcre thecompositions G5, | — G5, — H3,o| ad Hy | — H,y | —G,] aeinjective.

We conclude that Pf{0 ... 0 PJ =0, if Pf|: G5, — G3] denotes the hod
momorphism given by the bottom linel of the abovel diagram. Moreover, it is obvious from
the construction, that Gy, o X Hypd = Goplx Hapy = Gyl x Hyyl il G @ Hipo =

Gl X Y] = Gy X H

Thus, if we proceed by induction on the minimal K with P, 0...0 P_,, =0, it remains
to consider the case i = O, ielthecase G| = 0. Then G,| =0 ,Gy{ X Hy| C
My My = Ny N (Gaped X Hypy) = Gy X Hadand Byd = By N My =
Ry, N (Gypaf @ Hypy) = Ry, | for RE {G, H} andal lwith2] Xn. 4]
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1. LOCAL ALGEBRAS WITH ARTINIAN FACTORS

Let K be afield of characteristic zero with a complete valuation and denote by % | the
category of local analytic K-algebras. The analytic tensor product| is a coproduct in %'
and K is a zero-object in & .

For A g _Sé’K| with maximal ideal m, let n,C A be the nilradical of A. The canonical
projection A — A/m, =1 A_| is denoted by red, or smply by red. The reduction of
a homomotphism f: A — Blin %/ is indicated by f.{: A.d — B.s/ its Jacobian
my/mY = mg/mY by TF: T} — Tg)

For any local subalgevra A’ ¢ Awe let AJA]:= AJA.m,|

1.1. A surjectivity criterion
Let (f : A — B) € &, | Itiswell known that f| is surjective, if and only if s is itd
Jacobian Tf.

1.1.1Lemma. Let(g : A @B —w A’ @ B’) g &4l such thaf pygj, and pggjg are
surjecrive.
Il ppgiOr pugjgl is constant] then g is surjective.

X . . Gll GI2 Gll 0 .
Proof] Tg is given by a mauix that has the form or with
0 Gp Gy Gy

surjective G,|1 Tf = Ta, G : Tg — T 0

The following lemma provides the essential argument in the proof of the local cancellation
theorem Its assertionl does no longer hold, if char( K) > 0.

1.1.2 Lemma. Led (f : A B @ Cj € & |
1| p5f|n‘[ is injecfive with pg f(n 4\ m2) C mgy\m3|fhen n, \ m2 C Ker pof.

Proof. Leta € (m, \m3) Nn,, andlet m € N be minimal with a™! = 0. If p,f(a) # 0,
there exists 1 € N with p,f(a) e m{\ m{!]

Let Bl= N/mP*!,C/= C/m%', andlet f = kano f: 4 — B®C. Then f(a) =
b@1+2+1@®c with z € mz@mz, b™#0 = b™ 1= 2# for 0 < p < m+1,¢#0=c? = cz]
andhence 0= f(a™') = (b®1+2)+1®c)™ ' =(m+1)-(b®1+2)™-(1®¢)
(m+ 1) . M@ c, acontradiction. Ol

1.1.2.al Corollary. (compare [9])] Let f be as above with A artinian.
Ifl py fand TPJ [ are injective, then pq f is constant.
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1.1.2-b Corollary. (compare [9]). Let f be as in 1.1.2 with A | regular.
Ifl pg fla | is injective with pg f(n,/ \m3) ¢ mg \ m}| then pf factors through red ,,

Proof] It suffices to show that every minimal set of generators { %4, . . ., n,} of n4 is contained
inm,\m3|Letn’ be generated by {n, , . .., n,}" (m, \m3) and let A":= A/n’| Then
dm A’ =dim A=dim A= dim TAJ =dim T, whence A’ isreduced] i.e. n’ = n,.<

1.1.2.d Corollary. Let (g: A @ B = A’ @ B’) € &, with A artinian.
Ifl 49 ] 4 1s an isomorphism, and if pg,g j is surjective, then g is surjective.

Proof] Evident by 1.12.a and 1.1.1. ¢

1.2. Isomorphisms between coproducts in %y
Let f: A® B — C @ D be an isomorphism in £, and let f:= PAf_lchbffAJfH =
p,qf_}]-pppf}',q‘ fﬁll = (! )p = Pufjspgf_lfn:féw = (f_l)g, = Pcfﬁ'gpgf‘13'01

121 Lemma. It Tp. fljs0r T f |is injective, then sois Tp, f-‘jD or ngl , respectively.

The same assertion holds) if uinjectives is replaced by «surjective».
Proofl Compare 0.3.1. <

1.2.1.al Corollary. p,fj,or 7| is an isomorphism, if and only if py f=! jjor f5lis, re-
spectively.
Proof] Let p,fjor f,| be anisomorphism. Note at first thatl it suffices to show that py f 154

resp. f5!is surjective: If p,fj | is bijective and py f'j, is surjective, we obtain a se-
quence of surjective homomorphisms

2 _1i b o
aeBLcep e ygp Bl o yg B

and we conclude that p, f~'j, is also injective.
The assertion is now evident by 1.2.1. 0

1.2.1.b Corollary. Lef A or C be artinian.

(i) Npqfjjisanisomorphism,thensoarep, f"jCde fjg and pyf “J'Dj moreover,
ppfidand py £~ 4 are constant.

(i) If1 £, is surjective, then f,]and f51 are isomorphisms, and pj, fj , is constant.
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Proonl In (i) aswell asin (ii)| A is artinian, if C is. Thus we may assume that A is artinian.
(i) If pof7 4 isan isomotphism, then SO is py -} jpl by 1.2.1.a] and C is artinian. By
1.1.2, p,,f jisconstant, whence p; f7 is surjective and therefore bijective, since B 21 [)
via pgf ~'j,| Thus p, f =1 ji5 is an isomorphism, whence pyg =" jd is constant.
@iy If f,isanisomorphism, then so isfﬁl by 1.2.1.a If Tf,and f,areinjective, then
so are! Tpef] 7 dand pf] 741 whence py; 174 is condtant by 1.1.2.al

1.2.2 Lemma. pyf ~! jd defines| on isomorphism C/pd t (A) — B/pgf ' (D), whose
inverse is given by pg fj a4

Proof] Paf_lpcf(m,d C PBf_l(f(mA)'*C@ij = pr_l(C®ij = B‘ng_l(mo)'
whence pgf~'(C-pcf(my)) ¢ B pgf~'(mp)]

Furthermore, pcfpgf~'(¢) € pcf(f~'(c] + my & B) = ¢ + C - pgf(my) for all
¢ € mg, and the assertion follows for symmetry reasons. 0

1.23 Lemma. For all m;n € N the mulfiplication map mult: Im ffi@ Im f7] = A is
surjective.

Proof] By 0.3.2) the Jacobian of mult is surjective. 0

1.3. The structure of local algebras with artinian factors

Let f : A® B —+C @ D be an isomorphism in % .| and assume that A is atinian.
Then Ag:=1m fi'| Aj = 1m [ are welldefined for m > (] and mult: A4 @ Ap| —
A is surjective by 1.2.3. Clearly, psf] l4.| Ppflla] and their Jacobians are injective; thus
ppf L‘d pef |Ao| are constant by 1.1.2.a. Therefore, Ad = f,(A), Ay = f4(A)] and
pcf(A) = pcf(Ag) = Cu,ppf(A) = ppf(Ap) = D, areisomorphic to As,, Ay via
ool f, pp f, respectively. Conversely, py f -1 induced isomorphisms C, — A¢, Dy — Ap|
whence,again by 1.1.2.a, py f~'|C,| and pgf~'|D/ areconstant. Let B4 = pyf~'(C)|
Bp = pgf~(D),Cq := paf(Bg), Dy =ppf (Bp); then, by 1.2.3, the multiplications
B,®Bp - B,C,®Cy —C,D,® Dy — D are surjective|

13.1 Lemma. mult: A, ® Apl — Ais an isomorphism.

Proof] Denotel by x the composition

5 piy g ; A

Then pg,xja] = PcfjAPAf_]J'cpcfjal,q(J = Pch'AfAlAcl and Pp,XJa) = Ppfiapaf”’
jpppfj,qldv =p5fid fi |AD| are isomorphisms. By 1 .1.2.c] x is surjective and thus hijective,

whence mult: A4 ® Ap — A isinjective and hence an isomorphism. 0
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13.2Lemma. (pgf'ppfIBy, = Bp) = idBD‘(prpgf_llDB — Dg) = idp | and
pgf\ppfl Bcl is constant| and the corresponding statements hold after| interchanging C and
D, In particular, B and C4 , as well as B, and D are isomorphic via pof| ppf, with

the respective inverse given by pg f ~'.

Proofl Let s @ Mggp| Thenppf~'ppfpaf~'(s) = paf 'ppf(f7'(s) + (ppf~'(s)
£1(s))) = pef'pp(s), sinceppf(pgf~'(s) = f1(s)) € ppf(my, ® B) = D -
m, andef—‘iDAisconSant. Thus pgf'ppfesf~'Id = pef~'p,ld is constant, and
puf'opfoef ) = puf'lp, andwe conclude thatipg f~'pyflg] id constant and
pr_'pr|5J = idg | Then aso pr'lprlDB: idp, | since ppf|By — Dy id sur-
jective by definition. O
1.3.2.a Corollary. The multiplications B @ B;J—+B, C/® Cd — C, D, & Dg — D are

isomorphisms.

Proof. Lel
-1y —1: .
x = (C,®Cp m_ﬂli o’ A g B /a®psl \icPclin A @ B) .

Then p, xjg| = fopaf “clc) and pp Xic) = ppf'pcfPefl loj=pef) lcjare
isomorphisms, and hence 0 are y and mult (se¢ 1 .1.2.c).

Symmetrically, multi D | & D g — D isan isomoxphism.

Finally] mult @ mult: (A, & A) @ (B, ® B,) — A ® B is surjective, mult @& mult:
(C, & Cp) & (D, & D) — C @ D is an isomorphism, and A, & A ® B4 ® B/ &
CJ ®Cqd & Dy@ D. Thus mult: Bd@' BD| — B is an isomorphism as well. )l

In total| we havel shown:
1.3.3 Theorem. Let ¥ : A@ B — C & D be an isomorphism in % ;| withl A artinian. Then
rhere exists a commutative diagram of isomorphisms in %]
5
(AC®AD)®(BC®BD1 _J (CA®CB1 ®(DA®DB)
| mult@mull 1 mult @muly]

A®B d c®D

where R{= paf(A) = paf (Ap)| Bd= psfl™ R) = psfl " (Rg), R = Paf( By,
Ad= psf ' (Ry) for R € {C, D}. Inparticular, Rg ®1 Sy for R €{C, D},S| € {A B}

1.3.3.a Corollary. (Cancellation theorem, see [6])] Let R, R, S € % f such that R, R| or

S is artinian.
IfR®S = R®S)then R R
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Proofl We may assume that S is indecomposable. Then either Rg 21 Sp = Kl = R ¥ 8|
or Rg & Sﬁ a8= 5™ R;hl In the first case, B Rp & R o R, and in the second

one R¥Rp®Rg T RR@ Rg= R| 0
1.3.3.b Corollary, (Decomposition theorem, seel [6])] Every S € %, admits a unique

decomposition (up to reordering) S= S8, & ... & S]® S1with indecomposable artinian
S,y .., §8]€ Zx\(K)and with §| € & having no artinian factor # K.

Proof] Of course]we need only verify the uniqueness part. Using induction on n, it suffices
toshow: I S§]® .. & S, ® §"isanother decomposition of the same type, then therel
exists 1 << nwith $,/ 21 §land ®,,18,®S 218)@...®3,/® 8.

The case n = 0 being trivial| we may assume that the assertion is proven for some n- 1 >
0.Let B:=®,5,5,88,D:=®,5,5,®85" andlet f: $, ® B — §, ® D be som¢
isomorphism. If §; = (8))3, | thenlet »] := 1. Otherwise, §} ®...® 5, ® §| = B =

S, ®B, ¥ S, @Dyand $,®...0S5,®S8"=D=8,®Dy ¥ S, ®B,,. From the
induction hypothesis, we infer that S, = 8,1 Q@uu>] S, 8'S = Bpfor some2 <vidn,
and hence ®,,,/5,) ® §1= S, ® B D = ®,545/® S %

In view of the applications we have in mind, it is advisable to reformulate 1.3.3 in terms
of quotient algebras.

13.4 Theorem. Let f : A® B — C@ D be an isomorphism in %,/ with A artinian, and let
Rg,S4 beasin 1.3.3/whereR € {A, B}, S€{C, D}. Let {R, R} = {A, B}, {5, 58} =
{C, D}. Then

(i) kanl o fjd 1R = CJ/Cy| ® DJ/Dpjand kano £~ j§1 S — AJAg & B/ Bg| are
isomorphisms.

(ii) The composition RPsRr g ke S/ Sg| factors through R — R/ Rg| with an isod

morphism R/ Rg — S//Sp, and S pﬂ{a’% — B/ Bg| factors through S — §// S| with
an isomorphism S/S, — B/ Bg. The homomorphism f| 1 A = Aresp. ff: A = A
factors through kan 1 A — AJJA,, resp. kan | A — AJJAd and the resulting composition
AJAG A = AJfApresp. AJAq — A — AJJAd is an isomorphism.

kln

Proof] kan|Rg — R//Rg,kan|Sy — S/ S| are isomorphisms, since SO are mult: Ry @
Rgl = R, mult1 S, @ Sp| — S.
(i) Let
bpi= (B ®Rp™ R Ce®D™ CICh® DJDp)
and

Yoi= (8,88, ™ s’ A® B AJA. ® BJBg).
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Then Ps;sﬂ,(bg]-ﬁs ' Ry — 8/ 8yl and pRJ‘R’S‘ﬁSjS,J 1 8 — RJ Rg| are isomorphisms,
whence soare ¢, | Y| ¥ by 1.1.2.c.
From the commutative diagram

By =« B " ¢
| kan | karl | kan
K < BB, 3 cjcj

(compare 1.2.2 and the definition of C,| B)), we infer that p;- ¢ Jp,, is constant; sym-
metrically| s0is ppyp, ¢4 ;‘HJ . In particular, the Jacobian of ¢ 4 is surjective, and hence o
iS¢y

(iif The case R = B follows from 1.2.2 and the definition of B,|B, C,| D,. The
case R = A follows from S = pgf(A) and pgf(Ag) = K for {S,8'} = {CD}.
The morphism £ is constant on A, and hence factors through A — A4/ A , furthermore |
f(A) = A, and A4 — AJJA | is an isomorphism. The corresponding statement for f|
follows symmetrically] 9

14. Germs of complex spaces with zero-dimensional factors

1.4.1 Theorem. Let ¢ : X x Y — Ul x V be an isomorphism bemweenl germs of complex
spaces, and assume thafl X is zero-dimensional. Lef {S, S’} = {U, V}, {R, R} = {X, Y},
and denoid by

Xd x 8.5
Ys i Y 4 9
Sy the fibre of 9V = S
Sy §S—-X

(Where each arrow denotes the corresponding partiall map given by ¢lor ¢~ |

Then

(i) pgd|Xdx Yg — S and pu¢=!|U, x Vg — R are isomorphisms.

(ii) The partial map S — R defines an isomorphism Sy — Rg, thepartial map Y — S
defines an isomorphism YJ — S, | and the composition of parrial maps X —S — X
factors through the inclusion X ¢ < X, inducing an isomorphism X — X ¢

The proof is evident by 1.3.4.

1.4.1.a Corollary] Let X, Y, Z be germs of complex spaces such thaid an least one of them is
zero-dimensional.
I XxZ2YxZ thenX 2Y,
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1.4.2-b Corollary] Every germ Ul of a complex space admits a unique decomposition (up to
reordering) U 21U/ x . . . x U x U' with zero-dimensional indecomposabl U, # C? and

with U having no zero-dimensional factor #C°|

2. FAMILIES OF HOLOMORPHIC MAPPINGS

When considering the complex analytic cancellation problem, onei is faced immediately with
various families of holomorphic mappings - eight at first sight. but actualy a lot more. In this
chapter, we prepare the way for deding with them.

2.1. The simultaneous Stein factorization
Let ¢: W x U — V be a holomorphic map between connected complex spaces. Then W
and U1 can be interpreted ag parameter spaces of holomorphic maps from Ul or Wi intol V
with evaluation map ¢| In general, we consider ] to be the common domainl of the maps
parametrized by W1 . Sometimes, however, it is advisable to interchange the roles of the two
factors, and it will be done without further comment.

Mostly, we shall not distinguish between w € W1 and the partial map ¢( w, .) (or between
wand (., u) )

2.1.1 Lemma and Definition. Assume that @ := (p,,| ¢) : W x Ul — W x V isproper.
Then the partial maps W € W admit a simultaneous Stein factorization, i.e. the Stein

factorization @ = (W x U Se LARVY V) satisfies g = id , X Tw,d_)( w] ) = (py, W)
for allw € W, where w = (U ™/ S %/ V) is the Stein factorization of w € W.

Proof] By ([5]] 4.3), the assertion is true for reduced U] W. Thus therel exists for every w @ W

a commutative diagram
WXUu 3 Se

lid M Tl / hy
w X SI‘U
with some homeomorphism h,,. The mapping h , is biholomorphic, since both id X 7,; and
Tg| A€ quotient maps. ¢

For the remainder of this work, we let therefore my := 71 1= U= § forw € W
arbitrary| and ¢ | := py 0o ® : W x U, — V]|

2.2. Effectivdly parametrized families
Let ¢: W X Ul = V be a holomorphic map between connected complex spaces, and let
Hol (U, V) := {of: Ul = V : a holomorphic}, Hol (U) := Hol (U, U)| Aut( U) := {of €
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Hol (U) : a biholomorphic) . The evaluation map Hol (U] V) x Ul — V will be denoted
by Eyy| or by Ey,if U1 =V (or by E|if the meaning is clear from the context). For
v € U/U" QU] HlQHol (U] V)| wedenote by -u thecomposition Ey; 07, : Hol (U, V) —
Hol (U, V) x Ul =V, and we let HU' = E; (| HIx U’), and Hu := H{u}| We shall sy
that W is (almosi) effectively| parametrized) if the natural map py: W 3w 1 ¢(w, ) €
Hol (U, V) is injective| (or, respectively] has discrete fibres).

Let ¢ : WXV — V| be another holomorphic map between connected complex spaces.
When no ambiguity can arise, we denote by W oW the image of Wy x W under p, I o id w, X
¢){ in particular, o W = {a} o W = pmd,(Wj for « € Hol(V, ;)|

Ifl U1 is compact, then Hol (U, V) admits a unique complex structure such that Ey 4
and all possible p, are holomorphic; if Ul is moreoven reduced, then the complex space
Hol( U, V) carries the compact-open topology (see [2])) For compact [l , we henceforth tac-
itly assume Hol (U, V) to be endowed with this complex structure. Note that then, according
t0 0.2, NU’ and p,( W’) carry the analytic image structure, whenever H < Hol (U, V) ,
U’ U] W — W] with propen Ej; | |7, O p¢|w’4

It is well known that Aut (U) is open in Hol (U) for compact ] ; if, in addition, U] is
reduced, then Aut (U) isaso closed in Hol (U) .

2.2.1 Lemma. Suppose that (p; | ¢} : W X Ul— Ul X V isproper.
() Let W be almost effectively parametrized. Then dim W < dim V. If moreover] every
irreduciblel componeny of W contains a surjective w : Ul — V, then dim W ¢ d,(V) =

min dim _ V.
veVl v
(ii) If some uy € Ul is finite (resp. surjective), then every u @ U] isfinite (resp. surjective).

Proof] We may assume that U, V, W are reduced; furthermore, a trivial argument shows that
W can be assumed irreducible. Applying 2.1.1 to the family (¢( ., ©)),¢¢f Yi€lds (ii) and

the first part of (i). Let V' be an irreducible component of V. If w € W is surjective, there

exists an irreducible component U’ of Ulwith w( U’) ¢ V’. Then ¢( U’ x W) C V', whence
dim W < dim V' by the firstl part of(i).

222 Lemma and Notation. If W is compact, then the analytic quotient W — p,( W) ex-

ists. py( W) together with this complex structurel will be denoted by p,[ W] . The evaluation

map Eyy . pglW] — V is holomorphic.

Proof. Let ¢ = (W x U 1,_11'14 Wy x Ul ‘Eﬂ V) be the simultaneous Stein factorization of
the partial maps u : W — V. Obviously, py factors through m, and Py defines an analytic
equivalence relation on W . If P4 W) isendowed with the quotient topology, then the natural
map Wé — pé(WH and the orbit maps -u : ps(W) — V arefinite; hence, by ([8]] 49.A
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13), the analytic quotient W15 —+ pg (W) exists. Denote the corresponding complex space by
pg (W1 thenl p, : W — py[W] and p, x idf are quotient maps, since &y, = (7). By .

In particular, the evaluation map is holomorphic. O

Note that| if Ul i compact, p,[ W] need not coincide with the complex subspacc]
p4(W) <1 Hol (U, V) -in generd, the latter structure is a substructure of that on pyll /4|
Nevertheless, for non-compact U | when no such rivalry can occur; we shall introduce the
notion of a reduced connected complex subspace of Hol (U] V):

2.23 Definition. Assume that Ul is non-compact. [f] W is compact, reduced and weakly
normal, and if W is effectively parametrized, then W is called a reduced connected compact
wmplex subspace of Hol (U] V) , expressed by the symbol W (Lﬂ)HoIJ (U, V).

roc

2.2.3.a Remarks.

(i) If Wid reduced and compact, then the weak normalization of py[ W] is a reduced
compact complex subspace of Hol ( U, V) .

(ii) Let W e Hol (U, V), W ] Hol (v, V]) . Then W, o W] carries a unique struc4

ro

turel of a reduced connected compact complex subspace] of Hol (U] V] ) , with which we shall
aways assume it to be endowed. Note that, in contrast to the case Ul compact, the inclusion
W 0 wy — W, o W] need not be an embedding; it is, though, if it is bijective.

2.3. Action of compact complex Lie groups
Let Ul be a connected complex space.

23.1 Lemma and Notation. Therd exists A(U) (::1 Hol (U) with id, & A(U) such that
the following condition holds: If ¢ : W x Ul — Ul is holomorphic with reduced compact
connected W such that id ; € p,(W), then p,(W) ¢ A(U) and p, : W — A(U) is
holomorphic.

In particular, A(U) admits no propen complex substructure, with respect to which the
evaluation map E | remains holomorphic.

A(U) is a compact complex Lie group and A(U) is a normal subgroup of Autl ( U); if
Ulis compact, then A(U) is central in the identity componeny Aut , ( U) of Aut (U).

Proof] By 2.2.2 and 2.2.1(i), therel exists an irreducible A(U) =) Hol (U) of maximal did
mension with id ; € A(U) . Then id ; 6 A(U) 0 A(U) (t—»; Hol ( U) , whence the inclusion

a 0 A(U) = A(U) o A(U) is bijective and therefore biholomorphic for all m @ A(U) .
Thus A(U) ¢ Autl (U) and A(U) is a compact complex Lie group.
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Let W o Hol (V) with id ,, € W] and let /' be an irreducible component of Wi that

meets A(U). Then the composition A(U) & wy 0 A(U) = W' o A() is bijective and
hence biholomorphic for all wy € W'NA(U) . Thus |[W'| ¢ A(U) and hence |[W|c A(U) .
On the other hand, the composition W A woid sWo A(U) = A(U) is injective and
holomorphic, whence (W, &,) — A(U) for a suitable complex substructure &/ of 8,.
By 2.1.1, the orbil maps A(U) -5 A(U)u — [l are finite and hence locally biholomorphic.
Thus no reduced subspace of A(U) can admit a proper) complex substructure with respect to
which the evaluation map remains holomorphic. We conclude that, if ¢|: W x Ul Ulis as
postulated, then p,(W) ¢ A(U) and the inclusion p,[ W] — A(U) is holomorphic, and
hence sois py { W — A(U) |

A(U) isnormalin Aut(U), since a0 A(U) oa™! e Aut(U) forevery a € Aut(U)

If Ulis compact, then A(U) is a compact connected complex subgroup of the connected
complex Lie group Auty (U)and hence is central| ¢

In the last chapter] we shall make use of the following generalization of the above result:

23.2 Lemmal Let . .. — U, | =) Uu,—. .. ' U, be a sequence of coverings, and let
Wn(f-;JHol(]Un 1, U, ) with a; € W, n € N.

Then |W,| c A(U,) o «, for n>»0,and thd inclusion is holomorphic.
In particular, any W (‘—>) Hol ( U) containing a covering as lies in A(U) 0 a.

Proof] We may assume that all W, are irreducible. It suffices to show that W, o ... 0 W,/ C
A(U,)oa,o...0a,,l for some k > 1, since the «, are surjective and locally biholomoxphic.
On the other hand, by 2.2.1())| Wjo...oW, ;o0...0 W, |=W,0...0W,  Joa, ;. i0

.. 0@, fOrallny 1, and for k sufficiently large (depending on n). Thus, after suitably
condensing| the given sequence, we may assume that W o W, {= W, o a,, for all n,
whence, in particular] dim W | < dim W,|. Cutting off a sufficiently long initial sequence,
we can assume that dim W, =dim W, _ for all n. The inclusion W o a,, =W oW |
is bijective and hence biholomorphic, and, utilizing it inverse, we obtain a holomorphic

8 o= (WX W] = W oWy A W) o ey = W)

with ¢(., e, ) = idy, | Thud py( W, |, ) G ACW, ) and p, is finite, since 0 is W, | —
a0 W, | Fromdim W, > dim A(W,) >dm W_|=dm W,_| weinfer thal W/ | =
A(W,)isa torus) Denotel by g1: C ¥ — W] the universal covering and assume that g,( 0) =
a, LetE, | = By 4 o(g,{xid, ):C*xU,|— U,|anddencteby h|: CH — C¥
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the linear lifting of ¢( @, ): W,,{ — W,. Thenthereexistsaunique E,, : C*x U, | —
Uny Witha, 0 E |= E_|and E | (0, )= idy, |-
The simple-arrow part of the diagram

CtxU,, ™ U

\ aI
1 hyxa,., 4 i U
/" a,

E
CkXUfﬂl LI’

n+1

is commutative, and from E,, (0,.) = a,,, = E,.|o(h, ¥ a,,,)(0,.), weinferthatthe
entirel diagram is commutative, since a, is a covering. Thus pp | C ¥) 0 @, = W, (as subsets
of Hol(U,,,{ , U,)), and we can endow V,, := pp (C *) with the complex structure given by
the bijection V| = V| o | = W, |
The diagram
Eunﬂ
Vel X Ui == U,
! !
W, x U,

is commutative with localy biholomorphic vertical arrows; thus EUL: is holomorphic,

Boyign

n

whence V] o Hol (U,) . Asidy €V,]the assertion follows. 0
rec .

2.3.2.a Remark. Assume that [/ and W are compact and that some wy € W is a covering
U — v.

Ifl pg(W) ¢ Hol (V)] o wy then the corresponding map 7| : W — Hol ( V) is holomor-
phid with image in Aut (V) .

Proof] Evidently, py = (W 2 Hol (V) — Hol(V) owy <« Hol(U,V))] and Hol (V) —
Hol (V) o wy is biholomorphic, since w, is surjective and locally biholomorphic. Furtherd
more, [5( W) |c A(V) , and Autl (V) is openin Hol (V) . ¢

2.33 Definition. Let g : Ul — V be a holomorphic map between connected complex spaces
and let T O A(U).

g is T — equivariant| if therel exists amap g; : T — A(V) with g,(0) = 0 and
g(a)og=goaforallaeT.

gisT — T" -equivariant, if g is T -equivariant with g,(T) ¢ T A( V) .
23.3.a Remarks) Let gbe aT -equivariant.

(i) g, is uniquely determined and is a homomorphism of complex Lie groups.

(i) If f,q9 = O, then g, is finite.
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Proof] Let vy @ Ul and consider the commutative diagram

T & A(V)

1 g 1 -glu)}
Tuy 5 A(V)g(uy)

The mapping -g( u, ) is locally biholomorphic and g,( 0) = 0; thusl g, is @ homomorphism of
complex Lie groups. In particular, g, is uniquely determined by the equation -g( uy) 0 g, =
go-ug.

If gisfiniteinug, then g isfinite in O and hence everywhere. %

2.3.4 Lemma. Let g:Ul—V be a holomorphic map between connected complex spaces.
(i) Let T O AU), T" O A(V) such that g(Tuy) ¢ T"g(uy) for some ug € Ul If|
QJ T"gd 4 = 0 (e.g] if g is surjective), then g il T — T" -equivariant)

(it) If| g is proper with g,& | = @}, then g is A(U) -equivariant.

(iii) Let 71O A(V) . If g is a covering, then therel exists a unique| T O A(U) such that
g is T = T" - equivariant. In particular, dim A(U) > diml A(V) .

(iv) Let h : V — V" be a covering, and let T J A(U). If g is surjective and h o g is
T -equivariant, then g is T -equivariant.

Proofl (i) We may assume g(T'uy) = T"g(uy) . Then T"ogo T = Hol (U, V) with

(goT)uy =(T"ogoT)uy = (™ og)uo;l thus T"ogoT=T"og=go T by 2.2.1(i)
and we conclude thatl g(T'u) = T"g( w) for all w € U. The maps g, := (9|Ty — T"g( u))
are A(T'u) -equivariant with (g,), 1 A(Tu) — A(T"g(u) = T"/T" . As every Tl

is finite and ol Touy

glu)*
= 0, therel exists @ holomorphic homomorphism ¢, 7] — T” such

that every composition T ki A(Tu) 9.4 T”/T;'(d factors through g¢,; By congtruction,

g(a)og=goaforalla€eT.
id xm
(ii) Let ¢ := g 0 By = (T x U "4°T x U, L V) be the simultaneous Stein factoriza-

tion| Then every ¢ ,(t] ) is biholomorphic, since &, = 9,8 = 9.t.8y = ¢(t, .),O =
$(t) ) (1), By = $,(1] -)-@u, By 2.3.1, the assertion follows with g, := p; .

Assertion (jii) follows from (i) by applying Lemma 2.3.2 to the sequence of coverings

id

2 S

with Wn = 7 ogl
Assartion (iv) is evident by (i) and (iii). $
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23.4.4 Corallary. A(UI x V) = A(U) x A(V).
Proof] The inclusion A(U) x A(V) € A( Ul x V) is obvious. To show the converse, let

¢:=py0 E= (ACUIX V) x (U x V) "5 44 x (U x V) 4 UY be the simuitaneous
Stein factorization, and let ¢f == ¢, 0 (id ) X 7,) 0 Ag X Ul — Ag X UxV) U
for some fixed vy € V. Then id, € py(4y)| whence py(A4,) O A(U) by 2.3.1, and
therefore py (A(UIx V) (4,vg)) = (py(Ag))u ¢ A(U)4y forall we U. By Lemma 2.3.4(i)|
py IS A( Ul x V) -equivariant| and, symmetrkally, o is py . Evidently, (( py).| ( py).) :
A( U x V) = A(U) x A(V) id injective) and the assertion follows. &

2.34.b Corollary. Led T, T be tori and led ¢: T" x Ul =+ T be a holomorphic. If| some
¢( tg, N U= Tis constant, then ¢ factors through py..

Proof] We may assume t, = 0,4(t,, ) = [O]. T' acts effectively on T’ x Ul via addition
in the first factor] By Lemma 2.3.4(i), ¢l is T"-equivariant] thus [ 0] = ¢(0, .} = (¢ 0
(=D)L, = o (=) od(t].)]iel (t] )= ¢,(1). 0

Let T O A(U). By ([7)) Satz IV.IO.), therel exists a holomorphic structurel on |U|/T
such that the quotient map g becomes holomorphic. Replacing this structure by ¢,&;,| we
conclude that the anaytic quotient Ul — |U|/T] exists; it will be denoted by ¢ U= U/T|
We shall employ the following notation: ( Q@ Ul — U,,) == (qpy : Ul — U/A(V)) .

234.¢ Corollary.

(B Quxvt = Qu * Qy-

(if) The mapping Ul — U] is functorial with respect to propen holomorphic mappings
that satisfyf 9, &, = 8..

(iii) There exists a covering U’ — Ul such thad every covering g :U| — U' is A( U,) -

equivariant. In particular, therd exists a covering 9o | : (U)o —* (U')od With g, 0 Qy| =
Qu 09!
Proof] (i) follows from 2.3.4.a] (ii) from 2.3.4(ii)| to prove (iii), note that] by 2.2.1(i)] every
covering [J' — U] satisfies dim A(U') < 4 (U') = d,(U) . Thus. if U’ — Ul isa covering
with dim A( U’) maximal| then every covering U, — U’ is A( U, ) -equivariany by 2.3.4(iii)
and  2.3.4(j). 0

2.4. Torsionl bundles over tori
Let Ul be a connected complex space.

2.4.1. Definition. Let m: Ul = T be holomorphic, T a k-dimensional torus. We shall say
that m is a torsion bundle over T wijth fibre Uy , if misa U, -bundle with finite structure
group such that the total space of the associated principal bundle is connected.
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Notation. (7 : U — T)| € %] with fibre U] . Sometimes we also say Ul @ %, if there
exists (7 : Ul— T) @ &, with some fibre. With this convention we let = ng b,

24.1.4 Remarks, examples, and notations

(i) Every connected complex space liesin 77 | If (m: Ul — T) .4, with fibre [J;| and
(11 V =T) € ) with fibre V;| then m x n € %, ] with fibre UJ x V! In particular,
UxVedifllle SodV e ¥ Weshdl seg later on that the converse holds, too.

1 .
(iiyLet T :=C/Z +iZ] andletm; : T — T} 0% be the Z -principal bundle given

.
by the ZJ -action Z{x T3 (n, t) — t + ?" €T, where 1 < j < 4. forevery complcx|
space Uy with non-trivial Z, -action, the Uj -bundle| (U, ) associated to m; is a torsionl

bundle over TAO%{ with fibre Uy . The bundles (U, ) and ms_,(Uy) are isomorphic via

il =+ —t| whereas m;(Uy) and m,(U,) are not isomorphic for k# 5,5 - . The associated
fibre spaces, however, and, a fortiori, their total spaces, may be isomorphic. For instance,
if U, = v for some V, where ZJ acts by cyclic permutation| of the coordinates, then the
fibre spaces associated to the o (U, ) are all isomorphic. On the other hand, if U = P, with

Zg -action (n,(zg @ z,)) ~* (2 : €"z,) where € = exp(Fﬁ] , thenl not even the total

spaces of my (P,) and m, (P, ) are isomorphic (see [5]] 6.2).

(iii) Let (m : U1 = T) € & withi fibre U , and let «' : T° —» T be the associated
principal bundle. Then T is a k-dimensional torus and =1 is a covering. We may assume
that 7' is a homomorphism and identify the structure group I of m with Ker #'] Assume
that the IN -action on T' is given by (7, t) — t + X(7) with some X @ Aut(I")] and
definel x : I — Autl (U,) by x(7) = %¥~] (-7) (where we consider I as a subgroup of
Aut(U,))]| Then thenatural map T' x Uy — Ul given by (t,u) ~ (tH X(7), (—7)(u))]
coincides with the quotient map g : T' x Uy — ( T' x Uy ) /graph| (x) . Consider the cartesianl
square

T'xUy H W
Lep I

P &5
and let T" act on T' x Uy via additionl in the first factor] Applying Lemma 2.3.4(iv) to
T'S {1y} H ¢(T" x {uy}) 5l T, we infer from 2.34(i) that ¢ is T"-equivariant| Moreover,
g, is injective, since Ker g, M and g,(v] v} # ¢,(7', u) for all 4,4’ € I ,v# 7'.
Therefore, we shall from now on consider T’ [J A(U) in this sense.
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(iv) Let S be a k-dimensional torus, and let y : I1 — Autl (Uy) be a monomorphism
from a finite subgroup I of S into the automorphism group of some complex space U,,.
Then, evidently, the map (S x U,) /graph( x) — S/T], given by (s, u) s+ 11, isa
torsion bundle over S/I7 withl fibre U .

Conversely, by (iii)| every m € ., arises in this way.

(v) Let (m : U1 = T) g & with fibre U;| and let V be a connected component of
7~1(0) 2 U4 . Denote by A C T A(U) the isotropy group of V ; then A g T := Ker 1
(w asin (iii)), and A stabilizes every connected component of 7~!(0)] In particular, A
contains every isotropy group I', for w € 7=1(0). Thus my = 7' = (T " T'/T 2 T)
with some homomorphism }] and thel restrictions m: T'u — T, w @ w~'(0) , all factor
through Xl As Ul is the digoint union of the T"u, w & =~ (0) ] we obtain a map (of sets)
nj 1 Ul— T'/A with m = X 07 3 ny is holomorphic, since X is locally biholomorphic.

The commutative diagram

T'xUf « Txv Y u
N\ pr lpn ls N

P PIa S F

immediately yields that my € .9?:] with fibre V and structure] group A. If ] = (T’ X
U,) /graph(x) (according to (iv)), then Ul = (T’ x V) /graph(¢) , where ¥ := (x|4 —
Aut(V))|

Note that for compact reduced Ul the equation m = X 0 m, is just the Stein factorization
of m

The following characterization of %] is one of the essentia ingredients of the investigad
tions performed in Chapter 5:

2.4.2 Lemma. Led m1 U — T be a holomorphic map into a k -dimensional torusl T') and
assume that therel exists a k dimensional T' ] A(U) with w( T'ug ) = T for some uy € U.

Then m € F with fibre| ! (m(ug)) =: Uyl

Proof] By Lemma 2.3.4(i), the map « is T -equivariant with ,( T’) = T; in particular, m is
locally trivial, and the diagram

! x Uy o Ul
1 pp IR
T s T

\‘"n /""
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commutes. Again by 2.3.4(i), E, is T' -equivariant (with respect to the additionl in the first
factor)] whence E;, is a covering. Thus every t € T' defines amap y: I = Kerw, —
Aut (U,)| suchthat EEI(EU(t,u)){ = x(I")y forall we U. Now t( E,(y, xo(1)(u)) =
U(Ey(0,u)) = Ey(t,00 = By(t+, x,(N(w) = t(Ey(v,x,(1(w))) forallt € T',u €
U, whence yx, = xg for all # € T'; in particular] x == xq is @ homomorphism, since
x(A+7)= X,,(ﬂ 0 x0(7) = x(7") o x(7) foral ~,~'. Evidendy, E;; : T x Uy — Ul
factors through 71 x Uy Gt (T'/Kerx) x Uy , and we conclude that Kery = 0. Therefore
m can be represented as in 2.4.1.a(iv))

2.4.2.a Corollary. Let aa: Ul — A(U) be holomorphic. Fix some ug € Ul and define
ay: M= Uby ap = (U S AU) 2 U)" forall na N.
There exists kK € N such thal (ao a1 U — a(a,_; (A(U)uy))) € F foralln> 0.

Proof. We may assume a(u,) = 0. ThenT, = a(a,(A(U)yy)) CEAU) and T, C T,
whence T, =T, | for n»/0. Letting k := dim T}| for n 3> 0] the assertion follows from
Lemma 2.4.2, since «, : Ul — Ul factors through -ug : T,_| — U. 0

24.2b Corollary. Let Ux V € 7, If|V ¢ Z] then Ul € .7,.

Proofl Let (n: UIx V — T) € ,. Composing m with some covering T — T', we
may assume T g A( Ul x V) (compare 2.4.1 .aiii)), and that = : T — T is homothetic.

Fix some ( tig} vp) € Ul x V and considering g := (A( Ul x V) = A(U) x AV) “°]
Ux V3 T); evidently, g(T) = T. For § € {U] V} let dg := lim dim Im(T] "
n—00

A(S) L A(UYx A(V) % T)"] then S ¢ 7] by 2.4.2.a] whence d;) = 0. Thus the lifting
7 A(UY x A’(f’)| — T to the universal coverings with g( 0,0) = 0 satisfies the condition

Par

of 0.3.2.a, and we conclude that T P45 AU) L A(UIxV) 4T is surjective, whence
dy = k. 0

2.4.3 Definition. Lel (n]: U, — T;) € .ﬂJ with fibre V;| ji=1,2] A holomorphic map
f 1 U= U, isa F-morphism| if it is T)| - T;| -equivariant and fibre-preserving with respect

o m, m
For brevity of expression, we employ the notation: f : mj — |
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2.4.3.a Remarks.
(i)f f1 m — m, therel exists a commutative diagram of holomorphic mappings

L1 N

TixV, = U - T
l fixfo l f l ?
TxVy = h &5 7
(i) f : U, — Uy is fibre-preserving, if f maps at least one fibre of my into one of =, .
(iii) A surjective holomorphic f : U{ — U is a Z-morphism) if and only if it maps some
fibre of my intol one of | , and some orbill of T} into one of T;.
Proof] (i) The existence of the righthand rectangle is obvious. Let f] := fln7} (0) —

m,'(0). Then the lefthand rectangle commutes, since g, (f,(1)] f.(U)) = g,(f.(t)
(0,fo(u)) = £(0D(q2(0,/(uw)) = f(D(f(g(0,u))) = f(t(q;(0,u))) =

f(a(tu)).
(ii) and (jii) follow froml 2.3.4.b, 2.4.1.a(v), and from 2.3.4(i). <

3. PRELIMINARIES ON ISOMORPHISMS BETWEEN PRODUCTS

Let f=(If]rf): X XY = Ul x V be a biholomorphic map between connected complex
spaces. This is the starting position for both the cancellation and the decomposition problem.
We shall now develop some techniques for reducing the situation to a sSimpler one!

3.1. Relations between the partial maps

3.11Lemma. Led(z|y) € X x Y] (u]v):= f(zyYy) .

(i) y = 7f( ., ) induces a bikolomorphic map jiom F := v 1 (wonto 37 (y), whose
inverse is given by u = I~ ( u,.).
(i) m'ﬁ is biholomorphic in x , then ul is biholomorphic in v .

(iii) 1If] every y’l where y' € Y, is biholomorpic, then so is every J‘J where ul g U.

Proofl (i) From idg, 1 = £710 flexgyy = £710 (Lulimf) |paqyy we infer 83l | = id,

and ¥ gl | = [ y] |, and the assartion follows with a symmetry argument.

Assertion (ii) is evident by 1.2.1 a

(iii) The partial mapsa resp. t] are all biholomorphic, if and only if (If] py ) : X XY —
U XY resp. (pyyrf~): UXV =1 xY isbiholomorphic. Thus the assertionl follows
froml (py,7f~') o f = (If,py). 0
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3.1.1.a Corollary! Ifall | are biholomorphic, then Y 21 V.

3.1.1.b Remarkl Let
X xY —f»l uXxyv

1P Xq uPIXq!
xxv1 4 uav
be commutative and let y' := g4 (y) .
Theni y/ op| = pyr0 f'o(p, X4) (- 8) = pyro(Py Xdy) 0 f(,y)| = Py o | In particular]

if p, is surjective, then o] is constant, if glis.

3.2. Degenerating isomorphisms

3.2.1 Definition. Let (z]y) € X xY|(u|v) = f(z,Y). f degenerates| withrespect to( z1y) ,
if the reduction of themap (u zv y)™ is constant for n > 0. We say that f degenerates, if
f degenerates with respect to some (z]y) .

3.2.1.a Examples.

(i) If f isaproduct of isomorphisms X — U, Y — V, then e.g. every UJ veEV,is
constant, whence f degenerates with respect to every (z]y) .

(i) Let X =Y = Ul = V be a one-dimensional torus, and let f be givenby f (z]y) =

——

(2z+Hy,z+ y)| Then (Ezv y)(a:’j =27 H{3x+4yforall 2,z e X, g ¥, (u,v) =
f (z;y) Thus f does not degenerate.

3.2.1.b Remarks|

(i) If T degenerates with respect to (z]y) | then Ji o f o Jl degenerates with respect to
(y, =), and J o f -1 degenerates with respect to (u|v) = f (z]Yy) . It is not clear) whether
e.g. f~| degenerates.

(ii) Let X be compact, (zq]y,, ug,v) € X X Y x Ul x V. If [(ug Zo¥, ¥o)*| is
constant for some fixed n g N , then so isevery |( ul z vl y)*| (compare Lemma 2.1.1). In
particular] if f degenerates with respect to some (z , y,) , then f degenerates with respect
to every (z|y) , and the minimal n from the definition does not depend on (z]y) .

(iii) Let

XxY 4] uxyv
1rxa 1pxe
xixyr L uxw
be commutative with surjective py and biholomorphic f’, and assume that f degenerates
with respect tosomel (z] y) | Then, by 3.1.1.b, f* degenerates withrespectto (p| x ¢,)(z|y) !
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3.3.  Simultaneous subdecompositions

33.1 Lemma and Notation. Lef ¥, :=Y x V,y; = (y,v)€Y;,undled§ f:xx Y, —
X x Y, b given by S, f:= (f} x id) o J, 0 (ixid). For n > 1led Y, | =
Y XY,y = (Ypydund S, f:= §,(S,f). Then

(i) Spey flo Sy fl=d g,y ,and

(ii) py 0 8y F(o¥pey ) = (¥ )
forall n>0]

Proof] 1t suffices to consider the case n. = 0., Then (i) is evident from the definition of S} f,
and (ii) follows from S, f(.,(y,v)) = (f1xid)o Jo (f(.,v),[v])= (fxid) o

—_—— = - — 0]

(If(‘ly)n[vlnrf('ty)) :(U v,v y,y)

3.3.2 Definition. Let (z|y) @ X X Y, (u] v} = f(z]y) . We shall say that (z]Yy) decomposes|
f, if the following conditions are fulfilled:

@) For {(A,B),(C,D)}={(X,Y),(U,V)} withl e,b,¢c,d € {z,y,u,v} accordingly|
the systems of complex subspaces

(@D ) : nanNy,  {(EDM(a): na Ny,

(@)@l naN,  {(EHHTB): naN)

havel maximal elements Ay A,, B] B respectively.

(iiy For {(A, B}, {C,D}} = {{X,Y},{U]V}) with A € {X, U}| the mapy A, x
B4 —C givenby pyo f (if A=X) orbypyo0 f~1(if A =U ) are biholomorphic.

(iii) The isomorphism ﬂ CUg X U X Uy X V| = X X Yy X X| X Yy induced by f
via (ii) satisfies:

Eachl of the partial maps R — Sp, Sy — Rg given by f, f"| and X, y, u, u (where R g
{U] v}, 8 € {X,Y}) is biholomorphic (i.e. the composition Uy — Uyl x {(u, u,v)} i

XoxYyxXox¥e 5 X, eic).
f induces a simultaneous subdecomposition, if some (x, y) decomposes f .

3.3.2a Remarks|

(i) The condition 3.3.2(iii)| is well-defined, since by construction s € SpN Sy for all
possiblecombinations (i.e. v y(z) = Lf ' (If(z,y),v) = Lf ' (f(z]y)) = x etc.).

(ii) f asin 3.2.1.a(i) induces a simultaneous subdecomposition, f asin 3.2.1.a(ii) does
not.
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(iii) If ( zy y) decomposes f , then ( z,y) aso decomposes Jof]and f( z,y) decomposes
-1
! (Jiv) Assume that f induces a simuhaneous subdecomposition and that X 2 Ul is inde
composable] Then Y V.
In fact| if X % C°, then either X = X, and hence U = Uy, or X = X, and U = Uy,
In the first case, we conclude V = V| = ¥}, = Y; inthe second one|Y = Uy x V| =
UxV, X xY,=X,xY, V|

3.3.2.b Example. With the notations of 2.4.1.aJlet X =Ul=T, and Y be the total space of
my(Py), V that of my (P ). Then X 21/l isindecomposable] X x Y isisomorphic to [/ x V
via the map inducedby T'x T x P, 3 (s,t,2) — (3s+ 5t,s+ 2t,z) € T x T x P, buf
Y is not isomorphicto V .

3.3.3Lemma. Let
XxY LI uxyv

1 pixpy 190 %94
Xyl L uaw

be a commutative diagram of holomorphic maps between connected complex spaces with f'
biholomorphic. Assume that py = id, or p, = id,, and that gy =id ; or g = id
N (z']y) = (p] (2), py(Y)) decomposes f , then (z]y) decomposes f .

Proof] By 3.3.2.a(iii), we need only consider the case p, = id y, ¢ = id ,; Then Vi and ¥},
exist and are equal to V] resp. Y| From thel commutative diagram

(compare 3.1.1 .b), we infer that V}{ exists and is equal to Vy., and that X exists and is equal
o py ' (Xy) |
Symmetrically: Y] exists and is equal 10 ¥y, | and Uy, exists and is equal to 7' (Uj.) -
From the commutative diagram

Vil 8 i)
1P 1idy

=1 5z —-=l1
._f 1, V' ! !
v (u) j u (v)
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(compare 3.1.1.(i)), we infer that p, |;_1(u)‘ 7y 1‘( u') is welldefinedand biholomorphic.
Let now S,f| S,f' be as in 33.1. By construction, the diagram

xx¥] M xxvy
Il # xid 1 @ xid

xxy] M xxv

is well-defined and commutative.

Applying the above remarki to S| f, we conclude that

- —-1 -
pl[}}“l(zﬂ — ¢', (2') 19 well-defined and biholomorphic (where yn=| ISfC.,y):

X — X). Thus, by 3.3.1.(ii)] X | exists and p; | X,| -+ X, is well-defined and biholomor-
phic. Symmetrically: U, exists and gy |U, — Uy, is well-defined and biholomorphic.
From the commutative diagram

Xyxvy H4ow
= || p, xid [

Xy X vy AN TE
o

we infer that rf]| X} x ¥}| — V is biholomorphic. Symmetrically: rf~'|[Uyl x V4| = Y is
biholomorphic.
The commutative diagram

X,xYy 4w
.I,Pl)‘id .uﬁ

xh « vy Lo
=

yields that Ifl | X,/ x Y, — Ul is biholomorphic, since X;|x Yy = (p, x id) ~' (X})| x
Y5 U= g7 '(U") | Symmetrically, 1f~]|Uy x V,f — X is biholomorphic.

To verify condition 3.3.2.(iii), let R @ {U, V}, 8@ {X, Y}, and denote by j : Ry —
Uy x Vi x Uy| x V4 the natural embedding given by (u] v) (i.e] Uy — Ux X {(v] uj v} }
etc.), with corresponding |’ : Rg| — U, X Vy| X Uy| X V.| Consider the commutative
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diagram
Rg — Rl
li 1A
Uy x Vi x Uy x W i Ukl x Vil x Uyl x Vg
N ¥t xrs 7
x x5 xiy vl
I ¥ in 1.2
uxv oy v
A xS N
Xy x Yy x Xy xYy 0 Xvd x Yyt x Xyl x Yy
le le
Sp =4 Skl

with P :=¢| xid xq, xid,Q :=p, xid xp, xid.

If Rg#Uy , then P|Q definel isomorphisms j( Rg) — j'( R , resp. j( Sg)— 7'( Sp) .
whence p 0 fc|j : R —+ Sy is biholomorphic.

Let now Ry = Uy | The diagram

XyxYyxX,xY, & Xy
) Je
Xof x Yol x Xy Yyl H Xyl
is dlearly cartesian] and from F(j(U,))=Q 1(f (i’ (Uj))) weinfer that plF(i( Uyg)) —
X,J is biholomorphic, since p|f'( j'(Uy)) — Xyl is. 0
34. Dimension-decreasing  constructions
3.4.1. Consider a first the double-arrow part of the diagram
A x¥ £A uxv £ X xY
\o/xid \idxd \o/xid
b Wy XU Y Y pprs U« V' Gy Xy
'd 4 /1
UxY 2 UxY L Uxv
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which is clearl commutative. In particular) (1f] py ) is propery if and only if 0 is ( py{ rf‘1 ).
Assume now that (1f] py) and ( py, rf') are proper; and let their Stein factorizations be
given by the simple arrows (compare 2.1.1). As p'| ¢’ are quotient maps, the abovel diagram
can be commutatively enlarged by uniquely determined holomorphic arrows f]: X' x Y —
Ux v'] (1) @ Ux V1= X xY which are obviously inverse to eachl other.
Interchanging Ul and V , ifalowed (i.e. if the corresponding arrows are proper), we obtain

X x Yl =f>l uxyv f=_>l X xYl
No'xid N xid N\’ xid
Ul ey X"x Y Yers' o) U'x v Yean X"xY
/] 7 'd
Y xV 2 yxw 4 yxw

and again| we can insert unique holomorphic maps f" : X" x Y = U” x V, (f™)" =
(F)-1:p1xv o X"xY.
3.2.1.b (iii) and 3.3 immediately yield:

34.1.4 Remark) Let (z]y) e X x Y]and let (z,y') = (P(2)]y). (2"]y") = (p"@) . Y) .
(i) If T degenerates with respect to (z]y) , then ' degenerates with respect to (z', y') ,
and f'| degenerates with respect to (z"] y").
@iy If (z'] y’) decomposes f', or if (2", y”) decomposes f”, then (z]y) decomposes

fi

Assume now that X is compact, ie. that both constructions can be performed. We shall
see: that they commute] (in the obvious sense). Applying the ” -construction to f'{ yields| just
as abovel

X'xY 4 Ux Vi L) x'xvy
N\(p)" xid N xid NP " xid
Y oy rry XN x Y Yoertem U" x VI J (s (X% Y
/1 /] /]
Y x V! 4 vy 4 v

since the Stein factorization of ( rf'~! ,id ,,) is evidently given by the corresponding simple
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arrows.  Symmetrically, we obtain:

X"xY 4 U’'x v L x'xy
e xid Nid xq! (@) xid
W ar ey (X% Y Wy U x VY are) (XN ¥
& /] /1
U %Y 2 U'xyY 5 UlxY

and we conclude that (f")” = (f")".

Let now |f] := (F')" : |X]x|Y] — |[Ulx|V] (dthough Y = [Y] it is convenient to mark
eachl entry withi the same symbol), and let |P := (|p| x id,) := ((p")” xid) : X xY —
XIxYIQ=@@" xq): Uxv —|Ux|V]

3.4.1.b Remarkl Let (z]y) € X x Y, and let (|z, |y} = |P(z]y).
(i) If f] degenerates with respect to (z]y) , then |f] degenerates with respect to ( |z]]y).
(i) If (|z]|y) decomposes |f|then (z]y) decomposes f|

(iii) The Stein factorizationl of every vy : X — Ul = Y and every uly : X = V = Y
(with arbitrary (u,v) € U x V)| has the form X 2 [X — V]|
Proof] (i) and (ii) follow again from 3.2,1.b(iii) and 3.3.

(i) By construction, all partial maps U” — Y] V' = Y, (X") = U”, (X)” = V' are
finite, and hencel S0 are the compositions |X — |[U — |Y = Y, |[X = |V] = [Y] = Y. On the
other hand, gl is a quotient map with connected fibres. ¢

3.4.2. We shall now present a similar construction thatl will take care of the non-compact
factors.

Let (z,y) € X x Y,(u,v) = f(z,y)] denote by X,,Y;,,U,, Vy the orbits A(X)z]
A(Y)y, A(U)u, A(V)v] andiet f, == f]X{ x Y, = Uy x V (compare 2.3.4.8). Applying
the ‘-construction (3.4.1) to £, 0 J| we obtain a commutative diagram

Xoxvy Bl ugx vy

l id x"py l id x'qq

X, xY] B ouyx v
|

AsY{, V| areorbits of A(Y), A(V), respectively, therel exist connected compact complex
subgroups A’ O A(Y), B' T A(V) such that 'py = ( g4: Yd = Yp/A") and 'gf = ( g
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id g x

Vi = Vo / B") (compare2.3.4.c). Applying2.1.1 tothecomposition (X x Y ) x A(Y) =

Xxv LU andio (UxV) x A(V) “E U v D X, we sea that A, B’ do not depend
on the choice of (z]y) . Moreover, by 2.34.(i), fis A" = B -equivariant. Thus, denoting by
‘D’ q the quotient maps Y —« Y/A'| vV — V/B'| respectively, we arrivel a a commutative

diagram

X xYl EARNTYY f—J X xYl
lid x'g lidxqg lid x'g
xx v/Al 2w x v S xx A

where ‘fand '(f~1) are holomorphic and inverse to eachl other.

Again) We may interchange U1and V to obtain

XxY iJ uxyv
lid x"p | “axid

Xx Y/[A 4 U/Blx V

Findly, we can congruct “(‘f) and * (“f), which again coincide, and will be denoted by
fl: X| xY| = U| x V|. The quotientmaps X x Y — X|xY|,U x V = U| x V| will
be indicated by P| = (id, x p]), Q| = (“q x’ ¢)| respectively.

3.4.2.a Remark. Let (z,y) 2525 XXY,andlet(d,y)=P(sy).
(i) If s degenerates with respect to (zY) , then f| degenerates with respect to (z| y[) .
(ii) Ifl (z[,y[} decomposes f|| then (z,y) decomposes f|

(i) Every W7 : Y = X and every v 71 Y — X factorsthrough p| : Y — Y | such that
the corresponding map Y | — X isfinite on the images p|( A( Y) Y) of the orbitsl of A(Y) .

3.43. Let now X be compact and let f = |( f]): X X ¥ — U x V (which does not coincide
with (|£) |!); moreover, let P := (P} : X XY =X x Y]and Q == [(Q|)}: UIx V —

UxVl
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Summing up, we arrive] a the commutative diagram

X xYl L X x Yl
Nid xp| /lpxid
X|xY]|
) ul 7
Ul x V|
/] N
ux v q Tx ¥l

3.4.3.aRemarkl/Lel(z|y) EX XY, andlet (T|¥) = P(z,Y) .
(i) If £ degenerates with respect to (z]y) , then f| degenerates with respect tol (Z] 7).
(i) If (Z)y) decomposes ?, then ( z; y) decomposes f .

4. COMPLEX SPACES WITH ZERO-DIMENSIONAL FACTORS

This chapter] provides the connecting link between the local and the globa situation.
Let f: X xY — U x V be abiholomorphic map between connected complex spaces,
and assume that X = {z}. Forye Y| lety:=(z,y)]

Theorem. f induces a simultaneous subdecomposition.

More explicitly) we havei

(i) Every (X, y) € X x Y decomposes f .

(ii) Let ¥ = (z,y) € X x Y,(u,v) = f(¥)] For R € {X,Y},S € {U, V) denote by
R(7) . Sg( vl the subjactors given by ¥ according to 3.3.2. then

Ux(® = (zv) N (w),  Xy(® = (v )7 (2),
and y| induces an isomorphism U (¥} — Xy, ( 9);

V(@ =CEw W] Xy @ =Gy ()
and ul induces an isomorphism Vy (7} — Xy (9);

Uy =% ()] Y@ =Z  (v),
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and vlinduces an isomorphism Uy () — Y ( 7 whose inverse is given by T
ol J s
Vi (¥) =u  (2) Yy(9)=z (u),

and ul induces an isomorphism Vi (7) — Yy (¥) whose inverse is given by 7.
(iii) Lety’ €Y, S € {U]V}. Then X4(9) = Xo(¥) = Xgland Sp(7) = Sp(¥V) =
Sy |

Proof] Lety € Y be fixed, and let S € {U,V}| By Theorem 1.4.1, Xg(y) and Sx(¥)
exist, and

(1) the relations postulated in (ii) are satisfied.

(2) If~! defines an isomorphism Uy ()] X V(7)) — X,

(3) the compositions X, (7) < X 3 Xy (7) and X, (7) — X 2 X, () are welld
defined and biholomorphic.

Let now Y b the irreducible component of Y that contains y and assume from now on
that y satisfies the following condition:

(*) For every y’ in some neighbourhood of y , any embedding X;( ¥') <+ Xy, () isan
isomorphism.

Such pointsy exist, since dim X = 0.

Let ¢ := (U x V5l X 2 X,(y)). Then ¢0.,v)|U () = Xy () is biholomorphic
by (1) and (3); therefore ¢( ., v') [Ux(§"}) — Xy (¥) is an embedding and hence, by (1)
and (*), an isomorphism for (v'] y”) sufficiently close to (w)y) . Using 1.1.2.a] we conclude
that ¢( u”, ) is constant on V, (y') for (u”, y’) sufficiently close to (u, y) ; in particular)

if y isclosetoy and (v, v')= f(z,Y), then X, (V) = ::‘(Vx(fg’))‘ c X,(y),, and
as shown above| X, 7') = X,(¥)! On the other hand, by (1) and (2); X is isomorphic
to every X, (7"} x X, (¥"),y" @Y, thus X, (¥) = X,(7) for y’ close to y. This

means (see (1)) that J;" is constant on X, () for y’ closetoy and hence forally’ € Y.
Thus, if y is chosen according to (*)| then X, () is contained in every X, ('), for y’
closetoy ory' @ Y’; in particular| any embedding X (') < X,| () is an isomorphism
fory’ closetoy . We can therefore interchange Ul and V in the above considerations and
obtain that every X, (¥") contains X, (y) for y’ g Y’. Using again (2)] we conclude that
Xy (@) = Xy, Xy (7)) = Xy(y) forally’ €Y', and hence, as Y is connected:

(4) X, (7)) = Xy (B = Xjand X, (F) = X, ()= X,|forally’ €]

Let ¢ := If~'o (Ifl o (id, x p;),rflo (id, x p)): X x Y x Y — X; then
¥( ., (v, y)) = id, for all y. Using 1.1.2.a, we see that (x| ., .)J is constant on some
neighbourhood of the diagonal in Y x Y, and from the lemma in 0.2.2 we infer that v
ery| partia] map ¥( z; (Y, .))] ¥( z; (., y)) is constant. Thus f( z, .J defines an embedding
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——1 -1 " — e 2o .

Y—->nv (2)x mUu (z), sinceevery v z: Y — X,uz : Y — X is constant|
veV u€

._—1‘

— . . . ——1 -
On the other hand, by 3.1.1, the maps z, ﬂ induce isomorphisms z (v} — v 1‘(3){ o
(u) — E_l(x), respectively, for all (u]v) € Ul x V. We conclude that il (1), i (z)
do not depend on (uv), and that f( z; .) defines an isomorphismY — 7 (9 xu T ()

withinverse rf-1| 57" (2) x & (z) — Y. Thisyields

= (@EDY ] T W= G,

—

V@ =MW, § @ = (9T
for all n X 1] Thud

(5) Sy (y) and Yy(7) exist for S @ {U] V} and satisfy the relations postulated in (ii).
Furthermore,

(6) Sy( ¥ =1 Sy does not depend on y , and f( z, .| defines an isomorphism Y -t
Uy] X V3 whose inverse is given by rf-1.

(5) and (6) immediately yield:

(7) Yg(7) = Ys(¥') for all v € Ys(D)]

By 1.4.1, therestriction Lf|X;(9) x Y, (¥) — Ulis biholomorphicin(z]y) , and hence|
by (4) and (7), is biholomorphic in every (z]y’) withy’ € Y;,(y). On the other hand, the
reduction ((1f)peg [(Xy(¥) ¥ Yy(Wea = Upg) = (U2, Yy () )red = (Up)pea)
biholomorphic by (5). Thus:

(8) LfIX] % Yy () — Ulis biholomorphic, and, symmetrically, so isrf| X/ x Yy, () —
Vi

Collecting what we havel shown up to now, we observe that

(i) is proven by (1) and (5),

(iii) is proven by (4) and (6), and,

by (ii)] (iii), (2)] (6) and (8), every (z]y) satisfies the conditions 3.3.2.(i) and 3.3.2.(ii)/

To complete the proof, it remains to verify the condition 3.3.2.(iii)] Consider the commu-
tative diagram of biholomorphic mappings

WUx@® % V@) x U x %) A (X 0 v@) % (X x ¥, (D)
Vi xrg! 1 ifxrfl
g uxv

and denote every partiall embedding Rs(ﬂ — Uyg(y) x Vx(¥) X Uyl x Vi, Sp(y) <
Xy x Yy(T) x Xy x Yy (@) by ji (Le. Ux(7) = Ux(T) % {(v,4,0)} ewc).
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By (ii)| therel exists a commutative diagram
Uy @ x (o} TSN xxv@) e Xy {9}

1} 1 M Y
) i u

with biholomorphic vertical arrows. Thus [ o j maps U (| ) biholomorphically onto X f x
{vH

All we havel used to derive this diagram from the preceding one) was the facl that Yl
induced an isomorphism Uy( ¥ — X,. Hence| by (ii)| the same type of diagram exists,
mutatigl mutandis, for Vi (%), Uy), Wl Y,(9) . ¥}) (), and we conclude:

rfo] Vx(9) Xy x {y}
If o Uy (V) {z) x Yy (D
rfc!)‘_ maps Vp(¥) biholomorphically omtd {x} x Y, ()
rf10j Yy (D) Uy x{v}
0] Yy (D) {u) x W
Findly, therel exists a commutative diagram
Xy x {v} 2 Ux() x Vx(@) < Ux( x {v}
volf
Lif Xy i lir?
b9
4] BN X ) Xy

(compare (3) for the diagonal in the lefthand rectangle), and we conclude that lf"| 0 j maps
X | biholomorphicaly onto U, ( y) x {Vv}. Symmetricaly: rf—‘l 0 maps X,| biholomor-
phically onto {u} x Vi (9)/

Thus, an even stronger condition than 3.3.2.(iii) is fulfilled. <&

5. COMPLEX SPACESWITH COMPACT FACTORS

Generdlizing the situation of the preceding chapter| weconsider now biholomorphic mappings
f:XxY = U xV with compact X . As demonstrated by Example 3.2.1.a(ii) (see also
3.3.2.a(ii)), T need no longer induce a simultaneous subdecomposition; it will, however, if
{X)Y, U, Vv} ¢ _"i’k for all k > 1 - a condition that is of coursel fulfilled, if dim X =
0. This resultl is the basis for the subsequent| investigations conceming cancellability and
decomposability.
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5.1. The structurel induced by two decompositions

Let f: X XY — Ulx V be a biholomorphic map between connected complex spaces,
and assume that X1 iscompact. Fix some (z,,y,) € X x Y] let (ug,vy) = f(z,y)] and
considerl the sequence of holomorphic maps

D, wxBeiSyrBivrEx Sy ..l

To simplify the notations, we denote by S 31 §' the map S — §! given by a subsequence
of (*) thatl starts at S, consists of I arrows, and ends at S' (where {S, S'} c{X, Y,U]V}:

furthermore, we let (S *91'S) := id,, and we say that S 'S’ contains 5, 51 8/ if

s sy =g g P g 3 s) with suitable | n
(8 | 1 |

5.1.1 Lemma. Let{S, S} C{X, Y, U, V} wirh corresponding sq, sj € {zg, %, to4 Yo }
(i} If] 1 X 2, then |§| e S'| factors through -s¢: Hol (S') — S’ with sy id g

(i) If] S o S| contains X 1Dy then s 4 &1 factors holomorphically through

sH D A(S’) = S’ with sy = id,,.
Proof] Seel 7.1.4. QO

S1.2 Proposition. Let 1§ := lim dimIm( X “%” X) .

For every S € {X]Y, U]V} rhere exists (mg 1S — Tg) € -ﬁJ with some connected

fibre Fg]
In particular| if {X, Y, U]V} ¢| %] for allk > 0, rhen f] degenerates| with respect to

(z9,u0)]

Proofl By 5.1.1.] 2.4.2.aand 2.4.1.a(v), the map S @ s gives rise to some (g : S —

T¢) € s With connected fibre Fg| As S (429 5 contains X “4 X, we conclude
that I(S) = I(X) = for all Se{X, ¥,U, V}. <

5.1.2.a Remark. Let S @ {X, Y, U, V} with corresponding sq € {z,, Yo U4 Yo }] a0l let
mg S — Tg be as in 5.1.2 with corresponding Tg O] A(S) (compare 2.4.1.a(iii))] By
construction, S 5 S factors through the inclusion Tgs, «—i S of the orbill Tgs, for

mw 0. Furthermore| yg (Txzo) = Tyuo,vd (Thue) = Ty, v0,2d (Tywe) = Tyvo, tig
(Tyvo) = TxTo/
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5.1.2.b Corollary) If] dimim(X 51 X) = dim X, then ( m,)_J: X = Ty is biholo-

morphic.

Proof] By 2.2.1, dim X1 > do(X)| > dim A(X), and by 5.1.1.(i} and 2.3.1, dim A(X) X
dim X| Thus X,y = A(X)zd and dim X =[] and we conclude that ( my)_{ is localy

biholomorphic, and hencel biholomorphic, sincel Fy is connected. 0

Recall now the diagram

X %Y L XxY
N\id xp| /lpxid
X| x Y|
¥ %] 7
Ul x V|
7 N
UxVl q U x VI

that was constructed in 3.4.3.
S.1.3 Lemma. There existjinite holomorphic maps g, h : X| — X such that

(i) the Stein factorization of X e x is given by (X % X)=go |p, and

(ii) the Stein factorization of vy T ug go * X —x X iS given by vy o ug yg = h 0 |p]

Proof] Consider the following commutative diagrams derived from the above one:

x ¢y @3 x
I W2
X| = Yl = X|

Llp I
Xl o4 Y

X
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X WH oy wuR o
I W /7 |
Xl = Y| = X|
W /|
Xl o Yl

By 3.4.1.1iii), thel diagonal arrows X| — Y| are finite for both diagrams; moreover, by
3.4.2.a(iii), the diagonal arrows Y | — X arefiniteonevery (p|) (A(Y)y)]| Now, by 5.1.1.(i)
and 2.3.1, the image of X under (] 2) is contained (set-theoretically) in the orbit A(Y) y, ,

and, for symmetry reasons, (g Zo) (X) C A(Y) yy aswell. Thus, if we denotel by g resp.
H the composite of the diagonal arows in the corresponding diagram, the assertion is proven,
sincel g is a quotient map with connected fibres. Q

5.13.a Corollary. If] dim X| = dim X, then ( mx).d is biholomorphic.
Proof] Evident by 5.1.2bh. 14
5.13b Corollary. If T degenerates|then so do J o f and f =" (compare 3.2.1.b(i) and (ii)).

Proof] Evident by 5.1.3 and 3.2.1.b(i). 0

Let now ( my 1 R — Tp) € %) be asin 5.1.2 (where R € {X, Y, U] V)) , with corre-
sponding T ] A(R) (compare 2.4.1 .a(jii)).

5.1.3.d Corollary. T is Ty x Tyl — Ty x T}, -equivariant|

Proof] The group| isomorphism f| : A(X) x A(Y) — A(U) x A( V) is given by a matrix
(5 o) s (0]
with inverse

v 8 7l &
obviously, it remains only to show that 3(| Ty,) @ T{} and v( T) C Ty | Applying 5.1.2 and
5.1.2.ato J o f,] we obtain subgroups Ty O A(R) (where R € {X, Y, U] V}), with Ty =
Im (&/f8'y)"for > 0and Ty = A(Tg), Ty = §(Ty), Ty = B(Ty), Ty = (TH).
Now, ~'of + §'4 = 0 and &A + B'§ = 0, whence o/f6'n = B'64'a. We conclude that
Ty = Ty | whence, for symmeuy reasons, Ty = T in all other cases) and the assertion
follows. ¢

] . From 5.1.2.a] we infer a(T'x) = Tyf and §(Ty ) = Ty{

In general, however, f need not be a F-morphism between my X my and my X my; :
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5.1.4.a Example. Let T be a one-dimensional torus, and let X =Y = =V =T x
P, , where P| < C denotes the double point. Defining f : X x Y — Ul x V by
f((s,2),(t,y) :=((2s+t+zy,z),(s+t+zy,y)), one easily checks that (g | R —
Tg) = (pr: T x P| — T) for all factors R. Thus f is not fibre-preserving with respect to
Ty X Ty, Ty X Ty

Fortunately, nothing of this kind can happen in the reduced case:

5.1.4 Lemma. f is @ F-morphism mx X my| — My X Ty, if] one of the following conditions
is fulfilled

(i) f: g X Ty — TG X Ty

(it) my is biholomorphic.

(i) X is reduced.

Proof] By 5.1.3.c| we need only show that f is fibre-preserving.

(i) Let Ag : S — S be the canonical projection (el A= | etc). As § “il's

factors through A, the construction of mg immediately yields mg = mz o Ag. Thus, if (7] x
m7) 0 f = fJ 0 (mx X my) with a suitable holomorphic f|: T% X Ty — Tyl x Ty
then (myf x 1y) 0 fl= (mg X 7)) 0 Oy x Xy) 0 fl= (mz X 7} 0 fiO (Mg x Ayp) =
fo o (mg X m5) 0 (Mg X Ay) = f 0 (my X ), i.e f is fibre-preserving.

(iiy Let 8 € {U| V}. Every composition X — S — Y of partiall maps is an immersion
of the form T,| — Ty, y with suitable y ; therefore every Y — § — X factors through
my 'Y = Ty . We conclude that o resp. T maps every fibre of m,into one of m resp. m;
inotherwords, Lf(mg'mx () x 5! my(9)) = 1f({z} x m7' my ()| € mg'my(1f(z,9)))
and rf(mx'my(z) x 75 m(y)) ¢ 7y my(rf(z,9))]

Assertion (iii) follows from 5.1.3.d and from (i) and (i) by induction on dim X — dim T,],
since T =Tyl . ¢

5.1.5 Theorem. Let f : X X Y — [l x V be a hiholomorphic map between connected
complex spaces) with X compact.

If] f degenerates, rhen =very (x, y) € X x Y decomposes f .

In particular, f induced a simultaneous subdecomposition, if] {X|Y, U, V} ¢ & for all
k> 1.

Proof] We proceed by induction on dim X, noting that the case dim X = 0 has been settled
in Chapter 4.

Let dim X > 1. Then dim Xl ¢ dim X by Corollary 5.1.3.a) and f degenerates by
3.4.3.(i). Thus, by induction hypothesis, every (X, y) € X|x Y| decomposes f, and the
assertion follows from 3.4.3.(ii)] <&
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5.1.5.a Corollary. Ifl f isa ~morphism m, x my — my x my (e.g] if X is reduced),
then the corresponding isomorphism Fy x Fy — Fj x F| between the jibres induces a
simultaneous  subdecomposition.

Proof] Clearly, Fy x Fy| — F}, x F\| degenerates. 0

Note that in Example 5.1.4.a] there! still exists some isomorphism Fy/ x Fy — Fij x F}j}
that induces a simultaneous subdecomposition. It would be (mildly) interesting, whether at
least this statement remains true in generd.

5.2.  Cancdlation

5.2.1 Theorem. Letg ! X xY — X x Z] be a biholomorphic map between connected

complex spaces, and assume that X, Y or Z] is compact.
If{X,v.z}¢ kaorafl k>1,then Y = Z|

Proof] We may assume that X is indecomposable. Then the assertion follows from 5.1.3.b,
5.15 and 3.3.2.a(iv). 0

5.2.1.al Examples. X cancels in the sense of 5.2.1, if dim X = 0] if X has vanishing first
Betti number or non-vanishing Euler characteristic, if dim A(X) = 0 (in particular] if X
admits at most countably many holomorphic automorphisms), if X is Stein, etc. Further
examples (with X compact and reduced) can be found in ([5]] 1.3).

Conversely, G. Parigi has shown that for any X g 4 there] exist non-isomorphic Y, 2|
with X x Y = _XI x Z] (see|[ 11]; he states this factl for compact reduced X only, but his proof
is easily seen to work for general X as well).

An interesting question| arising in this context is the following: If X x Y 2 X x Z] what
is the relation between Y and Z ?

In view of Example 5.1.4.a) it seems reasonable to restrict on€e’s attention at first to the
reduced case, where onel can find at least some structural similarity. By 5.1.2,5.1.4 and 5.1.5.a]
we obtain then commutaive diagrams

XxY X XxZ
l'x XMy l&""z
TRl 5 T % T,

Fx F)x F xFIy S (FxF) x(F'x F)
1+ 1=

ﬂi'ﬁx(xj xqr;]wr},(y) & rilrx(m’j X ﬂglnz(z)
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However, therel is no reason for 73! my () and 7x | ¢ ( z') to be isomorphic. Thus we are
faced with a much more difficult question| than the decomposition problem, namely:

Given(m;: X - T}) € F, withfibre X, 7 = 1,2 such that therel exists a %-morphism
b : m — m, with h ( Tj) = T3 | what is the relation between X, and X, ?

In Chapter 7, at least a necessary condition for Y, Z] to satisfy X x Y = X x Zl with
suitable X will be given.

A more restricted version| of the cancellation problem is the ques tiori of whether X x X &
X xY implies X Y. No counterexample with compact X, Y seems to be known. Shioda
proved that no counterexample with tori X, Y can exist ([12]). Parigi’s varieties Y ¥ Z1 with
XxY X x Z satisfy by construction Y ¥ X # Z!

5.3. Decomposition with respect to 92-categories

Denote by & the category of all compact connected complex spaces]
53.1 Definition. A subcategory #1 ¢ & isa #?-category,| if it has thel following property:
X xYl € % ifandonly if X,Y| € #|

53.1a Remarks and Examples.
(i) C? liesin every non-empty $-category. The intersection of 9P-categories is a -

category.

(ii) Eachl of the following is a @-category] &| &4 ={X € #1: X =X}, & =
(X € 1dmX = 0}, &\ I (see 24.2b)/{X € & : X projective), {X € & : X
Moisezon}, {X € & { trdeg.# (X ) = O}, {tori}.

532 Theorem. Let Ul be a connected complex space, and let &1 c &\ bd a F-category.

There exists a uniquel decomposition Ul 2 Ugy x U’ with Ugl @ J] such that U’ has
no factorjin Z1\{C°}.

If il = (Uf,rf) : Ul x U' = Uge x U is biholomorphic, then every partiall map
Lf7( ., U), rf7( u,.) (where j = +1) is biholomorphic, and every composition (1f7( u, .)o
rf~7( ., u'))™ is constantfor n sufficiently large.

Proof] Let T : Ugl X U' — Ul x U} be biholomorphic, where Ugs| Ul € #] such

that U’, U] havel no factorl in %1\ {C° }. f degenerates with respect to every (u, v') ¢
Ugdx U, since Flc &\.F] Therefore, every (u, u') decomposey f , and hence gives rise
to a commutative diagram

(Fl x FL) x (P2 x FTY) = (Fl x F7Y)y x (Fol x Fly)
l l
U, xU’ e Ulx
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according to 3.3.2 (we choosel this new notation, in order to avoid e.g. U}g appearing a
an index; moreover, we do not distinguish between the subfactors that are biholomorphically
correlated by 3.3.2.(iii))]

If 1f(.,u’) were not biholomorphic, then F!| € %1\ {C°} or F' e &\ {C°}
whence U; or {7’ would admit a factor in %]\ {C°}]

Thus all If( ., u’) and, symmetrically, all 1f ! ( ., u}) are biholomorphic, whence, by
Lemma 3.1.1.(iii), so are all v f~1 (uy, ), rf( ., U) .

The theorem is now completely proven, since, in particular| U g = F]= Ujg and
U' & F-! 2 U} (compare 3.3.2.(i)). 3
53.3 Lemma. Let f 1 X xY — U] x V be an isomorphism in &) and assume that X # CcY

is indecomposable and not contained in %1
There exists a unique| S € {U, V} with S =1 X x S| such that the resulting isomorphism

FIX 1Y 29X x(8§xS) (where {S, §'} = {U, V)) satisfiesi Everypartial map
IF(.,b), v (x ) is biholomorphic, and every (Lf ’(x, Jo rf’(., b))” is constantfor n >
>0 (wherebeY orbe Sy x §', accordingas j=1o0r j=—1)]

Proof] Fix some (z, ] yo) € X x'Y and consider the diagram corresponding to the simulta-
neous subdecomposition given by (z, y, ) (note that f degenerates):

(X ¥ Xy) X (Y ¥ Vy)  — (Uy xUy) x (Vy x Vy)
! l

X %Y — uxyv

We may assume that X = X;, since X is indecomposable; denote by ﬂ the resulting isod
morphism X xY = X, xY — Uy x (Uy x V3) ¥ X x (Uy x V). Then If(.,y,) and
F A T4 Yo)) are biholomorphic by 3.3.2.(iii)] As Autl (X) is open in Hol (X) , the
holomorphic mapsY 3y + If(., v)] Uy % V4l 3 (u] v) = If_l( . (u] v)) both havel their
imageinAut(X). Thusall [f(.,y),I7 " (.,(u,v)) ae biholomorphic, whence, by 3.1.1, %
are all rf_l (X, ), rf(x ) Now X isindecomposable and ( z,, y,) decomposes f; there!

fore (compare 3.3.2.(i), (ii)) all ((F’(x, ) o 7 (., b))™ become constant for n sufticiently
large]
Assume now that in addition| V = Vi] 1 X x V| with al] the postulated properties for the

resulting isomorphism ﬂ XY = Xx (U x V) =X x(X x Uy x V). Fixsome
(u,v) @ UJ x Vo) andlet ¢f = 1f'(.,(,u,v)) 1 X XX — X. By construction, both
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¢( z, ) and ¢( ., =) are contained! in A(X) for all ;1 @ X, which can only happen, if every
orbitl map @ @ A(X) = X isbiholomorphic and if X is reduced in every smooth point
of X, (see 1.1.2.b). Thus C%# X = A(X) in contradiction to X ¢ <
53.4 Theorem. Let X € &\ 7]

Then X admits a unique| decomposition (up to reordering) X = X x ... x X] such that
Xl 't:'f’il/vith ny 2{ 1 and Xy ﬁCq indecomposable and pairwise non-isomorphic for
1<A< 1

If] T € Autl (X) , then every partiallmap X{ — X} given by f or f~1 is biholomorphic,

n
and every composition of partiall maps ||X{| — H X| = Xj} | is constant for n 0.
N
Moreover, there exist permutations o, of {1,.. ., n, }] such that

A= (g x o ox g Y of o Xy xoox Xy ol o x X I x Xl = X {xox X

(where X, , = X)) satisfies] All partiall maps X, | — X, | given by for f_“ are bid

n
holomorphic, and all compositions (X,‘,_A — H Xy, — Xy, || are constant for
O (1)
n» 0]

Proof] Evident by Lemma 5.3.3. 3

53.4.a Let now J := &\ F,U] = U4 and U’ according to 5.3.2, with UJ = X{x ... X
Xi= X7 x ..1x X} according to 5.3.4. Every isomorphism U1 ¥ X/{x . .. X X[{x U’
will be called a standard| decomposition of Ul .

54. Some Examples
Let p; q with p# g be primes, and let A, B be connected complex spaces such that Z)acly
non-trivialy on A and Z] acts non-trivially on Bl . Fix some generatory o € Z, ez,
andlet T := C/Z +iZ.
For 1<n<p=11<s<q=-1defind o @ Aut(T] x A) by a.(t] & =
|

(t + i—,a"(a)) ,B, € Aul(T x B) by B,(t,b) =i (s+ é,ﬁ’(b)) ,andlet v € Aut(T>{

A x B) begivenby ~(t,a,b) = GH é,a(a),ﬁ(h)}. Then the quotients A | := (T] %

A)/a,, B, =(T|xB) /B,| AB = (T] x Ax B) |+ are total spaces of torsion bundles over

T/ (i) Wil (%) T/ (é) , respectively. Evidently, A, ¥ A, | viat — —t.
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541 Lemma.

() TxA|=TxA, forallr,r € {l;...,p—1}]

(i) A, x By~ A, x By forall r€ {1,...] p—1},and 5,5’ € {1,..., g-1}.

(iii) A|x Ao A, x A, if A= £ (modp).

(iv) Assume that p = 2, ¢ =3, and led C, D be connected complex spaces with non-trivial
Z| -resp) Z -action. Then AB x CD 2 AD x CB.

Proof. Let ¥ : T x T — T x T be given by the matrix

Aop
(i) ( ),wherer',dgn(mod p)land (N = M)p + Ag = 1,
" p+p

) AP+H M)
(i) , Where s'p = s (mod q), and App + ug=1- p,
Byt p

Ap
(iii) ( ) , where ] = pn and pp? = A\pd 4 1,
P up

3 4
(iv)
16 21
Then
(i) @ x id, (i)Y x id,,,
{111)¢1 X idny (tu)qjl X idAxHxde
induced an isomorphism as postulated. 0

From now on assume that
(1) A and B are indecomposable,
(2) therel exists no non-constant holomorphic AxB — T,

(3) T does not act non-trivialy on A/ZPI xBJZ,]
(4) every composition of holomorphic maps (A — B — A)” isconstant| for nw 0.

542 Lemma.

(il Every A is indecomposable|

(i} AB has no non-trivial compact factor] If|] in additionl A or B is compact, then AB is
indecomposable.

(iii) A= A_ ifand only ifthere exists 4 € Aut ( A) with 7 oa'l = o 07. In particular,
if zZ) is central in Aut (A) , then A % A, for n # £r' (mod p).
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Proof] Let S € {A,, AB) with § = S, x S,. By 2.4.2.b, we may assume that therel existd

(S] 2 1) € #] with some fibre $; and withi T} isogenous to T. By (2) and (3), every
isomorphisms S — 8, x 8 is a F-morphism m — mj 0 pg| (where m denotes the given
torsion bundle A | — T/Zp resp. AB — T/Z?q).

(i) Clearly, A,| cannot be F-isomorphic|to T x A. Thus S;# C ?, and we conclude that
8) = CP, since A 2§} x 8, is indecomposable.

(i) Again] AB is not F~isomorphid to T x A x B, whence S} # C°| By (4)] the iso-
morphism A x B — S x 8] between the fibres degenerates and therefore induces a si-
multaneous subdecomposition, if A, B, S, or S, is compact (seq 5.1.5)] Denotd this isod
morphism by f , and assume that S, or S is compact with S, # C °| Then either alll par-
tial maps rf(a;) : B — §jfor all 7f( ., b): A — §) are biholomorphic by (1). On
the other! hand, it is evident that r f( a( @) , (b)) = 7f(a, b) for all (e, b) ;in particular|
rf(a,B2(b)) = vf(a,b)] = rf(a® (), b), acontradiction. Thus S, = C *]

Assertion (iii) is obvious, since every A A A,]isa F-morphism| e

27
k-
z,) - If we want to indicate this action, we let Z(k) := P|in what follows. By blowing up
x € P | 1 times, where > 1, we mean1 blow up z! times and then blow up (once) any
point in the exceptional curve.

Let X(Kk) be the manifold that arisesl froml P,| by blowing up (once) every ( efzg : 1:0)]
1 <w<k, by blowingupl+ 2, timesthe points (0 : 1: 1) for 0< I < 2 and by blowing
up five times the point (1 : 0 : 0). The Z, -action on P, lifts to X(k) and also restricts
to the complement U(k) @ X(k) of the inverse image of (1 : 0 : 0). It is easy to see
that Z, = Autl (X(K)) and Z, = Aut( U( K)) . Thus, by 5.4.2.(iii)| A(p), = A(p),, (Where
A €{X, U}), if and onlyif n =+l (mod p).

Clearly, every pair (A(p) , B(q)) with A, B € {U] X, Z} satisfies the conditions (1) -

(4)-

Fork212Iets,4::exp(

5.43. Examples.

a) Therel exist indecomposable connected complex spaces X, U, U'! with X compact, and
with [J] U’ having no compact factor £ C °| such that J]4 U and X x U1 ¥ X x U’ : X :=
T, U:=U(gn|U :=U(g)|withq>5 (seet 5.4.1.(i)] 5.4.2.(i)).

b) Therel exist indecomposable connected complex spaces) X, X', Ul with X, X1 compact,
and with Ul having non compact factor # C°/ such that X ¢ X’ and X x U1 ¥ X’ x Ul :
U:=U(gy,X = X(p), X" := X(p), with p X5 (see| 5.4.1.(ii)] 5.4.2.(1)).

c) Therel exist indecomposable connected complex spaces X, X', U, U’ with X, X' com-
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pact| and with U] U’ admitting no compact factor # C? such thal X ¢ X', U} U’, and
XxX¥X'x X', UxU=U xU'"|

X = X(5)],X]:=X(5), | U=U(5)], U =U(5), (see 54.1.(ii)] 5.4.2.()).

d) Therel exist connected complex spaces X, U] Vv, W] with X #Cq indecomposable and
compact, and with U] V, Wl having no compact factor # C%|such that X x 1¥V x W :
X = X(2)2(3),U = UU3),V| = X(U3),W| = U(2)Z(3) (see] 5.4.1.(iv)]
5.4.2.(ii))|

e) Therel exist X, Y| U]V with X # C%# Y compact, and with U, V admitting no com-
pact factor #C°| such that dim X# dimY and X x U ¥ Y x V {

X = X(2)2Z(3),Y]:= X(2)X(3),U := U(2)X(3),V] := U(2)Z(3) (see 5.4.1.(iv),
5.4.2.(ii))

In particular| we see that for general [J] , therel is no possibility of introducing a reasonable
notionl of a unique maximal compact factor.

Choosing A, B| C appropriately, on¢ can show in a similar way that a general X € &
doed not admit a unique maximal factor in any of the &°-categories listed in 5.3.1.a(ii)| other
than & or &\ 7]

6. AUTOMORPHISMS OF PRODUCTS

Let Ul be a connected complex space with standard decomposition U1 > U] x U’ 2 X x
... X X|x U (compare 5.3.4.a)] and let ¢| € Autl (U) . By 5.3.2 and 5.3.4, every partial map
U, — U, X)| — X},U| = U', given by ¢ or ¢~} is biholomorphic. In general, however.
¢ nced not be a product of isomorphisms between the individual factors. For every ¢f to be
a product of automorphisms of U, and U’, it is necessary) that therel exist no non-constant
holomorphic mappings U — Autl ( U,), U] — Aut (U’) . In the reduced case, this condition
is easily seen 1o be sufficient as wdll; in generd, it is not.

If Ul i reduced and compact withh A(U) = 0, then evidently all § € Aul (U) are
products of isomorphisms between the indecomposable factors of U] This assertion does no
longer hold for non-reduced Ul ; for instance the automorphism of P x P ( P|< C the
double point) given by (z|y) — (z + zy;y + Sy) isnot a product.

In view of thesd difficulties, we henceforth restrict our attention to the compact reduced
case.

6.1. Decomposition-preserving automorphisms
Let X be areduced compact complex space with a decomposition f: X — ¥ x ... Y]

6.1.1. Definition. An automorphism ¢ of X preserves the decomposition f, if all partial
maps Y, — Y,( 1 < v < n) given by ¢l and ¢~} are biholomorphic. We let Aut (X)) =

{¢ 6 Aut(X): ¢l preserves f}]
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6.1.1.d Remarks! From 5.3.2 and 5.34, we infer:

(i) Ify)and YJ havel no positive-dimensional common factor for all 1< u, u< n, y # yj
and if at most one Y] is contained in 7] then Aut (X) = Aull /( X) .

GiyIfy|s... 2 Y] ¢ 9 arel indecomposable, then Aut (X) = oy T4 0 AUL(X),

where %(m) denotes the group of all permutations of { 1, . . ., n}) .

We shall now - in the case n = 2 - demonstrate how to construct Aut .| X) from
Aut (Y]) x Autl ( ¥;) . Then, using the abovel remarks] onel can build up successively Autl (X)

1 1
from Hq Aut(X,)™ x Autl (X') , where X (Hxﬁ] xX' is a standard decomposition
A=1 A=1

of x .

To simplify the notation, we consider reduced compact complex spaces Y| Z with Y ¢ 7]
and we let Aut+(Y x Z) = Autidjm(lq X Z)] Then, by 5.1.2, every ¢ @ Aut+(Y x Z)
degenerates.

Let ¢ € Aut+(Y x Z), and fix some (y,) z,) € Y x Z] By Theorem 5.3.2, there
exist (a,8) € Aut(Y) x Aut(Z))and f] € Hol(Z, A(Y)),~] € Hol(Y, A(Z)) with
B(z) = idy,'(yo) = id,, suchl that ¢(y,2) = (B(2)(a(y)),7(v)(8())) forl all
(y, z2)| As A(Y x Z) is normal in Aut( Y x Z), therel exist A € Hol (Z| A(Y)) with
B(z,) = idy and 7 € Hol(Y, A(Z)) with 7(y,) = id,] such that @0 B(z) = f'(z) 0 &
and 8 0 7(y) = 7'(y) o dfor ally €Y, 2 € Z] Evidently, the quadruple («, 3,7,6) is
uniquely determined by these properties.

We shall now derive a necessary| and sufficient criterion for such a quadruple ( «, f, 4, )
to define ¢ € AutH(Y x Z) inthewaydescribedabove. For (B,v) € Hol (Z, A(Y)) x
Hol(Y,A(Z)) definel (8,7)1YI X Z = ¥ x 2 by (v,2) — (B(2)(9),7(y)(2)). Evid
dently, it suffices to find out under which conditions (8] 7) € Aut (Y x Z)|

To begin with, we reduce the situauon to the case where Y| Z are tori:

6.1.2. Lemma and Definition.The functort & _ | — &ns,Z +— U{Hol(Z,T) : T a torus}|
is represented by alb® : 71 — (alby: 21 — Ab°(2)).
alby isl called the weak Albanese map of Z |

The proof can be copied word for word from the corresponding onel for smooth varieties.
Note that alby] = ab ,, if Z1is smooth.

Let (zo,50) € Y x Z with alb®(zy,y,) = 0 and let (8,7) € Hol(Z, A(Y)) X
Hol (Y, A(Z)) with B(z,) = idy,7(ye) = id,. Then alb®((B,7)) : AIb°(Y]x Z) -t
Alb °(Y] x Z) is a holomorphic homomorphism. Moreover, if we let § be the compo-

sition (AIb°(Z) "2 AIO(A(Y)) = A(Y) = A(ALO(Y)) = Alba®(Y))] and



On product] decompositions of complex spaces 205
7 - Alb® (Y) — Alb® ( 2y accordingly, then alb® ( (8,4)) = (B] 7)) .
6.1.3 Lemma. The map (8] 7Y is biholomorphic, if and| only if sd| is B M
Proof] Let (] 7) be biholomorphic (the other implication is trivial). It suffices to show that
(B) 7) isinjective; for this, in turn, we need only show that (8, v) is injective on every fibre
of a]b‘?’xZJ
Let Yy x Z{ besomefibreof alb, , = alb) x alb}| Then Bl,| = [B(z))),1ly] =
[7(y))] for any z{ € Zo,uj € Yo and thereforel (8,7)ly, .z = B(z1) X 1(v1) Iy, xz) 1
injective. e
Letnow Y := AIb°(Y),Z := Ab%(2).
6.1.4 Lemma. (B,7) is biholomorphic, ifand only if (8o 7™ = 0 for n w 0|

Proof] Let o := B7| n := 71 then avis nilpotent, if and only if o isT: The homomorphism
(E,] 7) is an isomorphism, if and only if there exists an endomorphism of YIxZ given by a

o f o+ 87 B+ B id 0 o
matrix suchthat _ = . If ¢ is nilpotent, then
’Tf 6! ‘T! + 6"? ‘_71181_ 6! 0 ‘-d

ol f
id = a and id = T are invertible, and a simple computation shows that the matrix ( 5;) ,
71

givenby o = (id —0)~!,8' = (id—1)7',f = —a'B] 7 = —§'7] defines an inverse of
(i)

Conversely, if (B, ) is invertible, then 0 is (8,~) and (8, v} degenerates, sincel Ul ¢

_ _ af
1By 3.1.1b, (B 7) degenerates as well] ie.| if ( (B] 7)) 'is given by ( fﬂ) , then
7T 6

—:‘d—'r'—id—ﬁ'—“_d r_ A _ AR A I =)
(Y=Y —=22Z2—-Z225Y)"=0forn>»0.Now @' = -ad/f=-88,7=-867=-7d,
and we conclude that o’ o' 87 = o/ 6'3] = B'7] = B6'7a| = Ba'a; thusl B'4] is nilpotent, if
and only if 0 is g7| O

For (,7) € Hom(Z, A(Y)) x Hom(Y, A(Z))| let Bx~ = (Boald}) x (Foalbd) :
Z XYl = A(Y) x A(Z), and Bx7 := (alb’ o B) x (alb®07) : ZxY — A(Y) x A(Z) =
YIx Z

Summing up, we obtain:
6.1.5 Theorem. Let Y| Zl be reduced connected compact complex spaces with Y ¢ %] and
let (Y] x Z) = {(a, B,7,6) € Aut(Y) x Hol (Z, A(Y)) x Hol (¥, A(Z)) x Aut(Z) :
B nilpotent}!
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Then the map (Y x Z) — Aut, (Y] x Z)| given by (e, B,7,8) - (al x 8) o (B,7)]
is well-defined| and bijective.

6.2. Automorphisms of projective varieties

6.2.1 Lemma. Lef U be a connected complex space, and let T be a connected compact
complex subgroup| of A( U) . Assume therel exists a linel bundle L on [J] that is ample on some
orbit Tuy of T.

Then there exists (U — T) € ., where 1 := dim T.

Proof] Denote by I the line bundle ( EYL) ® ((‘ug opp)*L)"Jon T x Ul (Where E = Eyj
denotes the evauation map). Evidently, El]"x {u)‘ is topologicaly trivial for all w € [/ thus
u — j2I defines a holomorphic map n: Ul — Picy( T) . Let Ty denote the connected
component| of 7~ 'r(uy) NT'uq that contains uy . As I} istrivialadongevery T'x{u},4 € To,
therel exists a line bundle L, on Tj| with Ep'xTJ = pr, Ly thud E*L|TI x T = pp, L| ®
(‘tg o pp)*L) We conclude that L is ample, since <0 is E‘L|{u°}m| £ p}°L1|{%}xfo{
Thusl E*L|y, 5| isample, i.e. E|T x Ty — E(T X T,) = Tug isfinite, whence T, = {u, }/
This shows that ., is finite and hence surjective. In particular) there| exists some finite

holomorphic homomorphism f: Pic,T] -+ T such that o := f 0 m satisfies the condition of
Lemma 2.4.2. 0

6.2.1.a Corollary. Led X be a projective variety. Then therel exists (X — A(X)) € 7,
where g :=dim A(X) .

6.2.1.b Corollary. Let X be a projective variety with standard decomposition X = X | x
X1 X{x. . . x X]xX!=X{1x...x X*x X! (compare 5.3.4.a).

l
Then Aut(X) ™ (Hi Aut(X;‘)) X Aut( X" x HoI(AIbO(XC),A(X’)) (where the
A=l

isomorphism is given by 6.1.5)] and Aut(X;) & Ié‘_(J )Joj o (Aul (X,))™ (compare
aES(n,
6.1 .1 a(ii)).

6.2.1.d Example. Let T, be a two-dimensional torus of algebraic dimension 1, and let = :
T, — T denote its equivariant algebraic reduction. Let C — T be a surjective holomorphic
map from a compact Riemann surface of genus % 2 onto 7" and let X := T} xy C. Then
X is atwo-dimensional compact Kihler manifold, A(X) & Ker+i is one-dimensional | and

X ¢7]
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7. ISOGENY DECOMPOSITIONS

In Shioda's as well asin Parigi’s examples for X x Y 21 X x Z| the varieties Y, 21 dways
admit coverings S — Y] S — Z1 (with the same S) and thus are stilll closely related to eachl
other. We shall now seg tha this fact is not accidental

7.1. Isogenous products
7.11 Definition. Let S;, S, be connected complex spaces.

(i) S} and Sy are isogenous) if therel exist coverings (i.e. locally biholomorphic finite
mappings with connected domain) S—+ S|, S— 5, .

Notation: S; ~ Sy . A diagram S, t S — 85| of coverings is called an isogenybetween
S,and G, |

(i} S, is an isogeny factorl of Sy , if 8] ~ S x S with suitable S]] $, is strongly
indecomposable] if it admits no isogeny factor | C °/ S .

7.1.1.d Remarks! (i) ~ is an equivalence] relation.
@Gy If (n : M= T) € Fthen T is an isogeny factor of U

7.1.2Lemma. Ler ¢: S — X x Y be a covering.

Then therel exist coverings a: X1— X, A1Y1 = Y with the following properties|

(i) e x f factors through ¢]

@) If 71 X" =X 817N — Y are coverings such that 7 x § factors through ¢/ then
7 factors through o and 8l factors through B|

(iii) 1f] ¢ is biholomorphic, then a = id, and g = id,

Proof. Leta: X — X ,E : f;l — Y be the universa] coverings with deck transformation
groups G o m(X), H o 1,(Y). Then G := GNm(8),H| = HNm(S) havefinite
index in G, H, respectively, and G' x H’ is a subgroup of nj (S) . Thusl therel exist factor-
izations ol = (Ja —i )?/01 2 X)) B = (}7‘ —i }7/}!1 £ Y) , and the assertion follows with
X' =X/G|Y =Y/H"

Letnow X x Y &S A Ux V be an isogeny (between connected complex spaces), and
congtruct the triangle

xxvl s
Noaxg ¢
X xYl

asabove. Let (f] : X xYy = U xV)) :=(¢o¢': X'xY' = U x V), and apply the
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samel construction to f;, thus obtaining

U,xV, B x,xy
\’-‘1 x B lft
U, xV
Iterating this procedure, we ai-rive at
- Xiwd X Yaud e Fou x Bl . -
/hed NVaml sl
V a?wl xﬁ!v\l U V
: Uz,‘d X Va3 =* Zmll X Vol —

By construction, if some f,| is biholomotphic, then so are all f | for m > n, and f,| and
f4 1 @ then inverse to eachi other.

Let ((Izn-yzn))en(xznlmyza} with ay (25,2 ) = Ty BY20e2) = Y24 and let
1
(Uane1 4 V2001) = Samed (Z2002 4 Yo ey )| CONSider the sequence]

-

Vimd ;"2»: ;:uz ":lwl
(0 ... 2 Xyps = Ugpes D Vg = Vgt 5 Xy — o

and denote by R,,, @ R, the map given by a subsequence of length 1, where R, R’ €
{X,Y, U] V}| appropriately.
7.13 Definition. The isogeny X X Y~— S —xUlXx V degenerates| (with respect to the family
((z5,, ¥24))) | if the reduction of R, i) R, is constant for 13 0 and all n.

(#)

7.1.3a Remark! If ( X,,4J = X3),.d is constant, then S0 is ( Rm(—*l R.),.q forall n and
alll >4k+6.

Proof] Clearly] &, )| ©Yand = Y2ued 043 4 @10 cormsponding relations hold for z, uj v
) (¥)

Thus (Xgped = X3) @ agpag 0. 0 Ogpqg= @ 0. 0y o (Xppgpuz = Xama)

whence X,,., © X, is constant, if and only if sois X, ,44.2 e Xypa | Furthermore,

every subsequence of (*) of length > 4 k + 6 contains some X 4542 © Xyl - e

From now on assume that X is compact.
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7.14 Lemma. (compare 5.1.1).

* . B
(i) 111 > 2, then|R,,| “ Ry | factors (set-rheorefically) through Hol ( R, . R,) 134
R with 1~ 7,, Where 4 € {a, B} according as R’ € {U] X} or R” € {V, Y} with
corresponding 7y 1 € {z]y, | v}|

(it If nw 0 and if] ( R,/ “ R.,) contains (X, 10 “ Y,), then R, 8 R, factors
v,
holomorphically through A( R.) J Rl with 74— id g4

Proof] The proof of (i) does not require X to be compact; thus we may assume R, = X | for
Symmeuy  reasons.

L{’.[ ¢ = I’fno(‘y_'ﬁ-J opxmz lrfml) : Xn+2| Xij = Xn;l lhen ¢(In+2|‘) = E!'H'll ;mJ

and ¢’("yn+2)| = Ian ,.+1(--Un+2], = Q.
Thus we obtain a commutative diagram

Tl € Rmi
l 1 (%) N\ (%)

Vne2 e sz :”1—3.‘2 X!l
! 1o Pkl

o €@ Hol(X,,4,X,)

which proves (i).
. — id x(s) 3 T =
Consider now gf := (X, X X — 1 Xpo X Yid = X)), let W,J = pylXpid ]
(compare 2.2.2)] and denote by W, the weakl normalization of ( Wn)ml Applying 2.3.2 to
the sequence; . . . — X, =3 X, — . . . , we conclude that [W,| ¢ A(X,) 0 a,, and from

2.3.2.a we infer that the naturd map Wn — Hol( X,) is holomorphic with image contained
in Aut( X,) . Thisyields a commutative diagram

X .4 () X4 () X'nl
Aul(X.n*‘;] (Xn+4 )N&J — A(an

and we conclude that X __ 4 “ X, factors through -z, : A(X, ) — X, |since the orbil map
Tood | Aut( X ) = X | factorsthrough (X 4 )ped 1 Xped -
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From the commutative diagram

(=)

X S Ry " R,
N / N e
A(X,) Hol(R.,,,R.)

n+l

le (_-1 erd

we infer that therel exists V, (f;;{ Hol ( Ry.,|, B;) with q, € V, such that X,,,4 “ R,
factors holomorphically through -/, : V, — R.,. Now assertion (i) follows by applying
2.3.2 to the sequence . . . — R.,)| ™ R|— . . . and to the family (V). 0

7.15 Proposition. Let | = lim dinjIm( X, 9x).

Then therel exists an ﬂ-dimensional‘ torust T which is an isogeny factor of X| Y, Uland V..
In particular}ifl X|Y|Uland V do not admid a common torus isogeny factor] (of positive
dimension), then every isogeny between X x Y and [J] x V degenerates.

Proof] Evidently, 1 = lim dim| Im( S, il S;)for al me Nandall S, S €

{X, U]V} (compare 7.1.3.a).
By Lemma 7.1.4.(ii)| therel exists a commutative diagram

() (+)

Spe2k S — Sn
l /s N T
A(S. L) A(S})

(-:ﬁ

Sy = 1; then Im(8,,,, 3 S1) coincides with the image of the orbitl A(S. , ) sl , and
hence is the orbit of some T(S, YO A(S.)| Thus, forallm » 0 and all Re{X|Y]U,V},

for my sufficiently large and & > 16. Increasing k, we may assume that dim Im (.S,

m+2k

therel exists an [-dimensional T(R) C] A(R,) such that every R,/ @ R,| factors
through -7 | T(R) — R, , if Kissufficiently large. Using Lemma 2.4.2 and 7.1.1.a(ii),
we conclude that T( R,,) is an isogeny factor of R,; clearly, T( R,,) and T| R,) are isoge4
nous for all R, RI€{X, Y,U, V}| &

7.1.6 Lemma. If thelisogeny X xY « S —UI X V degenerates) then f| is a degenerating
isomorphism for n w 0.

Proof] By 7.1.2(iii) and 7.1.3.b, it suffices to show that f| is biholomorphic for mw O. For
this, in turn, we need only show that f, inducesl an isomorphism between the corresponding
fundamental  groups.
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La GZ“I = ﬂ,(in),Hz“] = ?T](an),Gzn*J = ﬂl(UZnH)*HZml = Trl(Vzml).l By
construction of the sequence ( f,) , the sequence (G, x H,) satisfies the condition of Lemma
0.3.3, if theisogeny X x Y t 8 — Ul X V degenerates. 0

7.2.  Cancellation

7.21 Lemma. LetU,, Uy be connected complex spaces, and let T, T’ be tori such that
TixU~Tyx T

If therel exists no positive-dimensional torus that is an isogeny factor of both U] and U,,
then T, ~ T, and U] ~ U, |

Proof] tis easlly seen (eg. by using 7.1.2) that every isogeny factor of a torus is isogenous
to atorus. Thus, by 7.1.5, every isogenous between T| x U and T; x U, degenerates. By
7.1.6, we may assume that there] exists a degenerating isomorphism f : T, xU| = T, x U3,

which, by 5.1.5, induced a simultaneous subdecomposition. As neither U, nor [J)] admits a
positive-dimensiond torus factor, we conclude that (with the notations of 3.32) T|= Typ| &

Toyy = Ty and U = Uyy, =1 Uyy, = Ua 0

For any connected complex space U denotel by t(U) the maximal m ¢ N such that
there] exists an m -dimensional torus that is an isogeny factor of Ul . Thus Ul is isogenous to
T(UYx U], where T(U) isat(U)-dimensional torus and U, is a connected complex space
with ¢(U,) = 0.

7.2.1-a Corollary|

(i) Let Ul ~ T x J' with some torus T. If] dim T =t(U) or if t(U’) =0, then T(U) ~ T
and U] ~ U".

(it) T(U) x T(V) ~T(U x V) and U, x V| ~ (U x V), for alll connected complex
spaces [/land V .

Proof] The assertion (i) is obvious by 7.2.1. To prove (ii), considerf any isogeny between
Ulx V]jand T x Y, where T is a torus and Y a suitable connected complex space. By
7.1.5, this isogeny degenerates, and using 7.1.6 and 5.1.5, we conclude that [, and T or
V] and T possess; a common isogeny factor. Thus dim T = 0 and we can apply 7.2.1 to
T(U x V) x (Ux V)| (TU) x T(V)) x (U, x V,)! 0

722 Lemma. Let T',T|, T be tori with Tx T} m T x T, . Then T} ~ T,

Proof] We proceed by induction on dim T x Tj . In the induction step, we may assume that
dim T} >0, and that T, and T3| havel no common torus isogeny factor. Then, by 7.1.5, any
isogeny betweenl T x T and T x 77 degenerates, whence, by 7.1.6, we may assume that therel
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exists a degenemting isomorphism T x T} — T* x T}, with some torus T' ~ T. From 5.1.5
we infer T2 T x T, and T ¥ To) X T, sincel T; and T3 have no positive-dimensional
common factor. Thus T, ~ T, by induction hypothesis. 0

7.23 Theorem. Led X, Y, Z be connected complex spaces, sucH that X, Y or Z is compact.
Ifl X x Y and X x Z are isogenous, then so are Y and Z |

Proof] By 7.2.1.a, wehave T(X) X T(Y) m T(X X Y) mT(X x Z) ~ T(X) x T(2)
and X, X Y] mn (XX V)]~ (X X 2)) ~ XX Z,. Thus T(Y) ~ T(Z) by 7.2.2. By
7.1.5, every isogeny between X, x Y, and X, x Z | degenerates (note that X, , Y,|or Z
is compact). Using 7.1.6, we may assume X, X Y| * X | x Z, , whence Y| =1 Z, by 5.2.1.
Thus Y ~ T(Y) x Y~ T(2Z) X Z, ~ Z. 0

7.2.3.a Corollary. If X xY = X x Z with X, Y or Z compact, then Y and Z are
isogenous.

73. Decomposition

73.1 Theorem. Every connected complex space [J] admits a unique isogeny decomposition
(up to reordering) Ul ~ X, x . . .x X, x T(U) x U'(n> 0), suchthat

(i) T(U) is a (possibly zero-dimensionai) torus and U’ has no compact isogeny factor
#C°,

(i) every X, |1 u< n is compact, strongly indecomposable, #C ¢ J and not isogenous
to any torus.

Proof] Evident by 7.2.1.a) 7.1.6, and 5.34. 0
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