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ON COLLINEARITY, PARALLELISM AND
SPHERICITY FOR PAIRS OF CURVES
F.J. CRAVEIRO DE CARVALHO

1o Professor S.A. Robertson on his 55th birthday

1. The relationship between the notions of collinearity and equichordality [1] is similar
to the one between the notions of parallelism and self-parallelism [2]. In [1] some resulis
concemning self-parallelism, equichordality and sphericity were proved. It is therefore natural
to look for analogous results but now relating the 1deas of parallelism, collinearity and spheri-
city. This 1s what we aim at in section 3 of this short note. For simplicity we shall consider only
embeddings of S' into R™ but the proofs work equally well if we replace S! by a compact,
connected, smooth manifold. In section 4 we deal with collinear equichordal embeddin gs and
make a few simple considerations on lengths and chordal areas.

2. Let f,g:S!' — R" be smooth (= C') embeddings. We say that

- f and g arc parallel if, for every z € Sl,Nf(:c) = N,(z), where N.(z) and N (z)
denote the normal (affine) hyperplanes to f and g.

- f is self-parallel if there is a non-trivial diffeomorphism § : S* — S' such that f and
f o & are parallel.

- f and ¢ are collinear with respect to p if, for every £ € S', f(z),g(z) and p are
distinct, collinear and || f(z) — ¢g(z)|| does not depend on z.

- f is & -equichordal with respect to p if there is a diffeomorphism § : S' — S such
that f and f o 6 are collinear with respect to p.
- f is spherical with centre p if f(S') is contained in around (n— 1) -sphere with centre

We remark that if f i1s é-equichordal then § is an involution. For results on parallelism
and equichordality we refer the reader to [2] and [1] respectively.

3. Let f,g : S' — R" be collinear smooth embeddings with respect to p. Throughout
this note, unless otherwise stated, we shall assume that p is the origin 0. Therefore f(z) =
A(z)g(x), where ) : 8' — R issmoothand \(z) > 1 foreveryz € S',0r0 < A\(z) < 1
forevery z € S, or M(z) < 0 for every £ € S'.

A question which arises naturally when n = 2 concerns the position of 0 relatively to
f(S') and g(S").
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Theorem 3.1. Let f,g : S' — R* be smooth embeddings which are collinear with respect
to 0. Then 0 is either inside both f(S') and g(S') or outside both f(S') and ¢g(S").

Proof. The proof is straightforward. Let A, : §' — §' (resp. X, : §' — S') be given
by X (z) = f(2)/||f(2)|[ (resp. A, (z) = g(=z)/|lg(z)|]). Since f and g are collinear
we have either A, = A or A, = Ao A, where A 1s the antipodal map. Hence degree

A = degree A, and the result follows from the standard characterization of inside and outside
of an embedding in terms of degrees [3].

It is not difficult to produce examples for both cases. In particular, for an example where
0 is outside do as follows. Let f be the standard embedding of S! as a circle in R* x R*
with radius r and centre a. Let ¢ be greater than ||a|| + 7. Then take g : S' — R? given by
9(z) = (1 — ¢/|| (D) f().

Let us return to the case of embeddings of S! into R®. We have

Theorem 3.2. Let f,g : S' — R" be smooth embeddings.
a) If f and g are parallel and collinear with respect to 0 then f and g are spherical with

centre (.
b) If f and g are spherical with centre p and collinear with respect to 0 then they are

parallel.

Proof. Case a) follows at once since if f and g are parallel and collinear with respect to 0
then every normal hyperplane to f passes through O and the same happens with every normal
hyperplane to g. This implies that the distance-squared functions D, D, : S' — R given

by D,(z) = | f(z)||* and D (z) = ||lg(z)||* are constant. Therefore f(S') and g(S')
are contained in (n — 1) -spheres with centre 0.

As to case b) we shall begin by assuming that p = 0. Then if f and ¢ are collinear and
spherical with centre O it follows that f = cg, where ¢ 1s a non-zero constant. Therefore
9, (T, S") = f, (T,S"), where f, and g, denote the linear maps between tangent spaces

induced by f and g. Since f and g are spherical we have, for every z € S', N (z) =
Ng( T).

Suppose next that 0 # p. Then either we have a situation as shown in Figure 1a, for all but
possibly two points in S', or a situation as shown in Figure 1b, again for all but possibly two
points in S'.

Recall that || f(z) — p||, ]| f(z) — g(z)]| and ||g(z) — p|| do not depend on z, that is the
lengths of the sides of the triangles {p, g(z), f(z) } are constant. Arguments from elementary
plane trigonometry and continuity make it possible to conclude that || f(z)|| and ||g(z)]|| are
constant. Consequently f and g are spherical with centre 0 and the result follows as in the
first part of the proof.
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The proof of case b) shows that for p# 0,n = 3, spherical collinear curves are not par-
ticularly interesting. Either they have concentric circles in a plane as images or their images
are circles lying in distinct parallel planes, the straight line determined by the centres being
normal to both.

We point out that case b) generalizes theorem 4.3 of [1].
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It is not true that if f,¢g : S' — R™ are parallel and spherical then they are collinear. To
see this we take the smooth embedding f : S! — R? whose image is shown in Figure 2.

Such an embedding appears in [4] and it is spherical and self-parallel. There is in fact just
one non-trivial diffcomorphism § : S' — S! such that f and f o § are parallel. If f and
f o6 were collinear with respect to p that would mean that f was 6 -equichordal with respect
to p. Hence p would belong to all the line segments f(z) f(6(x)) [1]. It 1s clear that no
point with such a property exists for f.

4.Let f,g : S' — R" be smooth embeddings and assume that f and g are collinear with
respect to 0 and that f is 6 -equichordal with respect to p. One might be tempted to think that
0 and p must coincide and that g would also be § -equichordal with respect to p. This 1s not
the case as the example following Theorem 3.1 shows. In fact in that example f is antipodally
equichordal withrespectto a and f and g are collinear with respect to 0. Obviously g cannot
also be equichordal with respect to a since a is outside g(S') [1]. Howeverif p = 0 we
have

Proposition 4.1. If f and g are collinear with respect to 0 and f is é-equichordal with
respect to 0 then g is also b-equichordal with respect to 0.

Proof. Write g(z) = f(z) + \(2)(f(z) — f(8(z))) /r, with r = || f(z) — f(8(z))]|- Then
llg(z) — f(z)|| = |\(z)| and it follows that X : S!' — R is a constant map. We denote \( z)
by c. It is not difficult now to obtain ||g(z) — g(8(z))|| = |r + 2¢|.

Theorem 4.1. Let f and g be collinear with respect to 0 and assume that f is 6 -equichordal
with respect to 0. Then

|+ 2¢|m < length g < (|1+ c/r| + |c|/r)length f

where r and c are as above.

Proof. We shall regard f and g as periodic maps from E into R™ assuming f to be parame-
trized by arc-length. Accordingly § will be taken as aliftof § : S! — S! which since this last
map is orientation-preserving will have positive derivative. Moreover 6(z + £) = §(z) + £,
with £ = length f. Take g(z) = f(z) + (¢/r)(f(z) — f(8(x))). Then g'(z) = f'(z) +
(c/T)f'(z) — (c/T)&'(x) f'(8(x)) and ||g'(z)|| < |1 + ¢/7| + (|c|/m)6'(x).

Therefore length g < (|1 + ¢/r| + |c|/7) length f.

The other inequality follows from the proof of proposition 4.1 and theorem 5.1 of [1].

We shall go on assuming that f and ¢ are collinear and that f is é-equichordal with
respect to 0. Hence g is also 6 -equichordal with respect to 0. Moreover the map ) . defined

in the proof of theorem 3.1 will be assumed to be an embedding. Recall that Ap = A, Or
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Ap=Ao Ag. Also f, g, A, and A will be regarded as maps from R into R" with period 1.
Let us denote by u a change of parameter such that A ;oW and A g O 4 are parametrized by
arc-length. We can then speak of the chordal areas A( f) and A(g). They are given by

L L
AH = (172 [ IS omIFd A = 1/ [ litgomolia

where L is the length of A, and A (see [1] for details).

Theorem 4.2. Let f and g be collinear with respect to O with f 6 -equfchorda! with respect
to 0 and such that X, is an embedding. Then

(1/4)7lr+2¢|* < A(g) < ACS) + (1/2) L([c|* + rlc])

where T,c and [, are as above.

Proof. The left-hand side inequality follows from the proof of proposition 4.1 and theorem
5.3 0f [1].

As to the right-hand side incquality we start from g(z) = f(z)+(c/7)(f(z) = f(6(x))).
Then [Jg(u(z))[|* < (JIf(u(z))||+ |c[)? and consequently A(g) < A(S) + (1/2)|c|* L +

L
|c|/{-} | f(u(x))||dz. Since |[f(u(z)]||+ ||f(p(z+ (1/2)L))|| = r[1] we conclude that

1.
_/ | f(u(z)||dx = (1/2) 7L and the results follows.
(0

The author is grateful to the London Mathematical Society for having allowed him to use

Figure 2 taken from [4].
Thanks are also due to the referec whose comments led to a sharper version of our precious
theorem 4.2.
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