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THE FIRST CHERN CLASS OF
RIEMANNIAN 3-SYMMETRIC SPACES:
THE CLASSICAL CASE

T. KODA

Abstract. The existence of Einstein metrics compatible with J on a compact connected
almost complex manifold (M, J) is dceply concerned with its characteristic classes. Using
the method of A. Borel and F. Hirzebruch, we prove that an ureducible simply connected
(non- Kahler) compact Riemannian 3-symmetric space (G/ K, J,(,)) 1s Einstein if and only
i the first Chern class of (G/ K, J) vanishes.

1. INTRODUCTION

Let G be a compact connected Lie group, K a closed subgroup of G, S a maximal torus of
K and { = (K¢, B¢, ) aprincipal G'-bundle with the total space K, and the base space
B&' A. Borel and F. Hirzebruch ([4]) gave the method to calculate the characteristic classes
of the bundle along the fibres of the bundle (F}f/K, By, G/ K) in terms of the roots of G
relative to S, and concretely calculated the characteristic classes of compact Hermitian sym-
metric spaces. A. Gray ([6]) introduced the notion of Riemannian 3-symmetric spaces, in-
cluding Hermitian symmetric spaces, and showed that every Riemannian 3-symmetric space
1$ @ homogencous almost Hermitian manifold with the canonical almost complex structure,
and that some of Ricmannian 3-symmetric spaces are nearly Kahler manifolds. J.A. Wolf and
A. Gray ([ 18]) gave the complete classification table of simply connected irreducible Rieman-
nian 3-symmetric spaces M such that the group of pscudo-holomorphic isometries of M is
a rcductve Lic-group.

Let M = (M,J) be acompact connected almost complex manifold with the almost
complex structure J . The existence of Einstein metrics on M compatible with J is deeply
concerned with the characteristic classes. (For example, cf. [2] p. 322). M. Matsumoto
~ ([11]) proved that any 6-dimensional (non-Kiihler) nearly Kihler manifold is Einstein, and .
Watanabe and K. Takamatsu ([17]) generalized the above result. Furthermore, the following

results are known.

Theorem 1.1. (/16]). Ina 6-dimensional (non-Kdhler) nearly Kdhler Einstein manifold, the

generalized first Chern jorm vanishes.

Theorem 1.2. ([17]). An irreducible (non-Kdhler) nearly Kdhler manifold with vanishing

generalized first Chern form is Einstein.

Taking account of these results and the results in [12], K. Sekigawa has suggested me that
a compact wrreducible (non-Kahler) nearly Kdhler manifold M is Einstein if the first Chem
class of M vanishes. Then, we shali prove the following theorem.
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Main Theorem. Let (G/K, J,(,)) bea simply connectedirreducible (non-Kdhler) compact
Riemannian 3-symmetric space. Then (G /K, J,(,)) is Einstein if and only if the first Chern
class of (G/K,J) vanishes, where J is the canonical almost complex structure and (,) is
the G -invariant Riemannian metric on G/ K induced by a biinvariant Riemannian metric on

G.

As the author has already proved in [9] that the above result is valid in the case G i
exceptional, we shall prove the Main Theorem only in the case G is classical.

The author wishes to express his sincere thanks to professor K. Sekigawa, professor Y.
Ohnita and professor T. Watabe for their hearty guidance and many valuable suggestions.

2. PRELIMINARIES

In this section, we shall recall the Lie algebras of classical compact simple Lie groups. In
the sequel, we denote by R, € and HH the set of all real numbers, complex numbers and
quaternionic numbers, respectively, and furthermore by gl( N, R),gl( N, €) and gl( N, H)
the set of all N x N real matrices, complex matrices and quaternionic matrices, respectively.
Wedenote by Ey , € gl(N,R) C gl(N,T) C gl(N,H)(1 < A, u < N) the matrix whose

r-throw and s-th column is given by 6,6, .

(ADg=su(n+ 1) ={X €gl(n+1,C)|X+'X =0,TraceX = 0}.
We put
U);p=El.u_Ephl
Uy, = i(By, + E,), (1<A<pu<n+]),
t, =4k, —E, ), (1<v<n).

..,1

A
Then {\/2/(;\2”) Y wt, (1< A<, Uy, U, (1<A<p<n+ 1) forms an

v=1 y,

orthonormal basis for su(n+ 1) with respect to the inner product (,) on su(n+ 1) de-
fined by (X,Y) = —(1/2)TraceXY for X, Y € su(n+ 1). Then the inner product {,) on
su(n+ 1) induces a biinvariant Riemannian metric on the Lie group G = SU(n+ 1).

(B,)g=s0(2n+1)={X € gl(2n+ 1,R)|X +' X =0}.
Weputu ,=E —-FE_(1<r<s<2n+1), and

UA;. = (1/\/2_)(“21_1 2u—-1 — U2y zp)r

U;,u = (1/\/5)(“1;\_1 25t Y23 24-1))



The first Chem class of Riemannian 3-symmetric spaces 143
Vi = (1/‘/5)(”2;_1 2u—1F U232,
V;“ = (I/\/E)(_UZA—I 2t na,1), (1< A<pdin,

UU = (1/\/2_)(_“21#—1 2o+l u2u2n+1)1

U, = (1/V2) (=t 1 2me1 + Y2y 2m1)5
t, = —t,_12,, (1 Sv<m).

Then {t (1 < v < n),UM,U;“,VM,V;u(l <A< pu<nU,U( <v<n} forms
an orthonormal basis for so(2n+ 1) with respect to the inner product {,) on so(2n+ 1)
defined by (X,Y) = —(1/2)TraceXY for X, Y € so(2n+ 1).

(C,)g = sp(n) = {X € gl(n, H)|X +! X = 0}.

The quaternions H is generated by {1,1, /, k}, where 1,7 and k satisfy i2 = j2 = k2 =
—1,1y=—j1 =k, jk=—kj=1and k1 = —1k = . We put

t,=1k,
W,=JE,,
W =kE , (1<v<mn,

Wy, = (1/\/5)}'(3;“ +E,),
Wy, = (1/V2)k(E,, + E,,),
Uy, = (1/V2)(E,, — E,,),
Uy, = (1/V2)i(E,, + E,)), (1< A< p<n).

Then {t,, W, W,(1 <v <n),W,, W,,,U,,, U, (1 <X<u<n)} forms an orthonor-

mal basis for sp(n) with respect to the inner product (,) on sp(n) defined by(X,Y) =
—(1/2)Trace(XY +Y X) for X,Y € sp(n).

(D,)g=s0(2m) = {X € gl(2n,R)|X +' X = 0}.

Weputu =F —FE _(1<r<s<2n), and

U;J”u = (1/\/5)(“2A—1 2u—1 — U3y z,u)l
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Uip = (1/\/5)(“21-1 2t Uan2,1)
Viu = (1/\/2_)(“*2;\_1 2u—1 1 Uz z”)r

Vl:u = (1/\/5)(—“21_1 2pF Uya,m1), (1< A< <N,
t, = —Uy,_12,, (1 <v<n).

Then {t,(1 < v < »),U,,,U;,,V,,,Vi,(1 < XA < u < m)} forms an orthonormal

basis for so(2n) with respect to the inner product (,) on so(2mn) defined by (X,Y) =
—(1/2)TraceXY for X,Y € so(2n).

3. CHARACTERISTIC CLASSES OF COMPACT HOMOGENEOUS SPACES

We recall here the method to calculate the characteristic classes of compact homogeneous
spaces which has been shown by A. Borel and F. Hirzebruch ([4]).

First of all, we recall the roots of an invariant almost complex structure of a compact
homogeneous almost complex manifold. Let G, K and T° a compact connected semi-simple
Lie group, a proper closed connected subgroup of &G of the same rank and a maximal torus of
K , respectively. Assume now that the homogeneous space G/ K has been endowed with an
invariant almost complex structure J andlet +b; (1 < j < n) be theroots of G relative to T°
complementary to those of K (we call them the complementary roots). The invarnant almost
complex structure J is induced from a linear endomorphism (which we denote by the same
letter J) of the subspace m of g (where g = k & m, k denotes the Lie algebra of K ) such
that J2 = —id,, and J o Ad al,, = Ad,al,, o J forany a € K. We decompose m into the

2-dimensional subspaces fj corresponding to the roots bj(l <j<n) . m=4£,8..6F,.
Each £, is J-invariant. To each b;, we attach a sign ¢; = +1 or —1 in the following

way: take any non-zero element e; € J’j‘ Then e i~ v—1Je; IS a non-zero element of

/f = A’j ®g €, and 1s an eigenvector corresponding to either the eigenvalue e2™V=1b;(2) op

the eigenvalue e2*V-1(=b)(z) of Ad (ezpz) for any z € t. In the formar case, we define

€ = +1, and in the latter case, € = —1. That 1s to say, we determine a sign €; SO that the

equality
Ad,(ezpr){e; —V—-1Je } =e {e; —vV—1Je;}

holds for any z € t. Linear forms €;b, (1 < j < m) are called the roots of the invariant
almost complex structure J .

The characternstic classes of a compact homogeneous spaces may be calculated by the
following theorem.
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Theorem 3.1. ([4]). Let G, K and S a compact connected Lie group, a closed subgroup of
G and a maximal torus of K , respectively, and ::bj (1 < j < k) the roots of G relative to

S complementary to those of K. Let p be the projection from G/S onto G/ K, and T the
transgression in the principal S-bundle (G,G/S,S). Then the Pontrjagin classes are given
by

k
(3.1) p"(B(G/K)) = ] (1+ (7(b,))*).
j=1

If, moreover, the dimension of G/ K is even, then the Euler class is given by

k
(3.2) p*(e(G/K)) = £ ]| (=7(b))).
J=1

And if, moreover, G is semi-simple, K is connected subgroup of the same rank and G/ K
has an invariant almost complex structure J , then, if we denote by €:b. (1 <-j < k) the

roots of J, the total Chern class is given by
k
(3.3) p*(c(G/K)) =[] (1 = 7(¢;b))).
=1

In order to calculate the characteristic classes of a compact homogeneous space G/ K from
Theorem 3.1, we need to know the cohomology ring of G/ K. The real cohomology ring of
G/ K 1s completely calculated ([3]): Iet G be a compact Lie group and K a closed subgroup
of G. We denote by B, and p( K,G) the classifying space of G and the projection from
B, onto B, respectively. A. Borel ([3]) has proved the followings.

Theorem 3.2. Let G be a compact Lie group and K a closed subgroup of the same rank.
Then

(a) p*(K,G) : H*(Bgs,R) — H*(Bg,R), isinjective.

(b) If G is connected, then

H*(G/K,R) ~ H*(By,R)/p*"(K,G)(H"(Bg,R)),

where H™(Bg,R) denotes the subalgebra formed by the elements of positive degree of
H*( B, R). Furthermore, if we denote by ¢ : G/ K — By the characteristic map, then

H*(G/K,R) =¢"(H*(By,R)).
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Theorem 3.3. Let G be a compact Lie group and T' a maximal torus of G. Then the subal-
gebra p*(T,G)(H*(Bg,R)) of H*(By,R) isthe subalgebra I, formed by the elements
of H*( By, R) which are invariant by the action of the Weyl group W(G) of G.

From the above two theorems, we have
(3.4) H'(G/K,R):IK/IE;,

Remark. Let {z,,...,z;} be a basis of H'(T,R), and 7 the transgression in the uni-
versal bundle ( E;, By, T) for T'. We denote by the same symbol Z;, the corresponding

integral linear form on ¢ and —7'(z;) € H*(By, R). Then we may see that H*(By, R) =
Rlz,,...,z;], the ring of all polynomials in the Z, 's (see [2)).

In the sequel, we denote by S{z,,..., z;} the ring of all symmetric formal power series

in the T; ’s, with respect to a ring of coefficients which the context will make precise, and by

R {z} the ring of all formal power series in x.

4. RIEMANNIAN 3-SYMMETRIC SPACES

Let (M, (,)) be a connected Riemannian manifold. Now we suppose that (M, {,)) admits
an isometry 6, of (M, (,)) for each point p € M such that

4.1) 6, =1d,, foreachpe M,
(4.2) foreach p € M, p is an isolated fixed point of 0,

(4.3) the tensor field ® defined by 8, = (df,), foreach ¢ € M is of class C™.
Then we define the canonical almost complex structure J by

i

1 3
9P=_E Ip_,'l' T.IF, for each p € M,

where I, denotes the identity transformation of T M.

Definition. A Riemannian manifold (M ,{,)) is called a Riemannian 3-symmetric space if it
admits a family of isometries {91‘,}!:,,E v of (M, {,)) satisfying the conditions (4.1)-(4.3) and
furthermore the condition

(4 .4) dﬁpﬂ.f:JndBPaanarmchpe M,

where J is the canonical almost complex structure.

A. Gray ([6]) showed that a Riemannin 3-symmetric space is characterized by a triple
(G, K, o) satisfying the following conditions (1)-(3):
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(1) G 1s aconnected Lie group and o 1s an automorphism of G of order 3,

(2) K 1saclosed subgroup of G suchthat G C K C G°, where G° = {g € Glo(g) =
g} and G§ denotes the identity component of G°.

Let g and & be the Lie algebras of G and K respectively. Then we have the direct sum

decomposition
(4.5) g=k®d&m, Ad(K)m=m.

(3) There exists a positive-definite inner product (,) on m which is both Ad( K) -inva-
riant and o -invariant. |

The inner product (,) on m in (3) induces a G -invariant Riemannian metric {,) on the
homogeneous space G/ K ,and (G/ K, (,)) becomes a Riemannian 3-symmetric space. The
canonical almost complex structure J on G /K 1s given by

1 3
(4 .6) U|m=—§idm+ %Jﬂ.t the origineK € G/K.

A. Gray ([6]) also showed that the corresponding almost Hermitian manifold (G/ K, J, (,)) is
a quasi-Kahler manifold (also known as O* -space), and that (G/ K, J,{,)) is a nearly Kiihler
manifold (i.c., by definition, (V4 J) X = 0 for any differentiable vector field X on G/K,
where V' denotes the Riemannian connection of (G/ K, (,))) ifandonly if (G/K,{,)) isa
naturally reductive Riemannian homogeneous space with respect to the decomposition (4.5).

J.A. Wolf and A. Gray ([18]) have obtained the complete classification table of irreducible
Riemannian 3-symmetric spaces. Let (G, K = G9,0) be a triple such that G is a compact
connected classical simple Lie group and o is an inner automorphism of G of order 3, and
(,) be the G-invariant Riemannian metric on the homogeneous space G/ K induced by a
biinvariant Riecmannian metric on . Then, we may casily see that the corresponding compact
Ricmannian 3-symmetric space (G/ K, J, {,)) with the canonical almost complex structure J
- 1s a ncarly Kahler manifold. From the classification table in [18], we see thatif (G/ K, J, {(,))
1s not Kahler, then the corresponding triple (G, K = G°,0 = Ad(exp(2mv))) is listed in
Table 1.

We denote by V, R, p and p* the Riemannian connection, the Riemannian curvature ten-
sor, the Ricci tensor and the Riccl x-tensar respectively. The first Chern class of a nearly
Kahler manifold is represented by the 2-form »y, (known as the generalized first Chern form)
defined by

8y (X,Y) =5p"(JX,)Y) — p(JX,Y)

for X, Y € X(M) (X (M) denotes the Lic algebra of all differentiable vector fields on
M).
The following theorem has been proved by K. Sekigawa and J. Watanabe ([14]).
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Table 1
G \' K = GU
: h
T(n+ 1) {(2n+2-h-m)a§}Ecm
SU(n+1) % n%f S(Uh)YXU(m-h) X
+(n+l1-h-m) E - (h+m) E ) Un-m+1))
a=ht 1 5* a=m+ 1%
(1 £ h {m << n)
;] T
S0(2n+1)| - 3 ﬂE;UZR‘f 20 (2 < m < n) U(m)XSO(2n-2m+1)
;i R
Sp(n) = 2 E (] < m £ n-1) U(m)XSp(n-m)
oo
=]
] T (2 <m < n-1
50(2n) | = 53 2 Uy _ 4 o ' U(m)XS0(2n=-2m)
=7 4 £ n)

Theorem 4.1. Let (G, K = G°,0 = Ad(exp(2mwv))) be any one of the triples in Table
1 and (,) be the G -invariant Riemannian metric on the homogeneous space G[K which
is induced by a biinvariant Riemannian metric on G. Then the corresponding Riemannian
3-symmetric space (G/K,J,(,)) isirreducible and not locally symmetric, and furthermore
is Einstein if and only if G/ K is one of the followings:

(1) SU(B3m)/S(U(m) xU(m) xU(m)), m>1,

(2) SO(3m —-1)/(U(m) x SO(m—-1)), m>2,

3) Sp(3m -1 /(U(2m—-1) x Sp(m)), m>1.

If G/K is one of the spaces in (1)-(3), then p — Sp* = 0 holds on G/K, and hence
the generalized first Chern form of the corresponding nearly Kdhler manifold (G/K,J,{,))
vanishes, where J denotes the canonical almost complex structure.

S. THE PROOF OF THE MAIN THEOREM

For our aim, we shall calculate the first Chern classes of the respective homogeneous spaces
listed in Table 1 on the basis of the facts in the previous sections.

Case( 1) G/K =8U(n+1)/S(Uh) xU(m—h) xU(n—m+ 1)).

As a maximal torus of G, we may take

n+ 1 n+
T {E e E,, €SU(n+ )]0, ER(1 <a<n+ 1), ) 9a=0} .
a=1

a=]
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We define linear forms z, (1 < A < n+ 1) onthe Lic algebra t of T" by

n+ 1 nt 1
T, (Zﬂiz GnEm) =0y, for2miy  0,E, €1,
a=1 a=]

then z, ’s are integral lincar forms. We may easily see that the roots fo G relative to T are
t(zy —z,)(1 <A< p<nt 1), theroots of K are £(zy, —z,)(1 <A <pu < hor

-t

h+l < A<p<morm+ 1< A< pu<n+ 1), and that the complementary roots are
t(zy —z,) (1 <A<h<pln+lorh+1 <A< m<pudnt ).

The subspace m of ¢ in the decomposition (4.5) may be decomposed into the Ad( K) -
invariant subspaces m,, m, and ms such that the lincar 1sotropy representation of K on
cach m is irreducible (s = 1,2,3). m,, m, and m, are given respectively by

m, = spang {U, ,, Uy, (1 <A< h<pu<m)},

M,y = spuﬂR{U;wU,{.” (1 <A<h m+1<p<lnt 1)},

My = .*5;1::":3..711-,[{{U;,”u,(‘iff;hu (h+1 < A<m<pu<n+ 1)}

From (4.6) and Table 1, we may see that the canonical almost complex structure J is given
by
JUy, = Uy, JU,, = =U,,, for U,,, Uy, € m,,

JU,, = -U,,,JUy, = U,,, for UA”,U;H € m,,

i

JU}E,U U;“,jU;“:"'UA#, fﬂTU}i#,Uiﬁem:;.

The roots of J are given by

Ty, — T (I1<A<h<pupy<morh+1 < A<m<u<n+l),

‘u!

—(zy—z,), (I1<A<h m+1lpulntl).

The Weyl group W(G) of G is isomorphic to the group of all permutations of z,,...,z_, .
Hence I = S{z,,...,z,,, }. Andwemaysecthat [, = S{z,,...,z2,}®5{z4,1,---,T,,}®
S{z .,Z_,; }. Hence

maloc

}I*(G/KJR) rES{Il:n---tIh}@}‘S‘{;‘E!‘H]:*"!"""‘r".rrm}®‘S‘{‘r‘r:'m+1!"“!'r'l:‘.l'ﬂl}/Jirl.;}}
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and any element of H*(G /K, R) may be expressed by the elements of S{z,,...,z,} and
S{Zp,y,---,T,}. Notethat G/K is torsion free. From (3.3), we have

(GIK, D)= ] Q+zy-z) J[ -z+z) ][] (+z,-1,) mod I

1<A<h 1<A<h h+1<u<m
h+1<u<m m+ ] <v<n+l m+ 1 {v<n+l

In particular, the first Chern class ¢, (G/K, J) is given by

c,(G/K,J) = E (zy—xz,)+ E (—zy\+z,)+ Z (z,—x,) mod I

1<A<h 1<A<h h+1<u<m
h+ r{p{m m+1{u{n+l m+ ] <v<n+l

n+ 1

=(—n+2m-— h—l)z z,+(n—m-—h+1) E z,+(2h —m) Z z, modl

p=h+1 v=m+1

= (3(m —h) — (n+ 1))2:-;“(“1—3;1) E z, mod I};.

p=h+l

m
Since pE Ty, + ¢ E z, =0 mod In(p,g € R) ifandonly if p = ¢ = 0, we see that
A=1 p=h+1
c,(G/K,J) = 0 if and only if

G/K = SU(3h)/S(U(h) x U(h) x U(h)) (h>1).

Case(2) G/K = SO2n+ H/(U(m) x SO(2n—2m+ 1)).

As a maximal torus of G, we may take

 n

E (cos 20, (Ey 1 20-1 % Erg24) —SIN270,Us 1 24)+

b.,ﬂ!""-l

~
I

+E) im0, ER(1<a<n)}.

We define linear forms z, (1 < A < n) on the Lie algebra ¢t of T' by

(E 270 u,,_ 12“) =0,, for E 270 Uy, 19, €L,

a=1
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then z, s are integral linear forms. We may easily see that the roots of G relative to T are
+(zytz) (1 <A<p<n)and+z, (1 <v < n), therootsof K are ::(:E}h—:c”) (1L
A <ygm),::($l::$p)(m+ 1 <A<pu<n)and £z, (m+ 1 < v < n), and that the

complementary roots are £(zy, + z,) (1 <A < m A < pu < n),£(zy — z,) (1 <A<
m<pu<n and £z, (1 <v < m).

The subspace m of g in the decomposition (4.5) may be decomposed into the Ad( K) -
invariant subspaces m, and m, such that the linear isotropy representation of K on each
m, 1s irreducible (s = 1,2).m, and m, are given respectively by

my = spang {V,,, Vi, Uy, Us, (1 <A< m < <m), U, UG (1 < w < m)

m, = Spﬂ%.{Ulp,U;p (1< A< pu<m)}

From (4.6) and Table 1, we may sce that the canonical almost complex structure J is given
by
JVJ.” = V;u’ JV;}J = _Vln’ for th, V)f“ € my,

JUlp = U;#, JU.;.,'J = _U}.#, fﬂT U:"u,u’ Uij..i € m,y,
JU,=-U'JU.=U,, forU, U €m,,

JU}np= "’U; JU’{”:UL“, fﬂf UAH,U;FETHZ

p H

The roots of J are given by

Tyt z, (1 <A<m<u<n),

#(I}.-‘-I#): (lg‘l‘{ﬁim)i
T, (1 <v<m).
We may see that | =S{Xz,...,xﬁ}andfx=S’{m],...,xm}®8{mi+1,...,mﬁ}. There-
fore, by (3.4), we have

H*(G/K,R) “1"S{Il,...,Im}®8{$,2n+1,---;$i}/U£':

and any elements of /*(G/ K, R) may be expressed by the elements of S{zy,...,z } If

we denote by o, € H*"(G/K,R) the r-th Chern class of the canonical principal U(m) -
bundle (SO(2n+ 1)/SO(2n—-2m+ 1),G/K,U(m)), then

E g, =

r=

(1+ z,) mod I;.
]

™m m
0 A=
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From (3.3), we have

co(G/K,J) = H (1+z,) H (1+z,+z,)(1+z,—x,) H (l—zi—xp)mﬂdfé.

1<2<m 1<A<m 1<A<u<sm

m+ 1 <v<n

In particular, the first Chern class ¢, (G /K, J) is given by

CI(G/K,J')=E T, + E E(-TA"'%"‘E;_%)'*' E (—I}‘—Ip) mod I,.
A=1

v=m+1 =1 1<A<u<m

=(2n—-3m+ 2)0,.
Since o, #0, we see that ¢, (G/K,J) = 0 if and only if

G/K =8S0O(3m—1)/(U(m) x SO(m —1)) (m > 2: even).

Case( 3) G/K = Sp(n) /(U(m) x Sp(n—m)).

As a maximal torus of &G, we may take

T = {E " E € Sp(m]f, e R(1 <a< n)} .

a=1

We define linear forms z,(1 < A < mn) onthe Lie algebra ¢t of 7" by

n n
T (E 217:'9“1?“&) =0,, for Z 2mo E__ €t
o=1 a=1

then z, ’s are integral linear forms. We may easily see that the roots of ¢ relative to 7" are
::(mlizp)(l <A<p<mnand £2z,(1 < v < m), theroots of K are ::(:cl—mp)(l <
A<p<m),(zytz)(m+1< A<p<mn) and 2z, (m+ 1 < v < n), and that the
complementary roots are £(z,+z,)(1 <A <p<m), £(zy+z )(1 <A <m<pun)
and £2z (1 < v < m).

The subspace m of ¢ in the decomposition (4.5) may be decomposed into the Ad( K) -
invariant subspaces m, and m, such that the linear isotropy representation of K on each
m, 1s ureducible (s = 1,2). m, and m, are given respectively by

m, = spang {W,, W, (1 < v < m)=W>«u’W;u(1 SA<p<m)},
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my, = SPGﬂR{W}#,Wl{”,U}l”,U;”(l i A g m < H g ﬂ)}

From (4.6) and Table 1, we may scc that the canonical almost complex structure J 1S given

by
IW, = W, JW. =W,, for W,,W. € m,,
JWJ\,u = —WJ‘:#, JWJ:H = Wku’ for W}hp, W;ﬂ € m,,
JWJ&]J — W;‘-,ﬂ’ JW;’,J - "W;\#1 fﬂT W}.H‘W-{ﬂ - mz,

JUA” - U;p,JU;# _U}_#, fﬂT U}h#,U‘;p € M.

The roots of J are given by
2z (1 <v<m),

TR —_ _

_(I;;'*‘m’u): (1 <A< <<m),

IAZZE#:(lg}"im{NSﬂ)

We may sce that I, = S{z%,...,z2} and I = §{z,,...,2,.} ® S{z%,,,...,z2}. There-
fore, by (3.4), we have

Hr*(G/K}]R) "'_“.*‘S{Elz---:Im}@}S{IEnH!'”lmi}/I&’

and any clements of /*(G/K,R) may be expressed by the elements of S{z,,...,z,_}.

Note that G/ K is torsion free. If we denote by o, € H*"(G/K,R) the r-th Chern class
of the canonical principal U(m) -bundle (Sp(n)/Sp(n— m),G/K,U(m)), then

Y o, =][ (1+z,) mod I

m
r=0 A=1

From (3.3), we have

o(G/K, ) =][(1=-2z) J] (-z,-2) J[ Q+zi+z)(1+z,-1)
A=1

I <A<p<m 1<A<m<p<n

mod .
In particular, the first Chern class ¢, (G/ K, J) is given by

¢, (G/K,J)=(2n-3m-1)0,.
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Since o, # 0, we see that ¢, (G/K,J) = 0 if and only if

G/K = Sp(3m — 1) /(U(2m — 1) x Sp(m)) (m > 1).

Case(4) G/K =8S0O(2n)/(U(m) x SO(2n—2m)).

As a maximal torus of G, we may take

n
T = {E (cos 270, ( By 201 + Bag2q) —SIN2T0 0y, 15,)

a=1

€ SO(2n)|6, € R(1< crf_.fn)} .

We define linear forms z,(1 < A < n) on the Lie algebra ¢t of T" by
n n
) (E 270,474 2.:) =0y, for E 270Uy, 124 €1,
a=1 a=1

then z, ’s are integral linear forms. We may easily see that the roots of G relative to T are
+(zy £ 2,)(1 < A < p < n), theroots of K are +(zy — z,)(1 < A < p < m) and

:i:(n:l:izmﬂ)(m+ 1 < A < u < n), and that the complementary roots are +(z, + z,) (1 <
A<mA<p<n)and (z, —z,)(1<A<m<p<n).
The subspace m of g in the decomposition (4.5) may be decomposed into the Ad( K) -

invariant subspaces m,; and m, such that the linear isotropy representation of K on each
m,, is irreducible (s = 1,2). m, and m, are given respectvely by

m, = spunR{Vlﬂ,V;”,U}‘u,U;p (1< A< m<u<n},

m, = .5‘,';-1:1'n.R{UJW[JTI',LUl (1< A< u<<m)}.

From (4.6) and Table 1, we may see that the canonical almost complex structure J is given
by
JV}'F - V;ﬂ" JV;p = _V.)u;l’ fﬂr V)Lﬂ’ V;“ = m,,

JU;\._H - U;”, JU;F - _U}“u, fﬂT U}‘“, U;“ E ml,

JU,, = —U;“, JU::,u =U,,, forU,,, Ui“ Em,.
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The roots of J are given by

(1<A<m<pu<n),

Il - - IIJ’

—(zy+z,), (1<A<pu<m).

We may see that I, = S{zf,...,z2} and I = S{z;,...,2,,} ® S{z2,,,...,z2}. There-
fore, by (3.4), we have

H*(G/K,R) ~ 8{z,,...,z,}® S{zl .y, ..., 22}/ I,

and any elements of H*(G/ K, R) may be expressed by the elements of S{z,,...,z_}. If

we denote by o, € H*"(G/K,R) the r-th Chem class of the canonical principal U(m) -
bundle (SO(2n)/SO(2n—-2m),G/K,U(m)), then

m m
EUT= (1+z,) mod I
r=0 A=1

From (3.3), we have

c(G/K,J) = H (l—mk—mp) H (1+:::A—:.':u)(1+a:l+:rp)mﬂd15.

1 <A<pu<m 1<A<m<v<n
In particular, the first Chern class ¢, (G/K, J) is given by
c,(G/K,J)=(2n—-3m+ 1)o,.
Since o, # 0, we see that ¢, (G/K,J) = 0 if and only if
G/K = SO(3m — 1)/(U(m) x SO(m — 1)) (m > 2; odd).

Together with Theorem 4.1, this completes the proof of the Main Theorem for the case G is
classical.
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