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A FORMAL SYSTEM FOR THE ALTERNATIVE SET THEORY.
A NON-EXTENSIONAL APPROACH *
C. MARCHINI

Abstract. We presented a formal system which is intended to capture the essence of the set
theory in the alternative version given by Vopénka. QOur purpose starts from Sochor’s remark
that in the formalization presented as AST, the notions of set and class correspond respectively
to element of the universe of sets and to object from the extended universe.

The fundamentals ideas of the Alternative Set Theory are explained in the 1979 text by
P. Vopénka (cf. [V]) and we refer the reader to that for any explanation or suggestions and
definitions about the theory. In a series of papers (cf. [S1], [S2], [S3]), A. Sochor presents a
formalization for the properties of «some kind» of objects treated by Vopénka. In this paper
we present a new non-extensional formal system for Alternative Set Theory different from
Sochor’s AST. In order to distinguish between the two, we call ours TAI (for the Italian Teoria
Alternativa degli Insiemi). The formal axiom system we give 1s redundant, but we sacrifice
minimality to follow the mathematical development in Vop&nka’s book. A non-extensional
theory 1s suggested from Vop&nka’s words: «Each property of objects can be considered as an
object. A property of objects understood as an object is said to be a class. Classes are further
specific objects of our study. The fact that an object X is a class is denoted by Cls(X) ».
([V], pag. 27). Assuming extensionality the axiomatic presentation can be shortened.

Parts of this research and a first attempt for this formalization have been presented in [M1]
and [M2] and in a short communication to the Mecting of GNSAGA in Catania, October 1986.

1. THE LANGUAGE OF TAI

The language of TAI is aone-sorted, first order language (without identity!) with the following
special symbols: a constant @, two two-place predicates € and -, three one-place predicates
V. Set, Cls and an abstraction operator {...|...} which accepts a variable to the left of the
stroke and a formula to the right of it. The variable appearing left is bound in the resulting
lerm.

The definitions for terms and formulas are given in the usual way by using a double in-
duction (cf. [B]).

Variables are denoted by capital Greek letters, and intuitively «represent» the idea of ob-
Jectsin Vop&nka terminology. In the presentation of the formal system we distinguish between
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axioms and postulates (presentated as axioms in [V]), reserving this name to some proposi-
tions provable from other axioms.

2. SET AXIOMS OF TAI
Al. (VO) (P - P);
A2. (VO)Y(VY¥)(Set(P)ASet(¥Y) - (2 -¥Y =(VO)(O €D -6 cV¥)));
A3, V(0) A(VD)(D ¢ 0).
Remark 1. From Axiom 2, we have that our equality predicate is reflexive, symmetric and

transitive for Sets.
Small Latin letters are used to denote variables relativised to predicate V; e.g. o(zx)
means o(P) A V(P). Objects of this kind will be informally called sets from the universe

of sets, or V -sets.
Formulas in which only small Latin letters, the constant § and predicates € and + are

present, are called a set-formulas. For this kind of sets we assume the postulate, expressing
extensionality for V -sets.

Pl. (Vo)(Vy)(z+-y=(V2)(z€Ex=2€Yy)).
Remark 2. Similarly as stated in previous remark, the equality predicate <+ for V -sets is
reflexive, symmetric and transitive.

P2. (V)(Vy)(32)(Vu)(u€z=(u€EZVU+Y)).

For any given z and y, the set z determined by Postulate 2 is unique with that property
by Postulate 1. Denote it functionally by % y. Postulate 2 can be rewritten as

P2. (V)(Vy)(Vuw)(u € zDy=(uE€ETVu+y)).

A4. For each set-formula (),

(p(0) A (Vz)(Vy) (p(z) = (z%Y))) — (Vz)p(z).
AS. For each set-formula (),
(3x)p(z) — (3z)(p(z) A(Vy)(y € 2 — ~p(y))).

Remark 3. The axioms above are in [V], in the same form except for Axioms 1, 2 and 3,
which are only presented in words. Here we interpret Vopénka statement that @ is a sct in
Axiom 3, as a V -set, since from Axiom 7 below follows Set(@). Following [V] the usual
set-operations such as union, intersection, power-set, ¢tc., can be recovered. Hence z% y can
be written as z U {y}. Axioms 4 and 5 can be resumed both in

(p(0) A (V) (Vy) ((p(z) Ap(y)) — o(z%y))) — (VYT)p(x),

but this does not appear in [V] and it is presented in [PS].
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3. ABSTRACTION AND A -CLASSES

Our aim 1S now to capture the powerfull abstraction principle of Vop€nka, assuming that
«properties» are 1dentifiable by well-formed formulas of the language of TAI, and using the
abstraction operator. With these tools the axiom can be stated in the form: for each formula
o(P,¥,,Y¥,,...,Y,),Cls({P|p(P,¥,,Y¥,,...,¥,)}). In[V] there is nothing more. In
the search of a powerful, but consistent axiomatisation, we can enforce it requiring.

A6. For each formula (P ,Y¥,,Y¥,,...,'Y, ) :

Cls({®|p(®,¥,¥;,...., Y )D A(VO)(O € {Plp(P,¥,,Y¥,,...,¥,)} —

w(e!q’lslPZI"'ran))‘

In Axiom 6 the converse implication
(VO)(p(B,Y¥,,¥,,...,¥,) 28 € {P|p(P,¥,,¥,,...,¥)})

must be avoided in order to prevent Russel paradox. We state later this implication in some

particular cases.
A special kind of classes are those whose elements are all from the universe of set. These

object are called, in Vopénka’s terminology, classes from the extended universe. We use for
these a special symbol: A, given, by definition: A (®) for Cis(¢) A(VI(¥Y € & —
V(Y¥)). Capital Latin letters in formulas and quantifier are reserved to variables which are
relativised to predicate A , e.g. o(X) means p(P) A A (D). Sometimes we refer to these
classes as A -classes.
Remark 4. With this choice of symbols, we can denive the following property stated in [V]:
- for each formula p(z,¥,,%¥,,...,¥,), A({z|e(z,¥,,¥,,...,¥) D;
- in particular, A (V'), where V is written for {® |V (®)}.
Classes of the extended universe, (general) sets and V -sets are strictly connected. Suppose
we have a collection of V -sets, and suppose this class is a set in the general sense, i.e. a
collection obtained from a list, so this set must be a set of the universe of sets and viceversa.
AT7. (VO)(V(D) = Set(P) AA(D)).
Remark 5. This principle seems quite natural, but it is not presented in [V]. By the way we
obtain,

(1) (VO) (V(P) — Set(P)),

in particular, by Axiom 3, Set (@) . Take care that Postulate 1 does not follow form Axiom
2 and (1) only, since we are not able to state that every object that 1s elementof a V -set is a
V -set. Moreover, if we add

(2) (V@) (V(P) — A(D)),
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we deduce (VO ,WY)(V(P)AY € & — V(V¥)). Hence Postulate 1 follows from Axiom
2,(1)and (2). The formula (2) can be viewed as a translation of the ambiguous request, stated
in [V], that sets are classes. Another possible interpretation of the same request 1S the axiom

A8. (VD) (Set(d) — Cls(D)).
Remark 6. A choice can be made between the two ways of formalizing these ideas, but it is
also possile to assume both.

Extensionality 1s assumed for A -classes in the form of the axiom

A9, (VX)(VZ2) (X +-Z2=(Vz)(z€eX =x € Z)).
Remark 7. Of course, Postulate 1 1s a consequence of the Axiom 9 too, since every V -set s
a A -class. From Axiom 9 the equality predicate for A -classes is reflexive, symmetric and
transitive,

Other interesting features, obtained by Remark 4, are:

- each V -set is equal to a A -class, in the form, (Vz)(z = {y € z}), since A(z) and

A({yly € z});
- each A -class X + {yly € X}, since A ({yly € X}).

4. THREE ALTERNATIVE AXIOMS OF TAI

The alternative principles of existence of semisets, prolongation, extensional coding and two-
cardinals are recovered 1n four axioms. First we present the formal version of only some of
these: the extensional coding Axiom will be presented further on in section 6. It can be noted
that the existence of a semiset 1s a direct consequence of the prolongation Axiom, but, as
already announced, we stick to Vopénka’s presentation,

P3. (3X)(3y)(X C yA-V(X)).

Remark 8. The statement above corresponds to Vop€nka’s infinity principle. We use predi-
cate V, instead of Set. But fora A -class X, -V (X) = ~Set(X), by Axiom 7.

We assume the same definiuons of finite, countable and uncountable classes as presented
in [V] and denoted by the symbols: Fin( X),Count(X),Uncount( X) respectively. Latin
letters F', G, f, ..., will denote functions. The symbol ~ is reserved to equivalence: X ~ Z
means that there exists a function F which i1s injective and such that dom( F') = X and
rng( F') - 2.

Al10. (VF)(Count(F) — (3f)(F C f));

All. (VX)(VZ)((Uncount(X) ANUncount(2)) - X ~ 2).

Remark 9. In Postulate 3 and Axiom 10, the intended meaning of @ C ¥ 1s (Vy)(y €
d 5yeV¥) andnot (VO)(O € & — O € V). The second is a new inclusion relation,

Definition. Let @ W be objects, then ® ¥ means (VO)(B € d - 8 ¢ V).

As a consequence of definition of A -classes, these two different interpretations of inclu-
sion coincide for A -classes and V -sets.
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Proposition 10. (i) (A(P)AY c©d) — A(Y)
(ii) (A(PYAA(Y)) (Y cDP =D CVY);
(iv) (Set(P)ANDP V) - V(D).

Proof. Trivial by definition of A -classes, Remark 5 and Axiom 7.
Another natural property is (Cls(®) AY ©®) — Cls(W¥), but it must be added as

specific axioms.

5. JUSTIFICATION OF ADDITIONAL AXIOMS OF TAI

Till Axiom 11 our presentation follows Vopénka’s textbook, except for some details and the
extensional coding Axiom. But that axiom presents more subtle difficulties, siince Vopénka’s
formulation widely uses objects such as classes of classes. The difficulty is to ward off the
danger of a type-stratification. In [S1] Sochor introduces a new membership relation denoted
by 77, but we think this way of approach 1s unsausfactory, since one cannot recover Yope€nka'’s
dictum that each property of objects can be considered as an object and is to be a class.

Another kind of difficulty is presented by the concepts of list and set of generic objects
obtained from a list. Also in this case the same danger rises: the type-stratification. By
inspection of the mathematical techniques used in [V], it seems possible to reduce the request
about the existence to sets (in the sense of Set) such as the «successor».

Al12. (VO)(VY)(Set(P) — (FL)(Set(Z)A(VB)(O € £ = (0 € DV O -
Y)))).

Remark 11. By Axiom 12, starting from a Set, we geta Set too. In particular, starting with
V -sets £ and y, we obtain a Set that 1s also a A -class, since, by Axiom 7, it 1s a V -set,
hence Postulate 2 can be obtained from previous axioms.

By Axiom 2, as made for V -sets using Postulate 1, we can define a new operation denoted,
as before, % . A singleton {'¥'} is obtained as taking & as @, and it is Set({¥ }). Pair
{®d,V} isdefinedas {P}%Y, and itis a Set. Unordered n-tuples of objects are defined
by repcated applications of the operation % and are Sets. This approach avoids the use of
«lists» and scts obtained from them. At this point we can introduce, as in [V], ordered pairs

of objects (Y by the usual Kuratowski definition:

(@,%¥) for {{®},{®,¥}}.

Mathcmatical importance of V-sets, A -classes and ordered pair of A -classes, suggest us to
introduce a new predicate (D), to be read: P is a Fregean object, for V(D) VA(P) V
(3X,Y)(P = (X,Y))

(1) We think that usual set-theoretical operations such that (binary) union and intersection, difference and parts can
be introduced for general sets with specific axioms, without loss of consistency.
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Remark 12. Forevery @ and ¥, one has Set((®,V)). If ® -¥Y'AY =¥’ and the objects
o, W, P’ and VW' are such that equality relation be reflexive, symmetric and transitive, ¢.g.
for Sets, A -classes and V -sets, by Axioms 2 and 12, we have {® } +-{P'} {¥ } =+ {¥'} and
(@, ¥} {D' ¥} hence (VO , ¥, D' W )(P+-P'AY ~¥') = (O, V)= (D' ¥").
But not conversely, since we are not able to state that in case £ + © and Set(®), we have
Set(X).

This is a gencral problem of Vop&nka’s treatment: equality for objects may not be substi-
tutive over other predicates (even over membership!). The suitable axioms are the following

Al3. (VO)(VY)I(P =¥ — (Set(V¥Y) = Set(D));

Ald, (VO)(VP)(P =¥ — (Cls(¥Y) = Cls(d));

A15. (YO)(VPI(D - ¥ — (A(Y) = A(D));

Proposition 13. (VO ¥ , &' WY)((P - P'AY -¥') = (D, W) = (D' V');

Proof. Let (O, W) = (P’ 'W¥'); by Axiom 12, Set({®P,¥)) A Set({P',¥')), thence, by
Axiom 2, (VO)(® € (®,¥) = © € (¢',¥')). Now from 8 € (P, V) it follows that
O -{P}VvO = {d, ¥} Thesetwo equalitics, by Axiom 13, imply Set(© ), hence, using
Axiom 2, the remaining part of the claim is straightforward.

Proposition 14. (i) (VO )(V¥Y)(D - WY AF (V) — F(D));

(ii) (VO (V) (P =Y AV(Y) - V(D));

(iii) (YO, WY)Y(DP=YAF (D) - VY +D); (VO , ¥ O)(P=-VYAY -OAF (D)) —
b -0).

Proof. (i) Suppose @ = ¥ and #(W¥). In case V(V¥), by Axiom 7, Set(¥) A A (V).
Using Remarks 1 and 7, Axioms 13 and 15, Set(®) AA(P); from Axiom 7, V(P ). In case
A (Y), the claim follows from Axiom 15. If (3X,Y)(¥Y =+ (X,Y)), then, by Axioms 12
and 13, Set(Y¥Y) and Set(P); moreover for Sets equality relation is transitive, by Remark
1. Hence (3X,Y)(® + (X,Y)).

(11) Obtained in the proof of (1).

(ili) We show these properties only if #(®) means (3X,Y)(P + (X,Y)). Butin this
case we have Set(P) and the claim follows from (i) and Remark 1.

Introducing abstraction principle we said that for suitable objects the full Frege’s principle
can be assumed. In fact we have

A16. For each formula p(®,¥,,¥V,,...,¥,):

(VO)((p(O,Y,Y;,...,. ¥, ) AF(O)) - (8 € {Plp(P,¥,,¥,,...,¥Y,) ]})).

According to the axiom above, we assume a substitutivity condituon 1n the form
A17. For each formula (P, ¥, ,%¥,,...,¥,)),
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(VO)(VH)((® =¥ AFO) AO € {P|p(P,¥,,¥,,...,¥)}) —
q} E {‘DI(’{}((D"‘["I,LPZ’,_,,‘P“)}))‘

Proposition 15. (i) For each formula p(®,%¥Y,,Y,,...,'¥,),
(VO)((p(P,¥,,¥,,...,¥,) = F(P)) - (VB)(B € {Plp(?,¥,,Y¥,,...,¥)}=

@(9,4’1,‘1‘2,...,‘{’“))).

(i) For each formula o(P,%¥,,\YY,,...,¥,),
(VO)(O© € {P|p(P,Y¥Y,,YV,,..., YV )AF (D)} =p(O,Y¥,,Y¥Y,,...,¥Y ) AF(B))).

(ii) (Vz)(Vy)(z -y = (VZ)(z €Z =y € 2)).
(iv) (Vz)(Vy)(z+y o (V2)(z €E2=y € 2)).

Proof. (i) By Axiom 6, it is enough to prove that p(®,%¥,,¥,,...,¥)) —» 6 €
{P}Ho(P,¥,,Y¥Y,,...,¥,)}. Suppose (V®)((p(P,¥,,¥,,...,¥,) — F(P)), and
p(e,Y,,Y,,...,VY, ), by atautology and Axiom 16, we obtain the claim.

(i) Itis a particular case of (i), since (p(®,¥,,¥,,...,'¥,) AF(P)) —» F D).

(iii) Suppose z = y and z € Z. By definition %#(z). Using Remark 7 and Axiom 9,
z € {w|w € Z} and by Axiom 17,y € {w|w € Z}, and from Axiom 6,y € Z.

(1v) Trivial consequence of (ii1), by Axiom 7.

The last two axioms allow us to treat %-objects in a way very near to the practice of the
working mathematician. In particular, it 1s possible to consider relations and functions whose
elements are ordered pairs of A -classes. For instance, ordered pairs of classes are used in
the definitions of orderings, well-ordering, orderings of type w and €2, countable classes, and
codable classes. In this approach, the definitions of relations and functions can be generalized
to recover the cases of classes, in the sense of Cls. For example: given a relation K, from the
extended universe, for each given x one can consider

| z for {yl{y,z) € R}.

By Remark 4, onc has A (| z). Let R* for {®|(3z) (P =+ (z,] z))} : itis nota A -class, but
it is a class by Axiom 6. We would like to prove that R* is a function.

Proposition 16. For every relation R that is a A -class, the class R* is a function.

Proof. Note that A(| z') and A(] z"). By Axiom 6, {y,¥) € R* A (y,Z) € R* imply
(3)({y,¥) = {',| ')) A (3z")({y,Z) + (z",] z")). Using Proposition 13, we get
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y+-1z' W+ |z andy+z", X+ | z". ByRemark 2, ' = z" and by Axiom 15, A (¥) and
A (Z). Forall V-sets z, w, #({z,w)) and % z) ; moreover by Axioms 6 and 16, z €| 7' =
(z,z') € R.From Proposition 13, (2, z') + (2, £"); by Proppsition 14 (iii), (z, 2") € R and
by the point (1) of the same proposition z €] =", thence, from Axiom 9, these two A -classes
having the same V -sets as elements are equal: | '+ | z". By Remark 7, ¥ +~ X
Remark 17. In the proposition above, a general meaning is assigned to the term «function»,
and there are examples of relations R (classes from the extended universe) such that B* may
not be a class from the extended universe.

From now on, we shall use traditional mathematical concepts in this general meaning, €.g.
Fnc(®), Rel(¥), dom(®),rng(Z); moreoversetd ~! for {B |(3Z)(3¥) (O (X, ¥)A
(¢,Z) e d)}.

6. THE EXTENSIONAL CODING AXIOM OF TAI

We have prepared all the instruments we needed in order to formulate the extensional coding
Axiom, which shall stress the similarity between this and the usual Axiom of choice.

Al8. (VR)((Rel(R) AA(R)) — (3®)(Cls(®) A Frne(®P) A dom(P) + dom
(R A® €(R")™))).
Remark 18. Let @ be the function obtained by Axiom 18, from a given relation K. For all
8 € ®,08 € (R*)!; itmeans that (3Z)(3I¥)(B =+ (£,¥) A(¥,Z) € R*); by Axiom
6 and Proposition 13, (3y)(© = (| y,y)). Moreover if ¥ € dom(®), there is an object
E(Z +D(¥Y)) suchthat (¥, Z) € d, then there exists y such that (¥ , ®(V¥)) + (] v, v).
From Proposition 13,¥ + | y,and P (W) +~y, thence A(V¥), by Axiom 15,and V(P (V¥)),
by Proposition 14 (ii). This shows that A (rng(®)).

We now prove that Vopénka’s extensional coding Axiom can be obtained from the for-
malization presented here.

Proposition 19. Let o(X) be a property (i.e. a formula) of classes from the extended uni-
verse, and let (K, R) be a coding pair, with K and R classes from the extended universe and
Rel( R), which codes the class {X |p(X)}. Then there is an extensional coding pair that
codes the class { X |p(X) }.

Proof. Let @ be the function obtained by Axiom 18, from the relation RE. Consider the
class @~ defined as {z|(3y)(32)(Z € dom(P) Az + {y,¢(Z)) Ay € Z)}. By Remark
4, one has that A (®~) and by definition Rel(® ™). Since (K, R) is a coding pair, which
codes the class {X |o(X) } it means that for any class Z such that p(Z), thereisay € K
such that Z + R*(y). In other words, (y, Z) € R’, since, by Axiom 16, #((y, Z)). Recall
that #((Z,y)), too. By definition of inverse relation ad Axiom 16, (Z,y) € (R*)~'. This
condition implies that Z € dom(®), hence (Z, P (Z)) € ®. From ® c(R*)~" it follows
that (Z,®(Z)) € (R*)~! and (tb(HZ),Z) € R*. As in Proposition 16, (®(2),2Z) € R* if
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and only if there is an z such thatz - ®(Z) and Z+ | z. By Remark 18, A (vng(®)). The
pair (rng(®), P ™) is a coding pair. Indeed, for every class Z with o(2),(Z,P(Z)) € D,
thus forany y € Z,{y,®(Z)) € ®~. This relation can be written as y € (™) *(P(2)).
Recall that A ((@~)*(P(Z))); hence Z C (P™)*(DP(Z)). Butif z € (¢™~)*(P(2)),
then (2, ®(Z)) € ®~,and z € Z. In conclusion, by Axiom 9, Z + (®~)*(P(Z)), and
(rng(®),P~) codes {X|p(X)}.

If Z' Z" are such that p(Z"), p(Z") and (& ~)*(P(Z")) = (P~)*(P(Z")), then triv-
ally 2/ = (™M) (P(Z2)) ~(d™)*(P(Z")) =+ Z" : thus the coding pair is an extensional
coding of { X |e(X) }, which proves the assertion.

Proposition 19. Axioms 10 and 11, are used in TAI to prove, as in [V], that there exists a
A -class that 1s a well-ordering of V.
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