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ON TYPES OF POLYNOMIALS
AND HOLOMORPHIC FUNCTIONS
ON BANACH SPACES

H.A. BRAUNSS, H. JUNEK

1. INTRODUCTION

In 1966 L. Nachbin introduced the notion of a holomorphy type to consider certain types of
polynomials (f.1. compact, nuclear, absolutely summing) in a uniform way [7, 8]. Holomor-
phy types with special properties were studied by S. Dineen in 1971 (cf. [4]). Using the
well developped theory of linear operator ideals ([9]) various methods of the construction of
holomorphy types were presented in [1].

These methods work also in the case of p-normed and quasinormed ideals. After intro-
ducing the basic notions the factorization method will be studied here in more details. The
main result will be the Theorem 5.1.

Of special interest are multilinear operators of type E(?p) where 9’; denotes the usual
Schatten class of linear operators in Hilbert spaces. These multilinear operators can be char-
acterized by the summablity of their eigenvalues or some other sort of associated sequences of
reals (Proposition 4.1). The results will be applied to mululinear operators defined by kernels
or convolutions and to holomorphic functions of ideal type.

2. CONTINUOUS POLYNOMIALS AND HOLOMORPHIC MAPPINGS

Let us recall some basic definitions of the theory of polynomials and holomorphic func-
tions. We will use the notations of [5, 8]. Let E, F,G,... be complex Banach spaces.
By Z(E,,..., FE;F) wedenote the Banach space of m -linear continuous mappings from
E_x...x E; mnto F equipped with the topology of uniform convergence on the product of
the closed unit balls Uy, X ... x Ug . We write Z(™E; F) instead of Z'(E,..., E; F).

A mapping P : E — F 1s called to be a continuous m -homogeneous polynomial if there is
an A € X (™E; F) such that

P(z) =Az...x= A(z,...,z) forall z€E.

P

In this case we write P = A. The functional

1P[| = sup [|P(z)]]
[l=l<1

defines a norm on the space $2(™ E; F') of all continuous m -homogeneous polynomials from
E into F. For m = 0 we put #(°E; F) := F. Let (P, ) be any sequence of polynomials
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of increasing degree with P € $°(™E; F), m € N . Then the expression

o0

P (z— x4)

is called to be the power series at x, € E with the coefficients P, . Its radius of convergence
is the largest B,0 < R < oo, such that the power series is uniformly convergent on every
closed ball U(z,,r) for 0 < r < R. The radius of convergence can be computed by
Cauchy-Hadamard’s formula

R= (rgimmsup||Pm|]”’“)"1.

A mapping f : E — F 1s called to be holomorphic at z, € E if there is a power series such
that

f(z) =) P,(z—z)
m=0

converges uniformly on some ball Ug(z,, 7).

By # ( E; F) we denote the vector space of all functions which are holomorphic in each
point of E'. Let us remark that on each infinite dimensional Banach space there are entire
functions with finite radius of convergence.

The radius of convergence 1s infinite if and only if f maps bounded sets into bounded
sets. Such functions are called uniformly bounded, and we denote by # ,( F; F') the space
of all of such functions.

3. OPERATOR IDEALS

Now let us study more special properties of polynomials and holomorphic functions as uni-
form boundedness. For this, :{achbin introduced the notion of holomorphy type ([4, 7, 8]). In
our approach here we will use the well developped theory of linear operator ideals to express
additional properties of functions and polynomials.

First, let us recall the definition of a p-normed operator ideal. For details we refer to [9].
By £ we denote the class of all continuous linear operators acting between arbitrary Banach
spaces. A subclass # (together with a functional || - |4|| : £ — R ) iscalledtobea (p-
normed) operator ideal, if the components 4 ( E; F) := A NZL(FE,; F) fulfill the following
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conditions:

NIg € 4 (and||I¢| 4| =1).
INS,Te 4(E,F) implies S+T¢€ #4(FE;F)
(and |$ + TIAP < ||SL4IP + [T}4]P).
[IDR € F(F:F,),S€ A(EF), ad T € L(E,;E)
implies RST € A4 (E,; Fy)
(and || RST A || < |[R|[ |[S|-£]| ||T])-
IV)(All components are complete with respect to the topology generated by||.|.#]|).

Definition 3.1. Let 4% be a p-normed operator ideal. A multilinear mapping M €
L(E_,...,E;F) is called to be of type &(A4) if there are operators T; €
A(E;;G,) and a mapping My, € Z(G,,...,G,; F) such that

M = My(T,,...,Ty).

In this case we set || M| L (A4)]|| := inf ||Myl|| ||[Tn]-#||-- - ||T1|-# ||, where the infimum is
taken over all possible factorizations of this kind. By £(.A4)(E,,,..., E;; F) we denote
the set of all multilinear mappings of £(.#%) from E_ x ...x E, into F .

The type & (4) is an example for a so-called mltiideal introduced by A. Pietsch in [10]
(cf. [1, 3)).

Proposition 3.1. Let % be a p-normed operator ideal. Then Z(A)(E,_,...,E;; F) is
a complete p/ m-normed space.

Proof. In [2] it has been proven that & (.4)(E_,..., E,; F) is a quasinormed Banach
space. Here we will prove that || - |2 (.#)]| is even a p/m -norm. Suppose that M, N €
L(A)E,,..., E;; F). Coresponding to € > 0 there are M, € £(G,,,,...,Gy: F),
Ny € Z(Gypm,-.-,Go i F),S; € A(E;G), and T; € A(E;Gy;) such that
Mol IINoll < 1+ &, ISi Al < IMIZ(A)'™T:IA < [INIECA|™ M =
My(S,,...,S;),and N = Ny(T,,...,Ty). Weput E_. := G,; x Gy,,|[(zy;,2,))|| =
|z{;]|+]lz4;]|, where T € Gji' Furthermore, R, := 1,8+ 1, T;,, A= My(m ., ..., 7)) +
No(7ym,---, M) where 1. and 7 are the canonical injections from G ;; into E; and pro-
jections from E_; onto G, respectively. Then we obtain R; € A (E;; E,), ||R,|-A4||P <
|S;|A|P+||T;|-#||P,A € £(E,,,...,E, F),||A|| < 1+¢,and M+N = A(R,,,...,R,).
Finally, it follows that ||M + N|Z(A)|P'™ = ||A(R,,...,R)|L(A)|P™ <
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Sl

(1+ e)P/™(||M|Z{A)||P/™ + ||[N|Z(4)||P/™). This concludes the proof, since ¢ is ar-
bitrary.
Definition 3.2. Let 4 be a p-normed operator ideal. A polynomial P € P("E; F) is

——

called to be of type L (.A4) if there is amapping M € L (A)(™E;, F) suchthat P= M .
In this case we put ||P|P g _g,|| = inf g_p || M|E(A)].

(1 + (IS, lAIP + |ITLAIDY™. . (IS |AlP + [TA)Y™ <

By ?’g( ) ("E; F) we denote the complete p/m-normed space of all m-homo-

geneous polynomials of type £(.4) from E into F.

An easy computation shows that the single generated multilinear mapping M = a_ ®
...®a;, ®y,a; € E')y € F, belongs to & (.4)(™E; F) for every operator ideal % .
Moreover, we have ||M|| = || M|L(A4)]|| by ||Ic]|-#4] = 1.

The following statement shows that each polynomial of type £’ (_#) 1s the superposition
of a polynomial and a single operator R € % (cf. [6]).

Lemma 3.1. Let 4 be a p-normed operator ideal. Then corresponding to any P €
P w2 ("E; F) and € > 0 there are an operator T' € A4 ( E; G) and a polynomial Q €

P(™G; F) suchthat P = QT,||T|-#4|| < 1 and ||Q|| < (1 + &)m/P~Dm||P|P o 4]

Proof. Suppose that P € P ¢4 (™E; F) and ¢ > 0. Then there is an M €

F(A)(™E; F) suchthat M = P and IM|Z(A)|| < (1+¢€)||P|P e _gll- Wechoose
N e ZG,,....G;F) and T, € A4(E;G;) with N(T_,...,Ty) = M,||N|| < (1+

) |PIP 2 sl and ||T;|4]| < 1. Letbe G := IN(G,,,...,G)),T := m~'/P 3" 4,T,,
k=1

and Q := m™?(N(x,_,...,m))" where i, : G, —» G and 7, : G — G, are the canonical
mappings. From this we obtain

T € A(E;G) and |[T|A|P<m™ ) |IT AP <1,

k=1
Q= sup m™?||(N7_,...., ;) (z,,...,z,)]]
Lllz]I<]
=m™? sup ||[Nz,,...z,|| < m™P|IN|| sup ||zl ||z,
Ll|z,|<] Xllz,|I<!]

= mUPDM N < (14 e)m P07 |PIP g gl

Moreover, we get

QT = m™?(N(n_,..., m ) = m™P[N(m~/°T_,..., m~'PT)1"=M = P.
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This concludes the proof.

4. MULTILINEAR OPERATORS ON HILBERT SPACES

[n this section we study polynomials of type £( ?P) . This class is a multilinear generaliza-
tion of the Schatten class operators QVP. Recall that a compact operator mapping a Hilbert
space H into some other Hilbert space K belongs to &, iff the sequence of eigenvalues of

VT*T isanclementof [ (0 < p < oo). Inthis case we have ||T'||| = [[(A (VT*T))|L]|.

Suppose now 0 < p < 2. By [9, 15.5.4], an operator T € Z( H; K) belongs to 7 if

and only if there is some orthonormal basis {e,} of H suchthat (||Te,|[) € [,(A). In this
case we have

ITIZ| < I TeqlD 1L,CA ],
For each x € H let z* be the functional on H defined via scalar product (y, z*) = (y, 7).

Proposition 4.1. Let (e;);; and ( fj-)}le ; be orthonormal bases of the Hilbert spaces H and
K , respectively, and suppose that M € £L(™H, K). {f((Mel-_ o€ fj)) & lp/m( I™xJ)
then M € Es‘?(ﬁ;)(mH; K) holds true for 0 <p< 2.

Additionally, we have
IM|Z (T < I[((Me; ...e;, [i)) lymll

Proof. By A we denote the index set I™ x J. We put A = (Me, ...eil,f}.) for all

a = (iy,...,4,7) € A If (X)) € L, (A) then we have (u,) = (A/my € L(A).

Let (g,).ca be an orthonormal basis of [,(A). By m, : A — I we denote the map with
m(1 ,...,1,7) = 4(k =1,...,m). Wedefine operators T, : H — L, (A) viaT}, :=

E Hor (o) @ 9a
aEA

Since ([|T3ga) = (lua]) € L,(A), we get Ty € &,. This yields T, € F,( H; L, (A))
and ||T |7, || = ITX 17, < |[(u) [L(A]].

Furthermore we set N := E 9. ®...0g, ® futay, Where w(d ..., 1,,7) 1= j for
acA
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(1,.,...,4,7) € A. Since N € Z(™,(A); K) and ||N]|| < 1, we get

N(T,,...,T}) = (E g;;@*..@g;@f,(a;)

aCA

OOVETIETRSS yPRT

aEA aEA

Y (Ba€s(a) ® -+ ® (Bl () ® fra
atEA

= E Bara) @ - B ey () ® fra) = M.
aEA

Moreover,
1Tl < 1)l = [[(3a) lpymll 7P,

hence M € .‘E(é’ﬂ)(”‘H;K) and
IM|Z (I S NININTHlZll - T F Gl < N 1l

This concludes the proof.

Let us remark that for diagonal multilinear operators this condition 1s also necessary. Now,
we consider multilinear integral mappings on L,[0,2«] and ask the question under which
conditions they belong to Z( .?P). The following corollary gives a sufficient condition. Let

f be a measurable function on [0,27]™*!. If

2 27
/ | f(uty, et )T, (8) oz (2))dE ..t
0 0

defines a bounded multilinear mapping from (L, [0,2#])™ into L,[0,2x] then we denote
this mapping by M, .

Corollary 4.1. Let f be a measurable function on [0,27]™'! 0 < p < 2, and suppose
that the sequence of its Fourier coefficients

m+ 1

FF(k) = 1N [hf(t t Ye Mkdy. ... dt
=57 oo 0, st o---dt
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belongsto L, (Z™'). Then M, € £(J,)(™L,[0,27]; L,[0,27]).

p/m

Proof. The assertion follows from Proposition 4.1 since

(Mse, ...e ,€; )

!
- (3)

= Ff(ky, —ky, .., —k_).

2x
St e () ey, (8l . dt ey TEg) g

2%
Eii 2% ix * * _
/; e ) f(tﬂ,...,,tm)e'k"t".*.e‘klt‘e"'k"‘“dtm...dtg

In the following we consider multilinear mappings defined by convolution. Corresponding to
f € L,[0,2n] we set

(GfIm . ‘ml)(tﬂ)
1 mlz_—l‘ 2% 2x
= (2_'”") £ . . f(tﬂ+tl+"'+tm)$(tm)"'I(tl)dtm"‘dtl'
Then a standard computation shows

C, € Z(™L,[0,27];L,(0,27) and ||C|| < |IFILy|I-

The verification of the next lemma is easy

Lemma 4.1. Let f € L[0,2w]. Then the Fourier coefficients of g(i,,...,1,,)
(2m)-m/2 f(t, + ... + t ) are ¥g9(k) = V2nFf(ky) for k = (ky,...,ky), and
Fq(k) =0 elsewhere.

By W![0,2n] we denote the Sobolev spaces of periodic functions on the real line, where
l€ N and 1 < r < oo (cf. [11],6.5.).

1 1
Proposition 4.2. Let 0 < p< 2,1 < r < oo, and l+ min.(;,i) > % Then f €

W;10,2n] implies C; € £(,)(™L,[0,27); L,[0,27]).
Proof. Suppose that the assumptions are fulfilled. Using [11], 6.5.11., it follows that

(Ff(k) € L, (Z) with L o1+ min (—1; %) and w = min(r,2), where I (Z)
, : - .
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is the Lorentz sequence space. Since s; < s, implies [ C ! for arbitrary w,, w,,

we have (¥f(k)) €, (£) C (Z) =1_, (£). With the notations as in Lemma
4.1., we get

p/m,p/m p/m

YY) IFeRPm = 2m)PPm Y | FF (k) P < oo
kocd k& kocd

Now, the statement follows from Corollary 4.1.
Let us formulate this statement especially for r = 2,

I
Corollary 4.2. Let 0 < p < 2 and L+ = > L Then f € W}0,27) implies C, €
7
F(T)("Ly10,2m); L,[0,27]).

5. HOLOMORPHIC FUNCTIONS OF TYPE #(_#)

In this section the main question 1s the following. Given any entire holomorphic function f
with the Taylor expansions

f(z) = ) Pn(z—zp).
m=0

Suppose that all P_ are of type &'(#) for some operator ideal 4 . Does f admit a fac-
torization f = g - T' with some linear operator T € .4 and some holomorphic function g ?
Does this property depend on the centre of this series? We will answer these questions in the
following.

An operator 1deal 1s called to be closed if it is a normed 1deal with respect to the uniform
norm. For such ideals the questions asked above have been answered by S. GeiBin [6]. Here
we are interested 1in 1deals defined by more geometric properties. This includes for instance the
97p -1deals. These 1deals are of course not closed because they contain all finite rank operators.
But the uniform closure of this subset of operators give the set of all compact operators.

As we are dealing with norms quite different from the uniform norm, we have to use
completely other methods than those used by Geil to treat the problem.

Definition 5.1. Let 4 be a p-normed operator ideal. A holomorphic mapping f from E
into F is called to be of type £(.#4) at x, € E if

P,e€ePg 4("EF) forall meN,

and

1/m

lim sup || P, |F g gl < oo,
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where

f(z) =) Pn(z—15) on U(zg,r)

m=0

for some r > 0.

Example 5.1. Let E = |, F = €. By 46 we denote the normed operator ideal of absolutely
summing operators.

o0

Then f((z;)) = E 7 fim defines a holomorphic function on the open unit ball of [,
i=1 J

and f is of type £ (%) at 0.
To show this, we put

A, :=E e;,®...0¢ for meN.
i=1

Hence we get
A e Z(";C) and [|A,ll=1.

Since A, € [y =1 wehave A, € & (%#£)(l,; T).
For m > 1, A admits a factorization

L x ... x
w.
Id ... Id T
| \ 4
L x ... X I

Using the facts that ||A_|| = 1 and Id € B (l;; L) with ||Id|# (I;; L)|| = c,, where
¢ is the Grothendieck constant (cf. [11], 1.6.4), we have A € Z(5)(™l;; C) and

|4 Z(R)|| < cg, hence A, € P ) (™; €) and [|4,|P g )l < cB.
So we have

g:=) A,€H#U,;C)
m=1

and g is of type £ (%) inO.
Finally, for z € U, the following holds true

oo o0 o0

9(2) =Y A (=3 D aPr=3 —— = f(a).
m=1

T.
m=1 =] 1=] '
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Theorem 5.1. Let .# be a p-normed operator ideal for some 0 < p < 1 andlet f €
FH(E; F). Suppose that there is an x, € E such that f is of type £(.#4) at z, and that

(i PIP|P,IP g g I/ € L,
This implies

(1) there are an operator T € A4 (FE;G) and a mapping g € # ,(G; F) such that
f=qgoT.

(2) fisoftype L(A4) atevery z, € E.

Proof. We put
. 1/n
a, = ||P|P g el

By assumption (n“‘P”chﬂ) € lp. Now, choose some sequences (w,) € £p,w“ > 0, and
(2,) € ¢, satisfying

(1-plp
w2z, >N Q.

Corresponding to Lemma 3.1. there are T, € A (FE;G,) and Q, € £("G,; F) with
P = QT ,|T.|-#]| < w,, and ||Q || < w;*2nl!=P"Pa® Weset G := I_(G,) and

o0 oo oo
T:=) 4,7, Since Y  [|i,T,[-A|P <) w? < oo, wehave T € A(E;G).
n=1 n=1

n=1

oo
Next, by g(y) = f(zy) + E Q, (7 (y—Tz,)) wedefine a power series from G into
n=1

F'. Since

(9T)(z) = f(zo) + Y, Qu(m,(Tz — T1x))
n=1

= f(z,) + Q, (-nn (2 :'ka) (z — zﬂ))

k=1

= f(zo) + Y P(z— 1) = f(x)
n=1

and (]|Q,m ||'/®) tends to zero, (1) is proved.
To verify (2) we consider a factorization f = g7 asin (1). Since g € # ,(G; F), we
getforany y € F

00

9(y) =y M, (v—Tz),

m=0
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where M_ is a symmetric mapping belonging to L(™G; F') . Using the Taylor expansion of
fin z,,we get

Y P(z—1,) = f(z) = (gT)(z) = Y M, (T(z-1)).
m=0 m=0

This implies P,, = M, T, i.e. P,, € P _g (™E; F) and

lim sup |[P,,|Pg_g)|I'/™ = lim sup || M, (T,...,T)|Z(A)|"/™

m—00

= lim_sup ||M,,]|"/™||T|-#]| = 0.

This concludes the proof.
In the normed case (p = 1) this condition is especially simple

(a) E ||Pn|-@_'3’{dé)||”“ < 0o.
n=0

Example 5.2. Let 1 < ¢< o0, E=1,F=C, and % be any normed operator ideal.

Weput P =

—Tm (6, ®...®a,]", where a_, €[] and ||a, || = 1.

1
mZm

From paragraph 3.2 it follows P,, € P o _¢,(™E; C) and ||P,|P % 4| = CIf

f is defined by f(z) = E P, (z) then we get f € #(l; C) and f is of type F(4)

m=0

at 0. Since
(1P 1P 2 aylI''™ € 1,

the condition (a) is fulfilled. Hence there are an operator T' € .zﬁ(lq; () and a function
g € # (G, €) with f =goT. This shows that f is of type £'(#) atany pointof [ .
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