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DERIVATION BY COORDINATES
N.L. JOHNSON

1. INTRODUCTION

In the "60’s, T.G. Ostrom invented the process of derivation in finite affine planes, the replace-
ment or renaming of certain Baer subplanes of the plane as /ines which together with certain
old Iines of the plane determined a new plane called the derived plane.

Originally, most if not all affine planes that permitted derivation were seen as such due to a
choice of their coordinate structures. It was Albert [1] who recognized that the Desarguesian
plancs of order g became derivable where the Baer subplanes invelved in the construction
arc those of the substructure of lines whose slopes belong to the squa:e root subfield GF(¢q)
or are infinite. Of course, the field GF(¢?) coordinatizing the Desarguesian plane is a 2-
dimensional vector space over G F'(g). But, it was soon realized that this was sufficient for
derivation in arbitrary finite planes; a coordinate structure Q of order ¢? contains a subfield
F = GF(q) suchthat Q is a right vector space over F' while writing the slopes determined
by elements ifn /' on the right. In [10], Ostrom gives certain conditions that are slightly
weaker than the properties of a right vector space which are also sufficient for derivation but
the only known examples satisfied the stronger conditions.

The derivation process was soon extended to include the infinite situation (Johnson [6])
but still there existed coordinate systems of the known infinite derivable affine planes which
were right 2-dimensional vector spaces over appropriate fields or skewhelds.

The coordinate approach to derivation i1s continued in the work of Lunardon [8] and
Griindhofer [3] who show that for derivable translation planes of finite and infinite order re-
spectively there 1s always an associated coordinate system which is a right 2-dimensional
vector space over some skewficld. Furthermore, this coordinate property has been recently
cstablished by Kriiger [7] for derivable affine planes which may be coordinatized by cartesian
groups.

Now derivation does not essentially depend on an affine plane. That is, the derivation
process renames as lines the Baer subplanes of a certain substructure within an affine plane
and certainly could be accomplished without this structure being embedded in an affine plane.
Furthermore, Ostrom [11] has shown how to determine coordinate structures for arbitrary
(affine) ncts that have at least three distinct parallel classes.

In [9], Ostrom defines the structure of a finute derivable net. This concept 1S generalized
to the infinite case in the author’s papers (4] and [5]. In particular, a coordinate system may
be chosen for any derivable net which automatically becomes a coordinate system for any net
or affine plane which contains the derivable net.

Concerning coordinate structures for derivable nets (derivable affine planes), the following
is then the most fundamental question:
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Given a derivable net 98 |, is there a coordinate structure Q) for 98 which contains a sub-
skewfield L such that () 1s a right 2-dimensional vector space over [, while writing the slopes
determined by the elements of L on the right?

The purpose of this note is to answer the above question. Also, part of the rational for writ-
ing this paper 1s to give proofs to some folklore results on the connections with the coordinates
and the replacement procedures inherent within derivation.

2. COFMAN'’S IDEAS AND THE EXTENSION TO PROJECTIVE SPACE

In [2], Cofman studies arbitrary derivable affine planes and establishes an affine space associ-
ated with the derivable plane. This structure 1s used to show that the Baer subplanes involved
in the derivation process are always Desarguesian thus extending Prohaska [12] who proved
the same result for finite derivable affine planes. While this associated affine space does pro-
vide some information, it gives essentially no insight as to the structure of the affine plane or
to the possible coordinate structures.

In [4] and [5], the author extends the ideas of Cofman in two ways. First it is realized that
Cofman’s arguments are valid for arbitrary derivable nets whether they may be embedded in
an affine plane or not. Second, the associated affine space may be extended Lo a projective
space in such a way so as to obtain complete structural information on the derivable net.
Further, the association with the projective space 1s tight enough so as to determine the full
collincation group of any derivable net. It is the intent of this note to show how to answer the
question on coordinates with the main results of the author [4], [S].

3. EVERY DERIVABLE NET MAY BE COORDINATIZED BY A RIGHT
2-DIMENSIONAL VECTOR SPACE OVER A SKEWFIELD.

We recall the main result of the author [5]. For the definiuon of an arbitrary derivable net and
the derivation process, the reader is referred to the authors articles [4] and [5].

Theorem 3.1. (Johnson [5] Lemma (3.6), Theorem (3.8) and Corollary (3.9). Let 98 denote
a derivable net

(1) Then there is a vector space V of dimension4 over a skew field K such that the points
of 96 may be identified with the vectors of V and the associated translation group of V isa
collineation group of 9% .

(2) Let Z( K') denote the center of the skewfield K . Let V = {z,,z,,y,,¥,)|z;,y; €
K,i = 1,2}. The lines of the derivable net are translates of the following sets:
{(zy,2,,6x,,6z,)|z; € K, — 1,2} for § fixedin K and {(0,0,y,,y5)|y; € K 1 =
1,2}. Furthermore, each line incident with (0,0,0,0) isa 2[K : Z(K)]-dimensional
subspace over the center Z(K) with the scalar action of Z(K) on V defined by

ﬂ(xllzzlyl}UZ) = (am];aIZJ&yl :EEyIZ)-
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We now choose Q = K & K,0 = (0,0),1 = (1,0),(z = 0) = {(0,0,y,,p,)|y; €
K 1= 1,2},(y=6_)={($1,z2,0,0)|:1:ieK,i= 1,2} and (y = z) = {(z,,2,, 2, T,)|

z, € K,1=1,2}. We form the Hall coordinate system for the netbasedon z = 0,y = 0,y =
£,(0,0) and (1,1).

Recall, to obtain a + b where a,b € Q: Form the line parallel to y = z thru (0, b) on
z = 0. Form the line thru the point (a,a) parallel to z = 0. Form the intersection point of
these latter two lines to obtain the point (a, a + b) .

We know that the lines of the net %6 are translates of the lines thru the origin since there
1S an associated translation group. Thus, for b = (b,,b,) for b, € K,1 = 1,2, the line
%, defined by {(z,,z,,7;,2,)]z; € K,i = 1,2} + (0,0,b,,b,) contains (0,b) =
(0,0,b,,by). Thus, &, mustbetheline y = z+ b. For z = (z,,2,),z, € K,1=1,2,
and y = (y;,y,) fory, € K,i = 1,2 we obtain, (y,,¥) = (z,,z,) + (b,by) =
(z, +b,,z, + by) since (z,z+ b) ison ZF,.

Thus, we have shown that

(Q,+) inthe coordinate system 1s vector additionon K @ K.

We now wishtoform a-a fora € Q andfora € K @ {0}.

To form a -« Firstdetermine (0, a) on z = 0 and form the line y = « parallelto y = 0
thru (0, ). Then determine (1,0) on y = 0 and form the line z = 1 parallel to z = 0
thru (1,0). Now intersect these latter lines to obtain the point (1, «) . Finally, form the line
y =1z -« asthe joinof (0,0) and (1, ).

Now {(z,,7,,az,,az,)|z; € K,i = 1,2} contains (0,0,0,0) = (0,0) and
(1,0,e,0) = (1,a) (note the two uses of «). Hence, y = z-a = {(zy,25,az,,a13,) |2, €
K,i=1,2}. Now to obtain the point (a,a - «) : Find (a,a) on y = z and form z = a
parallel to £ = O thru (e,a). Thenintersect y = 7 - o and £ = a to obtain (e,a - @) =
{(zy,z,, a1, 01y)|z; € K,1=1,2}0{(a;,ay,y;,0)|y; € K,1=1,2} where a =
(a,,a,). Hence, this forces z, = a, for 1 = 1,2 so that

a-a=(a,,a,) a=(aa,aa,).

Now let K denote the dual skewfield to K : Let a o b = ba where juxtaposition denotes
multiplication in K and o denotes multiplication in K .

(Q,+,-) is a right 2-dimensional vector space over the dual of K, K .

Proof. Recall, a - = (a,,0,) -a=(aa,,0a,) = (a, oa,a, o).
Then (a - a@) - B for a, 8 € f,u € Q = (aa,,aa,y) - B = ((B(aa,,B(aa,)) =
((Ba)a,,(Ba)a,) =a-(Ba) =a-(aof). Notethat a- = ao g since a = («,0) and

a-fB= (a0 B= (a0 =(1,0)(Ba) =1-(Ba) =(fa) =aocp.
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(e+b)-a=((ay,a,)+(b,by)) a=(a;+by,a,+by)) = (aa;+b;),a(a,+b,)) =
(cay,aa,) + (aby,ab)) =a-a+b-a.

Similarly, a - (a+ 8) =a-a+a-Bforalla € Q and « € K.
This proves the assertion.

4. THE ALBERT «SWITCH»

In this section, we show how to choose coordinates for the derived net 92 based on coordi-
nates in the original derivable net %8 . This is slighty different then the original version due
to Albert which we call the «Albert Switch» where a point with coordinates (z,,z,, 24, T,)

in %2 is represented by (z,,z,,x,,1,) in B (see Ostrom [10]).

Theorem 4.1. Let 98 denote a derivable net with corresponding representation over a skew
field K as {(z,,2,,75,24) |z, € K,4=1,2,3,4} asaleft Z( K) -vector space of dimen-
sion 4 -[K : Z(K)). Let 8 denote the derived net. Then coordinates for a point may be

taken by (z,,T,,T;,T,) in B & (x,,T;,T,,T,) in B where R is viewed as repre-
sented as a left Z( K) -vector space of dimension 4 -( K : Z(K)] where K is the dual skew
field to K .

Proof. Let K = (K,+,-) where a - 8 = fa and juxtaposition denotes multiplication in K .
Then a line of %8 incident with O = (0,0,0,0) has the form

{(0301$3:I4)II3!I4 € K} = (I= O)

or
{(IIIIZ’SEIISIZ)IIIIIZ - K,(S fixed in K}

The Baer subplanes of % incident with O have the form

Ty ¢ = {(ad),ad,, Bd,,Bd))|a, B € K,d,,d, fixed in K,d,,d, not both zero }.

Then {(z,,z,,8z,,862,)} in FB is represented by {(z,,6z,,z,,6z,)} in & = {(z, -
1,z,-6,z, -1,z, - 6)} and for z; = @, 2, = B,d, = 1,d, = 6 has the form

{(ﬂ‘dlsﬂ'daaﬁ'dlﬁ'dz)m:ﬁef}= Td, d, = 718

in %8 . Similarly {(ad,,ad,,Bd,,8d,)|a,B € K,d,,d, fixedin K and not both zero} in
R is {(ad,,Bd,,ad,,Bd,)} in £ ,={(d, a,d,-B,d, «,d,-B)} Letz, =d, -a,z, =
d -B.Thend, -a=d,-(df' -z;) andd, -B=4d, - (d' -z,). Letting d, - d;' = & this
set has the form

{(Il,Iz,ﬁ-.’El,ﬁ-Iz)lII,Iz EK}SEK}

This completes the proof of (4.1).
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Corollary 4.2. If a derivable net 9% is represented by the partial spread x = O,y = 6 - z
for § € K, K a skewfield then the associated derivable net R may be represented in the form
r=0,y=6 1 for § € K where K is the dual skewfield of K .

5. DERIVATION IN TRANSLATION PLANES

In this section, we show how to relate the matrix spread sets of a derivable translation plane
and its derived plane.

Throughout this section, let 7 denote a derivable translation plane with derivable net %% .
Note that we assume that the Baer subplanes of %8 are also Baer when considered as sub-
plancs of w. Let K be a skew field such that we represent the set of points of # and %8
as {(z,,z,,75,24)|z; € K,1=1,2,3,4}. Let F denote the prime subfield of the center
Z( K) of K sothat « 1s avector space over F' ofdimension 4 -[ K : Z(K)]-[Z(K) : F].
Let z = (z,,2,),y = (y;,¥3): 5;,y; € K,7 = 1,2 and represent the lines of & incident
with the zero vector O = (0,0,0,0) by y = éz,z = O for 6z = (bz,,6x,) for each
& € K. Represent the Baer subplanes of %8 incident with O by

n, o = {(ad,,ad,,d;, Bdy)|a, B € K,d,,d, fixed in K and not both zero.

Thelines y = éz,z = O and subplanes m, , aresubspacesover Z( K) and hence subspaces

over F'.

Lemma 5.1. The subspaces of w not in 98 corresponding to the spread of m may be rep-

mI, mz
resented in the form y = M where M = and m; for 1+ = 1,2,3 4
My, My

is a linear transfomation of K over F where K is considered a F -module of dimension
(K : Z(K)JZ(K) : F). Furthermore, the linear transformations m, and m, are non-

singular.

Proof. Let m = W @ W for some vector space W over F'. If a component is represented in
the form y = z M then M 1is a nonsingular F'-linear transformaton of W . In particular, M

1S a nonsingular F'-linear transformation of K @ K so clearly M = where

m. is a F'-linear transformation of K (m,, m, acton K 0, m,,m, on 0 @ K ).
Assume my is singular and z,m; = O for 7, # O. Then my , = {(0,,0,8)|a, B €
K} is a Baer subplane incident with O = (0,0,0,0) which is disjoint form y = z M. But,



94 N.L. Johnson

(Ezm3jfzm4)

(0,7,,0,Z,my) € my, and since (0,7;) =

(0,z,my), this element 1s also in y = zM. This proves m, is nonsingular. The same
argument using m, o shows m, is nonsingular.

Lemma 5.2. Assume the conditions of (5.1). If y = M is a subspace of the spread of =

which is not in # and K is the dual skew field of K then, for M = , the m,

may be considered as F -linear transformations over K or K .
Proof. Since (7,+) = (K,+) and F C Z(K), (5.2) follows.

Theorem 3.3. Let w be a derivable translation plane whose spread is represented by the

equations = 0,y=06-z2,0 € K, K askewfieldand y =z

=

m,,

T, ,

.

m,

My

for m, F-linear

transformations over K where F' is the prime field of the center of K. Then the spread for
the derived translation plane 7™ may be represented by the equations x = O,y = 6 - x for

r € K where K is the dual skewfield to K ,and y = z

Proof. On m—9% | the Albert switch amounts to the basis change

-1

—mimy -, My — MMy My
m3 ', my m,
‘I 0 0 O
O O I O
O I O O
O O O 1

of 7 as an F'-module where I, O refer to approprniate identity and zero mappings.

(y=zM) = {(ElsIZ:Ilml +I,m;, M, + z,my)|z,, T, € K}

in m— .99 1is

{(zy,zym; + Zymy,2,,2,my + Tymy)|z,,2, € K}

——

inT™— 9. Let T,
1

Iy,Iy

T,m;)m; and

T\My + Tymy = Tymy + (T, — Tym) m3

-1

Tﬂ4.

1

thinking

T, m, + T, m,. Sinceé m, is nonsingular, z, = (I, —
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Hence, in ™ — %%, we obtain:

Hence, we obtain the proof of (5.3).

95
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