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NOTE ON PLANAR FUNCTIONS
OVER THE REALS

T. SZONYI

Dedicated to the memory of Professor Ferenc Kdrteszi

1. INTRODUCTION

The following construction was used in a paper of Karteszi [7] illustrating the role of Cremona
transformations for secondary school students. This is a typical construction in the theory of
flat affine planes, see Salzmann [9], Groh [4] and due to Dembowski and Ostrom [3] for the

case of finite ground fields. Let R* be the classical euclidean affine plane and f be the graph
of areal function f : R — R (R denotes the field of real numbers). Define a new incidence
structure A = A(f) on the points of R? in which the «new lines» are the vertical lines of

R? and the translates of f The incidence is the set-theoretical «element of» relation. (For
the definition of «incidence structure», «affine plane» etc. we refer to Dembowski [2]).

The following theorem is due to Salzmann (see [9], and can be found 1n Karteszi [6] and
in [3], [4] for the other cases).

Theorem 0. If )7 is a parabola, then A(f) is an affine plane isomorphic to R* .
Definition 1. A function f is called planar if A( f) is an affine plane.

Salzmann showed that there are a lot of planar functions over the reals, and proved that
continuous planar functions are related to convex functions.

Theorem 1. A continuous function f is planar iff f (or — f) is strictly convex and satisfies

lim f(z)/z=+00; lim f(z)/z= —o0.

I—+00 X——00

The purpose of this paper 1s to characterize the parabolas.

The question about the validity of the Theorem of Desargues in A(f) comes from
Karteszi. The following theorem can be regarded as a partial converse of Theorem 0. It
was proved originally by Salzmann (see [9]) using different arguments.

Theorem 2. Let f be a continuous planar function. If A(f) is desarguesian, then f is a
parabola.

In Part 4 we prove a little more.
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Theorem 3. Let f be a continuous planar function. Ilf the projective closure of A(f) has a
translation line, then f is a parabola.

(For the definition we refer to [7, pp. 237-240] or again to [2, pp. 98-101)).

Some of the results are probably not new, but they have been approached form different
viewpoints. (See Groh [4] or Salzmann [9]). But this paper is a self-contained (except of Part
4) elementary solution to an elementary problem of Karteszi

2. PRELIMINARIES
The following observation can be found in Dembowski and Ostrom [3].

Proposition 1. A function f is planar if and only if
(SA) f(z+a)— f(z) =b has exactly one solution for every a,b€ R, a#0.
We use the idea of the proof of Theorem 0 (see [7]). Set
f(a+z) = f(z) + g(z,0) + f(a).
Thus the equation of the translate y = f(z + a) + b, of y = f(z) can be written in the form
y = f(z) +g(z,a) + (f(a) +b;).
Applying the 1-1 transformation
' =x
{ v =y — f(z)
the equation of the lines of A( f) will be
(L) '=C or y =g(z',a)+b.
Definition 2. Define a new multiplication by the rule
a*xu=g(a,u).

From now on we will suppose that f(0) = 0. The following Proposition can be proved
without difficulty using the algebraic consequence (SA) of planarity (see Prop. 1).

Proposition 2. The coordinate structure ( R,+,%) (where + is the usual addition) has the

Jollowing properties:
(1) (R,+) is an abelian group with neutral element 0.



Note on planar functions over the reals 61

(i) (R — {0}, ) is a commutative quasigroup.
(1if) O xz =0 forevery x € R.
(iv) for every a# b and c there exists one and only one © € R such that

axT—bx1T=cC.

Proof. For example (iv) means that the equation
f(z+a) — f(z) — f(a) — f(z+b) + f(z) + f(b) =c
has exactly one solution. As this is equivalent 1o
f(z+a) = f(z+b) =c+ f(a) + f(b),

the assertion is a direct consequence of (SA).
The proof of the other parts 1s similar.
Remark 1. If an algebraic structure satisfies the conditions (1)-(iv) of Prop. 2, then using (L)
an affine plane can be constructed.
Remark 2. If for example f(1) = 0, then put e = 1 %x 1 and define an other multiplication

« o» by the rule
aob=a; b, where a=1x*xa;, b=1xb,.

For the case of finite ground fields it was proved by Dembowski and Ostrom [3] that ( K, +, 0)
IS a commutative cartesian system (see also [10, App.]) and this is the coordinatizing planar
ternary ring of A( f). (See also [2, p. 228])).

In the sequel we frequently use the new coordinates z’, ¢’ and the equations of lines given
in (L).

3. PROOF OF THEOREM 2

In order to study the validity of DD, (that version of the Theorem of Desargues, in which the
center of the two triangles is ideal and the axis is the ideal line) we build a figure consisting
of two centrally perspective triangles (A, A, A; D\, By B, B; ) such that the center is the
ideal point of the line y' = 0,(A,, B, will be on the z'-axis) and A, A, is the vertical line
' = 0. Set A, : (A;0),/; B, : (B;0) and let the slopes of the lines A; A, and A, A,
be ; and (—j) respectively. Thus the equation of A, A, is y' = 2’ x (=) — (A x (—J))
and thatof A A, isy' = ' xj — (A *)). As A,, A, are on the y'-axis we have A, :
(0; —(Ax(—J)),A; :(0; —(A x7)). The center of these triangles is the 1deal point of the
' -axis, hence A, B, hasequation y' = —(Ax(—j)), and A; B; hasequation y' = —( Axj).
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Since the axis of the configuration is the ideal line, B, B, 1s parallel to A; A, and B, B, 1s
parallel to A; A, . Hence B, is the intersection of the lines y' = 2’ x (—j) — (B * (—7j))
and y' = —(Ax(—J)). Thus B, mustbe (u; —(A *x(—7)), where

(1) ux (=) —(Bx*(—j)) = —(Ax(-))).

Similarly, B, 18 (v; —(A * 7)), where

(2) vxj—(Bxj)=—(Ax)).

The theorem D, implies A, A;||B; B;,1.e. u = v. Putting «u» instead of «v» into (2) and
using Definition 2 we get

(1) flu=7)=f(u)=f(=7)=f(B=7)+f(B)+ f(=)) = =f(A=}) = f(A) - f(—))

(27) flu+)) — f(u) = f()) = f(B+ )+ f(B) + f()) = —f(A+)) + f(A) + f())

Adding up these equations (and using f(0) = 0) we obtain

(fCu+ )+ flu—7) =2f(uw) + (f(A+)) + f(A-)) —2f(A)) =
(f(B+))+ f(B-j)-2f(B))+(f())+ f(=]) —2(0)).

(3)

Define the function d; for every fixed j by the rule
d;:z € R dj(z) = f(z+7)+ f(z—j) -2 f(z) €R

The strict convexity of f implies that dj is continuous and d;(z) > O forevery z € R.

Rewriting (3) for the d}s we have

for every A, B, j there exists one and only one u € R
(37) *
such that d.(u) + d;(A) = d;(B) + d;(0).

We claim that

for every j € R there is a constant D,

(4)
such that d}-(:z:) = D}. independently of z.
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Proof of (4). Suppose indirectly that d; is not a constant function and let h; = inf {d;.(:.c)} >
0, H; =sup{d;(z)}.

If d;(0) = H; thenlet € > 0 be chosen such that h; + 3e < H; and d,(A) < h; +
e,d;(B) > H; — e. Putting these into (3’) we get a contradiction, since

a;(A) +d(u) <h;+e+ H; <2H; -—e<di(0)+a,(B).

If d;(0) < H, thenlet € > 0 be chosen such that d,(0) + 3¢ < H, and d,(B) <
h;+¢€,d;(A) > d;,(0) + 2 €. Substituting these into (3’) we get a contradiction again, since

h;+ d;(0) + 2€ < d;(u) + d;(A) = d;(B) + d;(0) < h; + d;(0) +&.

Finally, we claim that

(5) If for a continuous function f,d.(z) = D, holds for every ; independently of z, then
f 1s a parabola.

Proof of (5). Fix an arbitrary j, # 0 and let f(j,) = Cy. As f(0) = 0 may be supposed,
the relation

(6) f(270) =2Cy + Dj, ..., f(kjo) =2 f((k—1)jo) — f((k—=2)j5 + D))
(for every k € 2)

follows immediately from the definition of dj(:r,). Thus it is easy to see (for example by

induction) that the points (kjy,, f(kj,)) lie on a suitably chosen parabola with equation
L . 1 . ] . 1

f(z) = agx? + byz. Choosing j, = 1,7, = 5372 = ek = g Wesetase

quence of parabolas with equations y = ayz? + byz,...,y = a,z* + b,x,.... As the points

of the graph of f with integer x-coordinate are common points of these parabolas, all these

parabolas coincide, i.e. there exist a,b R such that f(z) = az? + bz for every rational z.

As f is continuous, (5) is proved.

4. FURTHER PROPERTIES OF A( f)
In this section the projective closure of A( f) will be denoted by A.

Proposition 3. The plane A admits a collinetion group of rank 3.

Proof. The orbits of the group T" = {7, : (z,y) — (z+ a,y+ b)|a,b € R} (where z,y

are the old coordinates) are O, = {the ideal point of z’ = 0}, O, = {the other ideal points}
and O, = {the points of A(f)}.

Remark 3. The existence of abelian rank 3 collineation groups was the starting point of Dem-
bowski and Ostrom [3].
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Proposition 4. The plane A is self-dual.

Proof. The mapping

m:(u,v) oy =uxz —v
(m) oz’ =m

(00) > tdeal line =1

(where (m) is the ideal pointof ¢y’ = m x z’, (00) 1is the ideal point of =’ = 0, as usual) will
be a polarity. (cf. [10, App. 7. pp. 396-398], or [3]).

Proof of Theorem 3. We prove that the plane A has no translation line if f 1S NOt a parabola.
We have proved in Thm. 1 that [ _ is not a translation line. (A line r of A is a «translation

line» if the affine plane E\r is a translation plane, cf. Hall [5, p. 336]). If a vertical line r is a
translation line, then 7729 is also a translation line. But Thm. 20.5.1. of Hall [S] shows that
every line through » N 7@ | in particular [_, is a translation line, which is a contradiction.

If a non-vertical line fi 1s a translation line, then Tw'b) is also a translation line parallel to

fi. As f; N f7°? s an ideal point, the previous argument (using [5, Thm. 20.5.1]) yiclds
the same contradiction.

Remark 4. Considering the so-called Lenz-Barlotti classification of projective planes (see [1],
[8] or Thm. 3.1.20 of [2, pp. 123-126]) the existence of T, = {7, ,|b € R} implies that A
1S at least of type II.1. (i.e. all vertical translation do exist). The non-existence results listed

in Table 1 of [2, p. 126]) together with our Thm. 3 yield that if }'- is not a parabola then A
is either of type II.1. or of type I1.2. The existence of T (see Prop. 3) excludes that A is of

type I1.2. Thus if f is not a parabola then A is a projective plane of Lenz-Barlotti type I1.1.



Note on planar functions over the reals 65

REFERENCES

[1] A. BARLOTTI, Le possibili configurazioni del sistema delle coppie punto-retta (A, a) per cui un piano grafico
risulta (A, a) -transitivo, Boll. Un. Mat, Ital. 12 (1957) 212-226

[2] P. DEMBOWSKI, Finite Geometries, Springer, 1968.

(3] P. DEMBOwsKI, T.G. OSTROM, Planes of order n with collineation groups of order n* , Math. Z. 103 (1968)
239-258.

] H.J. GROH, Isomorphism types of arc planes, Abh. Math. Sem. Univ. Hamburg 52 (1983) 133-149
M. HaLL, The Theory of Groups, Macmillan, 1959.
F. KARTESZI, /ntroduction to Finite Geometries, Akadémiai Kiad6, Budapest, 1976.

F. KARTESZI, An affine plane obtained by a simple and interesting transformation , Kozépisk. Mat. Lapok 57
(1978) 97-103 (in Hunganan).

(8) H. LeENz, Kleiner desarguesscher Satz und Dualitat in projektiven Ebenen , Jahresber. Deutsche Math. Verein.
57 (1954) 20-31.

[9] H. SALZMANN, Topological planes, Adv. in Math. 2, (1967) 1-60.

[10] B. SEGRE, Lectures on Modern Geometry, Cremonese, Roma, 1961; with an Appendix of L. Lombardo-
Radice, Non-desarguesian graphic planes.

~ O W A

Received May 2, 1989.
Tamas Szonyi

Dept. of Computer Science
Eotvos Lordand University
Mizeum krt. 6-8

H-1088 Budapest, Hungary

and

Computer and Automation Inst.
Hungarian Academy of Sciences
P.O.Box 63

H-1502 Budapest, Hungary



