FINITE C_{n} GEOMETRIES: A SURVEY

G. LUNARDON, A. PASINI

1. INTRODUCTION

We follow [5], [56] and [45] for all basic notions conceming diagrams, geometries, chamber systems and coverings, except that we use the word «geometry» in a somewhat stricter sense than in [5] or [56], assuming the residual connectedness in any case, as many people do.

The reader is referred to [25] for a survey of results on geometries belonging to Lie diagrams. This paper in a sense completes and updates [25].

People working in diagram geometry often like the idea that so much of information is carried by diagrams that classification theorems are implicit in them. Of course, this cannot be literally true, in generai. In many cases we need to give some substantiai help to the diagrams under consideration, assuming something such as the finiteness or the flag-transitivity or somethingelse. Having done that, it may happen that a classification theorem is then reachable.

However, certain particular diagrams are so rich of information that we can classify all geometries belonging to them without the aid of any additional hypothesis. Sphericai diagrams appear so often in so many differentcontexts that it is sensible to believe that the most of information is carried by them.

Actually, this is true for A, D_{n}, E_{6} and also for E, E, H_{3} and H_{4} (provided that the finiteness is assumed in the last four cases). Indeed all geomeiries of type A, D_{n} or E_{6} are buildings and all finite thick geometries of type E, or E, are buildings (see Proposition 6 of [56], Lemma 3.3 of [53] and [4]; see also [25]). Thick buildings of irreducible spherical type and rank $n \geq 3$ have been classified by Tits [56]; thin buildings are Coxeter complexes and non thick buildings of sphericai type can be described by means of constructions involving better known buildings (see [43] and [48]; see also [6], [40], [50] and $\S \S 7.12$ and 10.13 of [56]). Thus, we are done. Infinite or non thick buildings of type E_{7} or E_{8} are anyway quotient of buildings, by Theorem 1 of [55]: knowing this is already something, albeit quotients of buildings are not so easy to classify, in general. Not so much is known of infinite geometries of type H_{3} or H, , but finite geometries of type H_{3} or H_{4} are thin, by Feit-Higman Theorem [9], and thin geometries of spherical type are not extremely difficult to classify (see [11]).

On the other hand, the cases of C_{n} and F_{4} look a little wilder. The C_{3}-subdiagram is the source of our iroubles here. If all C_{3}-residues of a geometry Γ of type C_{n} or F_{4} are 2 -covered by buildings, then Γ itself is 2 -covered by a building ([55], Theorem 1). If we assume further that Γ is finite and has thick lines, then Γ is a building (see [4]; see also Lemma 6 of [33] for F_{4}) and we are done: thick buildings of spherical type and rank $n \geq \mathbf{3}$ are classified in [56], as we have recalled above, and non thick buildings of type C_{n} or F_{4}
with thick lines are got from thick buildings of type D , or D_{4} in standard ways ($\$ \$ 7.12$ and 10.13 of [56]).

However, if we cannot get control over C_{3}-residues of,Γ, then we have to stop at the very beginning of ourjob. Thus, it would be nice to have a classification of all finite-building C_{3}-geometries (likely, a classification of all non-building C_{3}-geometries, infinite ones included, is hopeless). Then, we might hope to be able to study all finite C_{n} or F_{4} geometrics considering all possibiiities for their C_{3}-residues, improving Theorem 1 of [55] in the case of C_{n} and F_{4}. Propositions 2 and 3 will give examples of how this strategy can work.

Unfortunately we are still very far from such a classification. However, we will see that what we presently know on finite C_{3}-geometries is already enough to obtain strong conclusions on C_{n}-geometries when $n \geq 4$.

We shall not consider F_{4} in this paper. Here is the only strong result that we presently have on F_{4} : all finite thick flag-transitive F_{4}-geometries are buildings (see [25] or [30]). The reader is referred to 93 of [33] fora collection of partial results on F_{4}.

Let us explicitly state two basic results which we have quoted and used in these introductory notes. We shall again use them a number of times in this paper, sometimes implicitly.

Basic Theorem A. (Tits [55], Theorem i). Let Γ be a geometry belonging to a Coxeter diagram. The universal 2-cover of Γ is a building iff all residues of Γ of type C_{3} are 2covered by buildings. In particular, Γ is 2-covered by a building f its diagram does not contain any subdiagram of type C_{3} or H_{3}.

Basic Theorem B. (Tits [55], Prop. 6; Lemma 3.3 af [53], due to Meixner; Brouwer and Cohen [4]). All geometries of type A, D, or E_{6} are buildings. Finite buildings of type E_{7}, E_{8}, C_{n} or F_{4} with thick lines do not admit any proper quotients.

1.1. Noiation.

Let us recall some standard notation before going on. The n nodes (types) of a C_{n}-diagram are usually marked by integers, as follows:

Elements of type 0, 1,2 or 3 are called points, lines, pfanesor solids, respectively. Elements of type $\mathrm{n}-2$ are called hyperplanes (or colines) and those of type $\mathrm{n}-1$ are called hyperlines ($\$ 6$ of [55]) or copoints. Of course, some of these words are synonymous when $\mathrm{n}=3$ or 4. In these cases the words «line», «plane» or «solid» will be preferred for «hyperplane» (or «coline») or «hyperline» (or «copoint»). We shall freely use phrases such as «the point p lies on the plane $u »$ (or «is on $u »$), «the line τ passes through the point p », «the
lines r and s meet in the point $p »$, and so on. The collinearity relation and the collinearity graph are defined as usual. We write $a \perp b$ to mean that two distinct points a, b are collinear. Analogously, two distinct hyperlines are said to be cocollincar if there is a hyperplane incidunt with both of them.

A line is thick if it is incident with at least three points. Otherwise, it is thin. A C_{n}. geometry is ordinary if all its lines are thick. Otherwise, it is degenerate.

The symbols ${ }^{*}$ and τ denote the incidence relation and the type function, as in [55]; σ_{i} is the i -shadow operator, as in [5]. As for the rest, the same notation is used in [5] and [55] and we follow it.

1.2. Characterizations of C_{n}-buildings

Buildings of type C_{n} caribe charactenzed by means of elementary properties: a C_{n}-geometry Γ is a building iff the Intersection Property (IP) holds in Γ ([55], 96). We wam that two kinds of IntersectionProperties are consideredin [55] and [5] and they are not equivalentin generai: property (Int) of [55] is weaker than property (IP) of [5]. Anyway, they are equivalentif only geometries of spherical type are considered. Moreover, properties rather weaker than (IP) are sufficient to characterize C_{n}-buildings:
($L L$) ([55], 96). Any two distincts lines meet in at most one point.
(0) ([55], §6). given any two elements a, b oftype $i \leq n-2$, we have $a=b$ if $\sigma_{0}(a)=$ $\sigma_{0}(b)$.
($L L$),,, ([25], 52.2). Property ($L L$) holds in Γ and in the residue ofeveryflagof Γ of type $\{0,1, ., ., i\}$, forevery $\boldsymbol{i}=0,1, \ldots, \boldsymbol{n}-4$.

We have:
Proposition 1. The following are equivalent on a C_{n}-geometry Γ :
(i) The geometry Γ is a building.
(ii) Both (LL) and (0) hold in Γ.
(iii) Property $(L L)_{\text {res }}$ holds in Γ.

Proposition 1 is essentially contained in Proposition 9 of [55], but the reader can see $\$ 2.2$ of $\{25\}$ for an elementary proof of it.

When $n=3$, properties (LL) and $(L L)_{\text {res }}$ say precisely the same and (LL) implies (0). However, when $n \geq \mathbf{4}$, some C_{n}-geometries exist which satisfy (LL) and nevertheless are very far from buildings. For insiance, (LL) holds in all flat C_{n}-geometries when $\boldsymbol{n} \geq 4$ (see §1.4 for the definition of flat geometries). Thus, (0) cannot be dropped in (ii) when $\boldsymbol{n} \geq 4$. Anyway, (LL) fails to hold in each of the known examples of ordinary non-building C_{n} geometries (see [32]; we warn that no ordinary flat C_{n}-geometry is known when $\mathbf{n} \geq 4$.). Hence, we might ask if ($L \mathrm{~L}$) suffices to make a C_{n}-geometry Γ abuilding in the presence of some additional hypotheses quite different from (0): assuming that Γ is ordinary, for instance
[37]; or that it is already covered by a building ([49], \$5); or both. What happens if (LL) holds in the O-shadow space of Γ ? (e.g., see 95.3, Statemeiit 2 and Remark 1 ; or $\$ 5$ of [49]). A number of properties similar to $(L L)$ may be considered. Here are some of them.
$(L L)_{i}$ (where $\mathrm{i}=1,2, \ldots$, or $\left.\mathrm{n}-1\right)$. Given a line r and an element \boldsymbol{w} of type i , we have $r * w$ if $\left|\sigma_{0}(r) \cap \sigma_{0}(w)\right| \geq 2$.
$(L L)_{i}^{*}($ where $\boldsymbol{i}=0,1, \ldots$, or $\mathrm{n}-2)$. Givena hyperplanc \boldsymbol{u} and an element \boldsymbol{w} oftype i , we have $\mathbf{u} * \boldsymbol{w}$ if $\left|\sigma_{n-1}(\boldsymbol{u}) \cap \sigma_{n-1}(\boldsymbol{w})\right| \geq 2$.

Of course, $(L L)_{i}^{*}$ is the dual of $(L L)_{n-{ }_{-i}}$. Property $(L L)_{n-1}$ is the same as $(L H)$ of $\$ 6$ of [55] and $(L L)_{1}$ is the sarne as $(L L)$. It is easily seen that $(L L)$ and $(L L)_{i}$ are cquivalent for every $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$. Property $(L L)_{0}^{*}$ implies $(L L)$. Moreover, $(L L)_{\text {res }}$ holds in a C_{n}-geometry Γ (that is, Γ is a building) iff $(L L)_{i}^{*}$ holds in Γ for every $\boldsymbol{i}=0,1, \ldots, \mathrm{n}-1$ (we shall again deal with this equivalence in § 1.6).

Properties $(L L)_{0}^{*},(L L)_{1}^{*}, \ldots,(L L)_{n-2}^{*}$ are not equivalent and $(L L)_{n-2}^{*}$ (dual of $\left.(L L)\right)$ is the weakest one: indeed it holds in all C_{n}-geometries. The reader is referred to $\$ 2.2$ of [26] for further elementary properties of C_{n} - buildings holding in arbitrary C_{n}-gcometries as well.

Other ways exist to characterize C_{n}-buildings. For instance, buildings can be characterized by means of properties of galleries (e.g., property $\left(P_{c}\right)$ of [55], or properties $\left(C_{c}\right)$ or (G,) of $\$ 3$ of [49]), but we will not insist on this here.

1.3. A few remarks on degenerate C_{n}-geometries

Degenerate C_{n}-geometries ($\S 1.1$) have been studied by a number of authors (Buekenhout and Sprague [6], Rees [40], [38] and [43], $\$ 3$ of [34], Scharlau [48], Surowski [50], Hillebrandt [11]), but a complete classificationseems to be still far from reach. Unlike the case of ordinary C_{n}-geometries, classifying degenerate C_{3}-geometries is not the main problem here. For instance, finite degenerate C_{3}-geometries have been classified by Rees in [40] (see last lines of [40], in particular), but this dœes not help us so much in classifying all finite degenerate C_{n}-geometries.

Thus, we will not insist on degenerate C_{n}-geometries in this paper.

1.4. Flat geometries

A C_{n}-geometry Γ, where $n \geq \mathbf{3}$, is flat if all elements of Γ of type less than $n-2$ are incident with all hyperlines of Γ. We warn that our definition of flat geometries is much more restrictive than that of [49] when $n \geq 4$;in [49] Shultrequires only that all points are incident with all hyperlines.

We are not going to list all elementary properties of flat geometries here. A lot of information on this matter can be found in chp. 5 of [42].

Degenerate flat geometries can be produced easily (see [40], $\S 3$ of [34] and [50]). On the contrary, ordinary flat C_{n}-geometries are not so frequent. Finite examples cannot exist if $n \geq 4$ (see [26] or [34]). But some non finite examples of rank 3 exist associated with ordered fields (92.2 (ii) of [39]). However,just one finiteordinary exampleis presently known. namely the A, -geometry. This is the only flat C_{3}-geometry with uniform parameter 2

([42], Lemma 5.4). Perhaps, it is the only ordinary finite flat C_{3}-geometry.
Several differentways exist to produce the A, -geometry: see [39], [21], [25] (Example 4 of $\$ 2.3$) or [16]. The construction given by Rees in [39] by means of maximal exterior sets looked most interesting, although it is not the simplest one (we give the details of it in §5.3). Indeed that construction scemed to be general enough to produce several flat geometries other than the A_{7}-geometry. Actuaily, it does so if we are satisfied of non finite examples ([39], §2.2.(ii)). However the A, -gcometry is the only finite example that can be got in that way (this follows from Thas [60]).

The A, -geometry is the only finite ordinary non-building C_{n}-geometry presently known. As it is ilat, we might consider the flainess to be the most important pathology that can occur in C_{3}-gcometries. This point of view is implicit in the following propositions.

Proposition 2. ([34]). Let Γ be an ordinary C_{n}-geometry and let us assume that every C_{3}-residue of Γ is either a building or flat. Then one of thefollowing holds:
(i)The univeral2-cover of Γ is a building.
(ii) The geometry Γ is flat.

Here is a sketch of the proof. Residues of points are either quotienis of buildings or flat, by the inductive hypothesis. If Γ is not ilat, then, given any point a having flat residue Γ_{a}, we find a point b non collinear with a and such that the residue Γ_{b} of b is a quotient of a building. Next, we can construct a 2 -covering from Γ_{b} to Γ_{a} exploiting the flatness of Γ_{a} and the fact that b / a (the reader is referred to [34] for deiails). Thus, all residuec of points of Γ are 2-covered by buildings. The conclusion follows from Basic Theorem A.

A number of non finite,examples exist satisfying the hypotheses of Proposition 2 which are proper quotienis of buindings (see [32]). But, if we assume the finiteness, then (i) and (ii) can be substituted with a much stronger conclusion. Indeed, by Basic Theorem B we obtain:

Proposition 3. ([26]). Let Γ be as in Proposition 2 and let usassume that $n \geq 4$ and that Γ is finite. Then Γ is a building.

Thus, it would be nice to succeed in proving at least the following:

Conjecture 1. All finite ordinary non-building C_{3}-geometries are flat.

If this were true, then finite ordinary C_{n}-geometries would be buildings when $n \geq 4$, by Proposition 3. We should still classify finite ordinary flat \boldsymbol{C}_{3}-geometries and the finite non degenerate case would be done.

We shail see later that a statement on C_{3}-geometries weaker ihan conjecture 1 would suffice to obtain the same conclusion in the case of $\mathbf{n} \geq \mathbf{4}$ (see conjecture 2 of $\S 3.2$ and proposition 3.bis of 93.4).

Of course, we might conjecture even that the A, -geometry is the only non-building finite ordinary C_{3}-geometry. Theorems 5 and 6 will give some evidence of this.

Anyway, conjecture 1 gives usa motivation forthe following definition: a C_{3}-geometry is anomalous if it is neither a building nor flat. Several examples of anomalous C_{3}-geometries are known ([40] and [32]), but each of them is either degenerate of infinite, of course.

1.5. Parameters

The notion of parameters of a geometry (i-orders in [5]) is a well known one. Anyway, the reader can find a definition of it in [30] or [26]. Ordinary C_{n}-geometries admit parameters x, y :

The letters x, y will aiways denote parameters, as above. A finite ordinary C_{n}-geometry Γ is said to have parameters of known type if one of the following holds on x and y :
(1) $\mathbf{x}=\mathbf{y}$ (uniform parameter)
(2) $y=1$ (non thick case)
(3) $y=x^{2}$
(4) $x=Y^{2}$
(5) $y^{2}=x^{3}$
(6) $x^{2}=y^{3} \quad$ We will see later that
(7) $\mathbf{x}=y-2$ and $x \geq 3\} \quad$ cases (6), (7) and (8)
(8) $y=x-2$ and $y \geq 3$ are impossible when $n \geq 3$.

These are actually all relations occurring between parameters of known examples of finite generaiized quadrangles with thick lines (see [36] and (35]).

The geometry Γ has parameters of classical type if one of (1)-(6) holds ($n=2$ in case (6)) and x is a prime power.

The geometry Γ is locally classical if all projective planes and generaiized quadrangles occurring as rank 2 residues of Γ are classical.

Needless to say that ali projective planes occurring as rank 2 residues in a finite ordinary C_{n}-geometry are classical if $\mathrm{n} \geq 4$. Thus, the parameter x is a prime power in that case. A finite ordinary C_{n}-geometry Γ is said Lo have parameters of semi-classical type if both x and y arc powers of the same prime numbcr (of course, $\mathbf{y}=1=p^{0}$ is allowed).

1.6. The Ott-Liebler number

The Out-Licbler number a of a C_{n}-geometry Γ is dcfined inductively as follows [59]. If $\mathrm{n}=2$, then $\alpha=0$, by definition. Let $\mathrm{n} \geq \mathbf{3}$ and let Γ be a C_{n}-geometry. Given a point-hypcrlinc flag (a, u) of Γ, let $E(a, u)$ be the number of hyperlines v different from u, cocollinear with u, incident with a and such that the hyperplane \boldsymbol{w} incident with both u and v (uniquely determined by $(L L)_{n-2}^{*}$ of $\S 1.2$) is not incident with a. Let $\alpha(a)$ be the Ott-Licbler number of the residue Γ_{a} of a (already defined by the inductive hypothesis). Then $(E(\mathrm{a}, u)+1)(\alpha(a)+1)$ docs not dcpend on the choice of the flag (a, u). Jn particular, $\bar{\alpha}(\mathrm{a}, u)$ docs not depend on the choicc of the hyperline u in Γ_{0}. The reader may find a proof of this claim in [59]. Wc writc $\alpha+1$ instcad of $(\bar{\alpha}(a, u)+1)(\alpha(a)+1)$ and $\bar{\alpha}(a)$ instead of $E(\mathrm{a}, u)$, for short. The constant \mathbf{a} is thc Ott-Licbler number of Γ. The numbers $\alpha(a)$ and $E($ a) arc rcspcctivcly the inner and outcr local Ott-Liebler numbers of Γ at a. Of course, wehave $\bar{\alpha}(a)=a$ and $\alpha(a)=0$ if $n=\mathbf{3}$.

Proposition 4. We have $\boldsymbol{a}=0$ iff Γ is a building.
Indeed we have $\alpha=0$ iff $(L L)_{i}^{*}$ of $\S 1.2$ holds in Γ for every $i=0,1, \ldots, n-3$. Property $(L L)_{;}^{*}$ holds for evcry $\mathrm{i}=0,1, \ldots, \mathrm{n}-\mathbf{3}$ iff $(L L)_{\text {res }}$ holds. Then $\mathbf{a}=0$ iff Γ is a building, by Proposition 1.

Some interesting rclations cxist between Out-Liebler numbers and orders of groups of deck transformations. Let $\varphi: \Gamma_{1} \rightarrow \Gamma_{2}$ bc a 2-covering and let $A \leq \operatorname{Aut}\left(\Gamma_{1}\right)$ be the group of deck transformations of φ (sec [55]), assuming that $\Gamma_{2} \cong \Gamma_{1} / A$. Let α_{1}, α_{2} be the OttLiebler numbers of Γ_{1} and Γ_{2}, respectively. Then we have [59]:

$$
\alpha_{2}+1=\left(\alpha_{1}+1\right) \cdot|A| .
$$

Morcover, given a point b of Γ_{1}, let $\alpha_{1}(b), \bar{\alpha}_{1}(b)$ be the inner and outer local Ott-Liebler numbers of Γ_{1} at b and let $\alpha_{2}(a), \bar{\alpha}_{2}(a)$ have a similar meaning in Γ_{2} with respect to $a=$ $\varphi(b)$. Thenwehave: $\alpha_{2}(a)+1=\left|A_{b}\right| \cdot\left(\alpha_{1}(b)+1\right)$ and $\bar{\alpha}_{2}(a)+1=\left(\bar{\alpha}_{1}(b)+1\right) \cdot\left[A: A_{b}\right]$ wherc A, is the stabilizer of b in A. In particular, if Γ_{1} is a building (so that $\alpha_{1}=0$), the previous rclations bccomc as follows:

$$
\alpha_{2}+1=|A|, \quad \alpha_{2}(a)+1=\left|A_{b}\right| \quad \text { and } \quad \bar{\alpha}_{2}(a)+1=\left[A: A_{b}\right] .
$$

From this it is clear that $\alpha(a)$ may depend on the choice of a when $n \geq 4$, so that the same happens to $E(a)$. The reader is referred to [32] and [59] for some examples were this phenomenon occurs. Of course, they are non finite examples.

All previous claims are easy consequences of the following statement [59]:
Let (a, v) be a non incident point-hyperline pair in Γ. Then there are exactly $\bar{\alpha}(a)+1$ hyperlines w incident with a and cocollinear with v.

Let us briefly explain how that statement implies the previous claims on $|A|,\left|A_{b}\right|$ and [A: A_{b}]. Let $\varphi: \Gamma_{1} \rightarrow \Gamma_{2}, \boldsymbol{\alpha}_{1}, \alpha_{2}$ and \boldsymbol{A} be as above. Let (a, u) be a non incident pointhyperline pair in Γ_{2} and let (\bar{a}, \bar{u}) E $\varphi^{-1}(a, u)$. Let \boldsymbol{X} be the orbit of \bar{a} under the action of \mathbf{A}. Then each $b \mathrm{E} \boldsymbol{X}-\{E\}$ contributes $\bar{\alpha}_{1}(b)+1$ configurations to the computation of $\bar{\alpha}_{2}(a, u)=\bar{\alpha}_{2}(a)$.

Of course, we have $\bar{\alpha}_{1}(b)=\bar{\alpha}_{1}(E)$ for every $b \mathrm{E} \boldsymbol{X}$. Hence

$$
\bar{\alpha}_{1}(\bar{a})+\left(\left[A: A_{a}\right]-1\right) \cdot\left(\bar{\alpha}_{1}(\bar{a})+1\right)=\bar{\alpha}_{1}(a)
$$

that is:

$$
\left[A: A_{a}\right] \cdot\left(\bar{\alpha}_{1}(\bar{a})+1\right)=\bar{\alpha}_{2}(a)+1
$$

The rest easily follows from this.
We note that, when $n=\mathbf{3}$, the Ott-Liebler number a of Γ equals the number of closed galleries of type $\mathbf{0 1 2 0 1 2 0 1 2}$ based at a given chamber of Γ. We don't know any nice way to generalize this to the case of $\boldsymbol{n} \geq \mathbf{4}$. Yet, the constant a first appeared in [24] precisely in this way, as the number of closed galleries as above, while the definition that we have given has been inspired by Liebler [16]. However, the constant a arises in both [24] and [16] in the context of a representation-theoretic approach to finite C_{3}-geometries. Thus, neither Ott nor Liebler could fully realize how general this concept was and their proofs of the constancy of α heavily depended on techniques from representation theory, so that they were valid only for finite C_{3}-geometries admitting parameters.

For the rest of this paragraph we assume that Γ is a finite C_{3}-geometry admitting parameters x, y. Then we have $\mathbf{a} \leq x^{2} y$ and:

Proposition 5. We have $\mathrm{a}=\mathrm{x}^{2} \mathrm{y}$ iff Γ is flat.

The reader may see [27] for the (easy) proof. We will see later that the upper bound $x^{2} \mathbf{y} \geq \alpha$ can be improved as follows: we have $\mathbf{a} \geq m^{2} \mathbf{y}$ where $m=\min (x, y)$ (Proposition 9 of $\S 3$). Hence, Γ cannot be flat if $x>y$ (but this statement can be proved easily in an elementary way; see Lemma $\mathbf{5 . 1 0}$ of [42]).

Let n_{0}, n_{1}, n_{2} be the number of points, lines and planes of Γ, respectively. By easy computations we get:
(1) $(a+1) n_{0}=\left(x^{2} y+1\right)\left(x^{2}+x+1\right)$
(2) $(a+1) n_{1}=\left(x^{2} y+1\right)(x y+1)\left(x^{2}+x+1\right)$
(3) $(\alpha+1) n_{2}=\left(x^{2} y+1\right)(x y+1)(y+1)$ $(\sec$ [27]). The following proposition is an easy consequence of (1) and (3):

Proposition 6. The number $a+1$ divides $\left(1+x^{2} \mathbf{y}\right) d$ where

$$
d=\text { g.c.d. }\left(x^{2}+x+1,(x y+1)(y+1)\right)
$$

Thc Ott-Lieblernumber will be exploited in the context of representation theory (see §3). But it also has nice elementary applications. We give one of them here.

Given two distinct collinear points a, b of a finite C_{3}-geometry Γ, let $n(\mathrm{a}, \mathrm{b})$ be the number of lines of Γ through a and b . A point a of Γ is homogeneous if $n(\mathrm{a}, \mathrm{b})=n(a, \mathrm{c})$ for every choice of the points b, c collinear with \mathbf{a} and distinct from \boldsymbol{a}.

Proposition 7. ([28], Theorem 2). Afinite ordinary C_{3}-geometry is either a building or flat \boldsymbol{f} it admits some homogeneouspoint.

The proof consists of a series of computations involving the Ott-Liebler number. The reader is referred to \{28] for details. Proposition 7 will play a relevant role in the inquiry into flag-transitive finite C_{3}-geometries (\$5).

1.7. Statements of the theorems

We denote the parameters and the Ott-Liebler number of Γ by x, y and \mathbf{a}, respectively, as in $\S \S 1.5$ and 1.6. In Theorem 1 we consider ordinary non thick C_{n}-geometries ($\mathbf{y}=1<$ $x)$. We examine them separately because they can be classified fairly easily, exploiting the assumption that $\mathbf{y}=\mathbf{1}$ and the correspondence between non thick polar spaces of rank \mathbf{n} and D_{n} buildings ([56], chp. 7). Thick C_{n}-geometries are much harder to study. The remaining theorcms deal with them.

Theorem 1. (Rees[41]). Let Γ be an ordinary non thick C_{n}-geometry. Then one of the following holds.
(i)The geometry Γ is a building.
(ii)The geometty Γ is infinite and it is the quotient of a building $\bar{\Gamma}$ over an involutory automorphism of $\bar{\Gamma}$ induced by a diagram automorphismof the D, -building associated with $\bar{\Gamma}$. We have $\alpha=1$.

A sketch of the proof of this theorem will be given in $\$ 2$.
Theorem 2. Let Γ be a finite ordinary C_{n}-geometry admitting parameters \mathbf{z}, \mathbf{y} of known type. Then either Γ is a building or we have $n=3$ and one of thefollowing holds:
(i)We have $x=\mathbf{y}$ and Γ is fat.
(ii)We have $x^{3}=y^{2}$, the geometry Γ is flat and the C_{2}-residues of Γ cannot be isomorphic with any of the known generalized quadrangles.
(iii) We have $x=y^{2}$ and $\alpha=y^{3}$. The geometry Γ is anomalous.

Theorem 2 is contained in [27], [26] and [31]. We will give a sketch of the proof in 993.3 and 3.4. Here are two consequences of Theorem 2.

Theorem 3. Let Γ be a locally classicalfinite ordinary C_{n}-geometry. Then either Γ is a building or $n=\mathbf{3}$ and one of thefollowing holds:
(i)We have $\mathbf{x}=\mathbf{y}$, the geometry Γ isflat and $\Gamma_{0} \cong Q_{4}(x)$ for everypoint a of Γ (the points of $Q_{\mathbf{4}}(\mathbf{x})$ are lines of Γ through $\left.a\right)$.
(ii)We have $\boldsymbol{x}=\boldsymbol{y}^{2}, \boldsymbol{\alpha}=\boldsymbol{y}^{3}$ (hence, Γ is anomalous) and $\Gamma_{\Delta} \cong H_{3}\left(y^{2}\right)$ for everypoint a of Γ.

Theorem 4. Afinite ordinary C_{n}-geometry or rank $n \geq \mathbf{4}$ is a building if it admits parameters of semi-classical type.

Theorem 3 is a tnvial corollary of Theorem 2 (see 93.3). On the contrary, the proof of Theorem 4 is not so tnvial. We will give it in 94. Here we make some comments. If Γ is a finite C_{3}-geometry admitting parameters x, y of semi-classicaltype, then it is easily seen that $\mathbf{x y}$ divides $\boldsymbol{\alpha}$ (see 94). However we cannot say so much more when $n=3$. Things were different in Theorem 2. Indeed a relation between x and y was assumed in Theorem 2, so that we had only 2 unknowns there, namely α and one of \mathbf{x} or \mathbf{y}. On the contrary, in the semi-classicaicase we really have 3 unknowns. However, things become easier when $n \geq 4$, as we will see in $\S 4$.

The foliowing theorem is contained in [29], [30] and [20]. We will sketch its proof in §§5.3, 5.4 and 5.5.

Theorem 5. Let Γ be a finite ordinary C_{n}-geometry and let $A u t(\Gamma)$ be flag-transitive. Then Γ is a building or it is the \mathbf{A}, -geometry or we have $n=\mathbf{3}$ and Γ is anomalous.

If Γ is anomalous, then all thefollowing properties hold:
(a) Residues of planes of Γ are non desarguesianflag-transitive projective planes.
(b) The number x is even, $1+x+x^{2}$ isprime, $x \equiv 2(\bmod .3)$ and $x>10^{3}$.
(c) Let $\mathbf{d}=$ g.c.d. $\left(x^{2}, \mathbf{y}\right)$. We have $x>d^{2}$ and $x^{2}-\mathbf{x}>\mathbf{y} \geq(x-1) d^{2}+\mathbf{d}$. Moreover, $x d$ divides $\boldsymbol{\alpha},(1+\boldsymbol{\alpha}) \mathbf{x d}$ divides $\boldsymbol{x}^{2} \mathbf{y}-\boldsymbol{\alpha},(1+\boldsymbol{a})(x+\mathbf{y}) x$ divides $(1+x y)\left(x^{2} \mathbf{y}-\boldsymbol{\alpha}\right)$ and $(1+\alpha)\left(x^{2}+y\right) x$ divides $\left(1+x^{2} y\right)\left(x^{4} y-\alpha\right)$.
(d) If $A u t(\Gamma)$ acts primitively on the set of points of Γ, then \mathbf{y} is odd.

Needless to say that conditions (a)-(d) look quite strange. We remark also that something more can be said in (b): x cannot be a prime power (i.e., a power of 2) if $x \leq 3006$ (see [8], page 209, footnote 2). Trivially, conditions (b) and (c) are impossible to satisfy if $\boldsymbol{x}, \mathbf{y}$ are of known type or of semi-classical type. Therefore:

Theorem 6. (Main Theorem).Let Γ be a finite ordinary C_{n}-geometry admittingparameters ofknown type or of semi-classica1 type and let $A u t(\Gamma)$ bejìag-transitive. Then Γ is either a building or the A, -geometry.

The celebrated theorem of Aschbacher [1] is included in Theorem 6.

2. NON THICK ORDINARY C_{n}-GEOMETRIES

We give a sketch of the proof of Theorem 1. This proof (due to Rees [413) needs somelemmas, which are actually fairly stronger than we might believe from [41], as it has been pointed out by Rinauro [45]. We follow the more general exposition of [45], generalizing it a bit further. We recall that the next pictures

denote the class of partial planes, the class of linear spaces and the class of dual linear spaces, respectively [5]. A gallery $\gamma=\left(\mathrm{C}, C_{1}, \ldots, \mathrm{C}\right)$ of a chamber system \mathscr{C} is non stammering if $C_{i-1} \neq C_{i}$ for every $\boldsymbol{i}=1, \ldots, \mathbf{m}$. Given a non stammering gallery $7=\left(C_{0}, C_{1}, \ldots, \mathrm{C}\right)$ of a chamber system \mathscr{E}, the type of γ is the mapping $\tau_{\boldsymbol{\gamma}}$ from $\{1, \ldots, \mathbf{m}\}$ to the set of types of \mathscr{E} defined as follows: $\tau_{\boldsymbol{\gamma}}(\boldsymbol{i})=j$ iff $C_{\mathbf{i - 1}}$ and C_{i} are j -adjacent $(\mathbf{i}=\mathbf{1}, \ldots, \mathbf{m})$. Given a type \mathbf{j} of the chamber system \mathscr{E}, the j-section of γ is the inverse image $\tau_{\boldsymbol{\gamma}}^{-1}(j)$ of j under τ_{γ} and $\left|\tau_{\gamma}^{-1}(j)\right|$ is the j-length of γ.

Lemma 1. Let Γ be a 2-simply connected geometry belonging to the following diagram:

where $0,1, \ldots, n-1$ are types and $k \geq 2$. Let us assume that every element of Γ of type $\mathrm{n}-2$ is incident with exactly two elements of type $n-1$. Then every non stammering closed gallery of the chamber system $\mathscr{C}(\Gamma)$ of Γ has even $(n-1)$-length.

This lemma has been proved by Rees [41] in the particular case of C_{3}, but the argument by Rees can be easily generalized so that to obtain the previous lemma.

Let Γ be as in the hypotheses of Lemma 1. That lemma says that we can share the elements of Γ of type $n-1$ in two disjoint classes so that, if t_{b}, v are distinct elements of type $\boldsymbol{n} \boldsymbol{- 1}$ in the same class, then we have $\sigma_{n-2}(u) \cap, a \quad(v)=\phi$. This suggest that Γ might be
obtained as 0-linearization ([25], page 317) from a geometry belonging to a diagram as in the following picture:

However, to prove this, we should be able to prove that, given elements u, v, w, a of Γ where w has type $r-2$, a has type less than $n-1$ and $\{u, v\}=\sigma_{n-1}(w)$, we have a $* w$ iff a is incident with both u and v. Of course, if we know that the Intersection Property (IP) holds in Γ, then we are done. Let us consider (LL), first.

Lemma 2. Let Γ be a simply connected geometry belonging to thefollowing diagram:

and let us assume that every line of Γ is incident with precisely 2 planes. Then any two distinct lines of Γ meet in at most one point.

Indeed, otherwise we can construct a closed gallery in Γ involving three planes, and we contradict Lemma 1.

It is easily seen that (IP) holds in a geometry Γ belonging to the following diagram

if ($L L$) holds in Γ. Thus, (IP) holds in every simply connected ordinary non thick C_{3} geometry, by Lemma 2. Then every such geometry is obtained as 0-linearization from an A, -geometry

by the previous remarks. However A, -geometries are projectivegeometries (Basic Theorem B). Hence, we have:

Lemma 3. Simply connected ordinary non thick C_{3}-geometries are Klein quadrics.

Of course, we could also get Lemma 3 directly from Lemma 2 and Proposition 1. But we have preferred the way above in order to show how atypicai the non thick case is.

We can prove Theorem 1 now. By Lemma 3 and Basic Theorem A, every ordinary non thick C_{n}-geometry Γ is 2 -covered by abuilding. Let $\varphi: \bar{\Gamma} \rightarrow \Gamma$ be the universai 2 -covering of Γ and let \boldsymbol{A} be the group of deck transformations of Γ. As D_{n}-buildings do not admit proper quoticnts (Basic Theorem B), every non identical element of \boldsymbol{A} acts as an involutory diagram automorphism on the D_{n}-building associated with $\bar{\Gamma}$ ([56], 57.10). Then \boldsymbol{A} has order 2. Theorem 1 follows from this and from Basic Theorem B.

3. PARAMETERS OF KNOWN TYPE

Most of what we will say in this section will depend on representation theory. Classical matrix theoretic techniques need some regularity assumptions on the adjacency graph of Γ in order to work, or on some other graph related to Γ (see [9], [4] or $\S \S 1.2 .2,1.4,1.9$ or 1.10 of [36]). Representation theory is rather more generai.

Two different approaches exists to the algebraic representation of C_{n}-geometries: the one of [24], which is an application of the very generai theory by Ott [22] and [23]; and the one by Liebler [19], which developes previous work by Hoefsmit [13] on representations of groups with $B N$-pair of classical Lie type.

Hoefsmit used ideas and results taken from papers by Carter, Curtis, Iwahori, Kilmoyer, Steinberg, Tits and other ones. He developed those ideas to a very far reaching point and gave effective procedures to explicitly find all irreducible components of the induced representation l_{B}^{G} of a finite Che valley group G admitting a $B N$-pair ($B, \mathrm{~N}$) of type A, D_{n} or C_{n}. The algebra affording l_{B}^{G} is the Hecke algebra $H(G, E$?) of G with respect to the Borel subgroup B of G. The algebra $H(\mathrm{G}, B)$ is presented by a nice set of relations (see (1) of 53.1) and Hoefsmit fully exploited also this fact, of course. Finally, he computed the multiplicities of the irreducible representations of $H(\mathrm{G}, B)$ in almost all cases. An inquiry into F_{4} in this style has been done by Surowski [51] shortly afterwards.

Hoefsmit focused onto groups rather than onto geometries. That is, his work immediately fits for any building of classical Lie type but not for any possible geometry of that type. The job to adapt that work for geometries of Lie type (in particular, for C_{n}-geometries) has been done by Liebler in [19]. Unfortunately, a gap occurred in one part of [19] and the author decided not to publish anything of [19], though it still remained a good and useful paper. We will use a number of things from [19].

In [22] and [23] a different approach to this matter is developed, which could in principle be applied to any chamber system, even far from buildings of Lie type. However, because of its very generaiity, this approach cannot immediately give us effective procedures to computc everything in every case. Ott applied that machinery to finite C_{3}-geometries with uniform parameter in [24]. Rees and Scharlau [44] continued that work, considering finite
C_{3}-geometries with parameters of classical type and could settle the cases listed as (3), (5) and (6) in $\$ 1.5$. Unfortunately, they did not publish their work. Thcy could not get any satisfactory result in case (4) of $\$ 1.5$ and, perhaps, they thought that this was a fault in their work (actually, it was not really such: see $\$ 1.7$, Theorem 2.(iii) and Theorem 3.(ii)).

We shall pragmatically mix the previous two approaches together so that to get the most of profit from each of them.

3.1. Hecke algebras of geometries

Let Γ be a (residually connected) geometry over a finite set of typcs $I=\{0,1, \ldots, n-1\}$, admitting finite parameters $x_{0}, x_{1}, \ldots, x_{n-1}$ and let $\mathscr{E}(\Gamma)$ be the set of chambcrs of Γ. Wc can define a vector space V_{Γ} over the complex field taking $\mathscr{C}(\Gamma)$ as a basis of V_{Γ}. Let $\mathscr{B}\left(V_{\Gamma}\right)$ be the algebra of all linear mappings of V_{Γ}. For every type $i=0,1, \ldots, n-i$, let σ_{i} be the linear mapping of V_{Γ} acting on $\mathscr{C}(\Gamma)$ as follows:

$$
\sigma_{i}(C)=\sum_{x \sim C} X
$$

(where $\underset{i}{\sim}$ means i-adjacency of chambers).
Let $\left.H(\Gamma)=\left\langle\sigma_{i}\right| i=0,1, \ldots, n-1\right)$ be the subalgebra of $\mathscr{B}\left(V_{\Gamma}\right)$ gencrated by $\left\{\sigma_{\mathbf{i}} \mid i=0, \mathbf{1}, \ldots, n-1\right\}$. The algebra $H(\Gamma)$ is the Hecke algebra of Γ ([22] and [23]). It is semisimple if Γ is finite (see [23]).

Denoted by I the identity mapping, we define $\pi^{n}\left(\sigma_{i}, \sigma_{j}\right)$ inductively as follows:

$$
\left\{\begin{array}{l}
\pi^{0}\left(\sigma_{i}, \sigma_{j}\right)=I \\
\pi^{n+1}\left(\sigma_{i}, \sigma_{j}\right)=\sigma_{i} \cdot \pi^{n}\left(\sigma_{j}, \sigma_{\mathfrak{i}}\right)
\end{array}\right.
$$

Let us assume further that Γ belongs to a Coxeter diagram $\mathscr{C}=\left(m_{i j} \mid i, j=0,1, \ldots, n-1\right)$. Then the generators σ_{i} of $H(\Gamma)$ satisfy the following relations:

$$
\begin{cases}\sigma_{i}^{2}=\left(x_{i}-1\right) \sigma_{i}+x_{i} I & (i=0,1, \ldots, n-1) \tag{1}\\ \pi^{m_{i j}}\left(\sigma_{i}, \sigma_{j}\right)=\pi^{m_{i j}}\left(\sigma_{j}, \sigma_{i}\right) & (i, j=0,1, \ldots, n-1 ; i \neq j)\end{cases}
$$

Let us write $\not \mathscr{X}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$, for short, and let $H_{\mathscr{E}} \neq$ be the algebra over the complex field presented by the set of relations (1). If Γ is a finite building defined by a $B N$-pair (B, N) of a group G , then $H \mathscr{E} \nVdash \cong(\Gamma)$. Indeed, in this case $H(\Gamma)$ is the

Hecke algebra $H(\mathrm{G}, \mathrm{B})$ of G with respect to B and the relation $H(G, \mathrm{~B}) \cong H_{\mathscr{E}, X}$ is well known.

In gencral, $H(\Gamma)$ is a homomorphic image of $H \mathscr{E} \notin$ and ali irreducible representations of $H(\Gamma)$ of finite degree appear among the irreducible represeniations of $H_{\mathscr{C}}$ of finite degrec. We can also study relations between the multiplicities that such a representation has when it is viewed as a possible component of two distinct Hecke algebras $H\left(\Gamma_{1}\right)$ and $H\left(\Gamma_{2}\right)$ of two finite geometries Γ_{1}, Γ_{2} relative to the same pair $(\mathscr{C}, \mathcal{H})$ ([19], $\S 2$). Translating these things into general and effective computing procedures is not easy at ail.

However, other tricks can be found to compute multiplicities of irreduciblerepresentations of $H(\Gamma)$ in special cases and C_{3} is one of those lucky cases.

Remark. Since this paper is a continuation of [25], we must warm the reader that the second relation of (1) is stated in a wrong way in [25], as $\left(\sigma_{i}, \sigma_{j}\right)^{m_{i j}}=\mathbf{I}$, which holds in Coxeter groups, not in Hecke algebras.

3.2. Hecke algebras of C_{3}-geometries

Hocfsmit [13] gives us methods to compute all irreducible representations of $H \mathscr{E} \notin$ when $\mathscr{C}=\mathrm{C}, \boldsymbol{A}$, or D_{n}. We already know that all geometries of type \boldsymbol{A}, or D_{n} are buildings (Basic Theorem B). As for $C_{n}(n \geq 4)$, if we get control over C_{3}-residues, then we are done. Thus, we shall consider only the case of C_{3} : henceforth Γ will be a finite C_{3}-geometry admitting parameters x, y. Hence, we have $\not{\nexists}=(x, x, y)$ and

$$
\mathscr{C}=\left[\begin{array}{lll}
1 & 3 & 2 \\
3 & 1 & 4 \\
2 & 4 & 1
\end{array}\right]
$$

Hocfsmit [12] has provcd that there are exactly 10pairwise inequivalent irreduciblerepresentations of $H \mathscr{E}, \ldots$. Each of them is associated to a doublepartition of the set of types $\{0,1,2\}$ and here are all double partitions to be considcred:

$$
\begin{array}{cl}
((0,1,2) ; \phi), & ((0,1),(2) ; \phi), \quad((0),(1),(2) ; \phi), \quad((0,1) ;(2)), \\
((0),(1) ;(2)), & ((0) ;(1),(2)), \quad((0) ;(1,2)), \quad(\phi ;(0),(1),(2)), \\
& (\phi ;(0,1),(2)), \quad(\phi ;(0,1,2))
\end{array}
$$

We dcnote them by the following shortened symbols: $3 / 0,2.1 / 0,1^{3} / 0,2 / 1$, $1^{2} / 1,1 / 1^{2}, 1 / 2,0 / 1^{3}, 0 / 2 \cdot 1$ and $0 / 3$, respectively.

Hocfsmit attaches a representation to each of these double partitions constructing representative matrices for σ_{0}, σ_{1} and σ_{2} with the aid of certain sequences of Young diagrams
related to the double partition that he is considering (the reader is referred to chps. 1 and 2 of [13] for details) and proves that those are actuaily all irreducible representations of $H_{\mathscr{E}} \notin$. We now list all of them. Henceforth $A_{k}(t)$ will denote the following matrix:

$$
\frac{1}{x^{k} t+1} \cdot\left[\begin{array}{cc}
x-1 & x^{k+1} t+1 \\
x^{k} t+x & x^{k} t(x-1)
\end{array}\right]
$$

Here are the representations.

1) (Index representation). 3/0. Degree 1 .

$$
\sigma_{0} \rightarrow x, \sigma_{1} \rightarrow x, \sigma_{2} \rightarrow y
$$

2) $\mathbf{2} \cdot 1 / 0$. Degree 2 .

$$
\left.\sigma_{0} \rightarrow A_{2}(-1), \sigma_{1} \rightarrow\left|\begin{array}{cc}
\mathrm{s} & 0 \\
0 & -1
\end{array}\right|, \sigma_{2} \rightarrow \left\lvert\, \begin{array}{ll}
y & 0 \\
0 & y
\end{array}\right.\right]
$$

3) $1^{3} / 0$. Degree 1 .

$$
\sigma_{0} \rightarrow-1, \sigma_{1} \rightarrow-1, \sigma_{2} \rightarrow \mathbf{y} .
$$

4) (Reflection representation). 2/1. Degree 3. This representation appears also in [24] in a seemingly different form (but we have equivalent representations, of course).

$$
\sigma_{0} \rightarrow\left[\begin{array}{cc}
A_{2}(y) & 0_{2,1} \\
0_{1,2} & x
\end{array}\right], \sigma_{1} \rightarrow\left[\begin{array}{cc}
x & 0_{1,2} \\
0_{2,1} & A_{1}(y)
\end{array}\right], \sigma_{2} \rightarrow\left[\begin{array}{ccc}
y & 0 & 0 \\
0 & y & 0 \\
0 & 0 & -1
\end{array}\right]
$$

where $0_{r, s}$ is the null r-by-s matrix ($r, s=1,2$).
5) $1^{2} / 1$. Degree 3.

$$
\sigma_{0} \rightarrow\left[\begin{array}{cc}
A_{1}(y) & 0_{2,1} \\
0_{1,2} & -1
\end{array}\left|, \sigma_{1} \rightarrow\right| \begin{array}{cc}
-1 & 0_{1,2} \\
0_{2,1} & A_{2}(y)
\end{array}\right], \sigma_{2} \rightarrow\left[\left.\begin{array}{ccc}
y & 0 & 0 \\
0 & y & 0 \\
0 & 0 & -1
\end{array} \right\rvert\,\right.
$$

6) $1 / 1^{2}$. Degree 3 .

$$
\sigma_{0} \rightarrow\left[\begin{array}{cc}
-1(y) & 0_{1,2} \\
0_{2,1} & A_{2}(y)
\end{array}\right], \sigma_{1} \rightarrow\left[\left.\begin{array}{cc}
A_{1}(y) & 0_{2,1} \\
0_{1,2} & -1
\end{array}\left|, \sigma_{2} \rightarrow\right| \begin{array}{ccc}
y & 0 & 0 \\
0 & \mathbf{- 1} & 0 \\
0 & 0 & -\mathbf{1}
\end{array} \right\rvert\,\right.
$$

7) $1 / 2$. Degree 3.

$$
\left.\left.\sigma_{0} \rightarrow \left\lvert\, \begin{array}{cc}
x & 0_{1,2} \\
0_{2.1} & A_{0}(y)
\end{array}\right.\right], \sigma_{1} \rightarrow \left\lvert\, \begin{array}{cc}
A_{1}(y) & 0_{2,1} \\
0_{1.2} & x
\end{array}\right.\right], \sigma_{2} \rightarrow\left|\begin{array}{lll}
y & 0 & \\
& & \\
0 & 0 & -1
\end{array}\right|
$$

8) $0 / 1^{3}$. Dcgree 1 .

$$
\sigma_{0} \rightarrow-1, \sigma_{1} \rightarrow-1, \sigma_{2} \rightarrow-1
$$

9) $0 / 2.1$. Dcgree 2 .

$$
\sigma_{0} \rightarrow A_{2}(-1), \sigma_{1} \rightarrow\left[\begin{array}{cc}
x & 0 \\
0 & -1
\end{array}\right], \sigma_{2} \rightarrow\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

10) $0 / 3$. Dcgree 1 .

$$
\sigma_{0} \rightarrow x, \sigma_{1} \rightarrow x, \sigma_{2} \rightarrow-1
$$

Let us come to the multiplicities. We switch to [24], now. Given an irreduciblerepresentation φ of $H_{\mathscr{C}, \mathcal{X}}$, let χ_{φ} be the character afforded by φ and let m_{φ} be the multiplicity of φ when φ is viewed as a component of $H(\Gamma)$. Of course, $m_{\varphi}=0$ is allowed. We also recall that $H(\Gamma)$ consists of lincar mappings of V_{Γ}. Let χ_{0} be the (characterof) the index reprcsentation. For every elcment w of the Coxeter group W of type C_{3}, we define

$$
\lambda(w)=o_{i_{n}} o_{i_{n-1}} \ldots \sigma_{i_{1}}
$$

wherc

$$
\mathbf{w}=r_{i} r_{i_{2}} \ldots r_{i_{n}}
$$

is a representation of \boldsymbol{w} as a reduccd word of W with respect to a given system (r_{0}, r_{1}, r_{2}) of gencrators of W. The elcment $\lambda(\boldsymbol{w})$ of $H(\Gamma)$ does not depend on the representation chosen for \boldsymbol{w}, once when $\left(r_{0}, r_{1}, r_{2}\right)$ is given. Let us define $\left[\chi_{\varphi}, \chi_{\varphi}\right.$] as follows:

$$
\begin{equation*}
\left[\chi_{\varphi}, \chi_{\varphi}\right]=\sum_{w \in W} \frac{\chi_{\varphi}(\lambda(w)) \chi_{\varphi}\left(\lambda\left(w^{-1}\right)\right)}{\chi_{0}(\lambda(w))} \tag{2}
\end{equation*}
$$

($\sec [24],(13))$. Let w_{0} be the non trivial clement of the center of W, let γ be the number of chambers of Γ (i.e., the dimension of V_{Γ}) and let a be the Ott-Liebler number of Γ (§1.6), so that we have

$$
\begin{equation*}
\gamma=\frac{\left(1+x+x^{2}\right)\left(1+x^{2} y\right)(1+x y)(1+x)(1+y)}{1+\alpha} \tag{3}
\end{equation*}
$$

(see (1). (2) and (3) of \$1.6). Then we have:

$$
\begin{equation*}
m_{\varphi}\left[\chi_{\varphi}, \chi_{\varphi}\right]=\gamma\left[\chi_{\varphi}(\lambda(1))+\frac{\alpha \chi_{\varphi}\left(\lambda\left(w_{0}\right)\right)}{x^{6} y^{3}}\right] \tag{4}
\end{equation*}
$$

This relation has been proved by $\mathbf{O t t}([24],(26))$ in the particular case of $x=y$, but that proof can be extended to the general case. Relation (4) already appears in [13] with $\boldsymbol{a}=0$ (corresponding to the case of buildings). Rees and Schariau have extensively used (4) in [44]. They did not know ihe work by Hoefsmit, and they made all computations only for the reflection representation (by the way, Ott did the same in [24]). Thus, they had troubles with the case of $x=y^{2}$, where the reflection representation does not help us so much. Actually, we know all possible irreducible representations of $H(\Gamma)$: we have just to look for them among the 10 irreducible representations of $H_{\mathscr{C}} \neq$. We can compute $\left[\chi_{\varphi}, \chi_{\varphi}\right.$] and m , using (2), (4) and (3). Computing $\left[\chi_{\varphi}, \chi_{\varphi}\right]$ is a very tiresome job, but it can be done. As far as we know, Liebler [58] has been the first one to apply the method described here so that to get the list of the multiplicities of the irreducible representations of $H(\Gamma)$. Here is that list:

$$
\begin{array}{ll}
3 / 0 & m_{\varphi}=1 \\
2 \cdot 1 / 0 & m_{\varphi}=\frac{\left(1+x^{2} y\right)(1+x)\left(x^{3}+\alpha\right)}{x(x+y)(1+\alpha)} \\
1^{3} / 0 & m_{\varphi}=\frac{(1+x y)\left(1+x^{2} y\right)\left(x^{6}+\alpha\right)}{\left(x^{2}+y\right)(x+y)(1+\alpha)} \\
2 / 1 & m_{\varphi}=\frac{\left(1+x+x^{2}\right)(1+x y)\left(x^{2} y-\alpha\right)}{x(x+y)(1+\alpha)} \\
1^{2} / 1 & m_{\varphi}=\frac{\left(1+x^{2} y\right)\left(1+x+x^{2}\right)\left(x^{4} y-\alpha\right)}{x\left(x^{2}+y\right)(1+\alpha)} \\
1 / 1^{2} & m_{\varphi}=\frac{(1+x y)\left(1+x+x^{2}\right)\left(x^{4} y^{2}+\alpha\right)}{x(x+y)(1+\alpha)} \\
1 / 2 & m_{\varphi}=\frac{\left(1+x^{2} y\right)\left(1+x+x^{2}\right)\left(x^{2} y^{2}+\alpha\right)}{x\left(x^{2}+y\right)(1+\alpha)} \\
0 / 1^{3} & m_{\varphi}=\frac{x^{6} y^{3}-\alpha}{\alpha+1} \\
0 / 2 \cdot 1 & m_{\varphi}=\frac{(1+x)\left(1+x^{2} y\right)\left(x^{3} y^{3}-\alpha\right)}{x(x+y)(1+\alpha)} \\
0 / 3 & m_{\varphi} \equiv \frac{(1+x y)\left(1+x^{2} y\right)\left(y^{3}-\alpha\right)}{(x+y)\left(x^{2}+y\right)(1+\alpha)}
\end{array}
$$

Multiplicities must be non-negative integers. So, by the fifth or the seventh of these rela-
tions we have:
Proposition 8. xd divides \boldsymbol{a}, where $\mathrm{d}=$ g.c.d. $\left(x^{2}, y\right)$.
By the fourth of the tenth relation we have:
Proposition 9. $\boldsymbol{a} \leq m^{2} y$, where $m=\min (x, y)$.
Finally:
Proposition 10. We have $H(\Gamma) \cong H_{\mathscr{C}, \notin}$ iff $\alpha<m^{2} y$, where $\mathrm{m}=\min (x, y)$.
(Of course, \cong here means isomorphism of abstract algebra). Indeed, if $\boldsymbol{a}<m^{2} y$, we have $m_{\varphi}>0$ in any case, so that none of the simple factors of $H_{\mathscr{C}} \neq$ is lost when we pass to $H(\Gamma)$. The following conjecture now looks quite sensible:

Conjecture 2. Let $x>1$. The geometry Γ is a building iff $H(\Gamma) \cong H_{\mathscr{C}} \notin$. That is, either $\alpha=0$ (Γ is a building) or $\boldsymbol{a}=m^{2} y$ (where $m=\min (x, y)$.

We remark that the statement of conjecture 2 is true for finite ordinary C_{3}-geometries with parameters of known type (Theorem 2). But it may be false if $x=1$ is ailowed. Indeed every anomalous C_{3}-geometry with $x=1<\mathrm{y}$ is a counterexampleto that statement (and a lot of such gcometrics exist: see [40]).

3.3. Finite ordinary C_{3}-geometries admitting parameters of known type

Most of what we say in this paragraph rests on the fact that the multiplicities $m_{\varphi}(\mathbf{9 3 . 2})$ must be non-negative integers.

Let Γ be a finite ordinary C_{3}-geometry admitting parameters of known type. Case (1) of $\S 1.5$ has already bcen settled by Theorem 1 . In cases (2), (3), (5) and (6) of $\$ 1.5$ very easy and short computations, exploiting the divisibility conditions stated in Proposition 6 and $\mathbf{8}$, show that Γ is cither a building $(a=0)$ or fat $\left(a=x^{2} y\right)$. The reader may find details in $\$ 4$ of [27]. We also remark that a divisibility condition even weaker than that stated in Proposition 8 would be sufficient here: xd' divides a (where $\mathrm{d}^{\star}=g . c . d .(x, y)$), as we can see by the relation for the multiplicity of the reflaction representation $2 / 1$. On the other hand, we have $x \leq \mathrm{y}$ in flat geometries (\$1.6, remarks following Proposition.5). Then Γ is a building in case (6). However thick C_{3}-buildings have been classified by Tits in [55], and none of them has parameters as in case (6). Hence case (6) is impossible. We remark that this conclusion could also be got directly, exploiting the formula for m_{φ} in the case of $1^{3 / 0}$.

If Γ is fat, then the set of lines through two distinct points a, b of Γ is an ovoid in the residue Γ_{a} of a. Indeed there are exactly $x y+1$ lines through a and b and no two of them
are coplanar. Generalized quadrangles of order (x, x^{2}) have no ovoids ([36], 1.8.3). Hence Γ is a building in case (3).

Cases (7) and (8) are shown to be impossible by elementary computations: in each of them some of the multiplicities m_{φ} cannot be a non-negative integer ([27], \$4).

In case (4), $\boldsymbol{a}=0$ and $\boldsymbol{a}=\boldsymbol{y}^{3}$ are the only surviving possibilities ([27], \$4).
Furthermore, $H_{4}(x)$ has no ovoids ([36], 3.4.1(iii)). Then, if Γ is flat in case (5), we have $\Gamma_{a} \not \neq H_{4}(x)$ for every point a of Γ. However $H_{4}(\mathrm{z})$ is the only known generalized quadrangle of order (t^{2}, t^{3}), where $t^{2}=x$ (see [36] and [35]). Hence Γ_{a} cannot be of any of the known types if Γ is flat in case (5).

The part of Theorem 2 conceming the rank 3 case is proved. As for (i) of Theorem 3, we recall that $W(x)$ has noovoids if x is odd ([35], 3.4.1(i); note that $Q_{4}(x)$ has a lot of ovoids if x is even). We are done.

Case (2) has been the first to be setuled (by Ott \{24], but using an argument fairly different from the one sketched here). Next, cases (3), (5) and (6) have been solved by Recs and Scharlau [44]. The rest appeared in [27].

Remark 1. The geometry Γ does not admit any homogeneous point in (iii) of Theorem 2, by Proposition 7. Other strange properties of Γ can be discovered in this case, but they are not yet sufficient to give us any contradiction.

Remark 2. If Γ is as in (i) of Theorem 2, then the planes and the lines of Γ form a linear space $L(\Gamma)$ with $\left(x^{2}+1\right)(x+1)$ points (planes of $\left.\Gamma\right),\left(x^{2}+1\right)\left(x^{2}+x+1\right)$ lines and parameters $\left(x, x^{2}+x\right)$ (see [57]), as if $L(\Gamma)$ were a 3-dimensionalprojective space of order x.

We remark that $L(\Gamma)$ is a 3-dimensional projective space iff Γ is obtained from a maximal set of points exterior to a Klein quadric as in [39] (see also §5.3). The «if» part of this claim is trivial. Let us prove the «only if» part. Let $L(\Gamma)$ be the system of points and lines of $P G(3, x)$ (hence x is a prime power). Then the planes of Γ form one of the two families of planes of $Q_{5}^{+}(x)$ and the lines of Γ are the points of $Q_{5}^{+}(x)$. The set of lines in Γ_{0}, where a is any point of Γ, is the set of lines of a generalized quadrangle Γ_{a}^{*} (dual of Γ_{a}), embedded in $P G(3, x)$. The generalized quadrangle Γ_{a}^{*} is classicai ([36], chp. 4), hence it is of type $W(x)$ ((i) of Theorem 3). It is well known that the set of lines of a generalized quadrangle of type $W(x)$ embedded in $P G(3, x)$ is the set of points of a hyperplanesection $H \cap Q_{5}^{+}(x)$ of $Q_{5}^{+}(x)$ by a hyperplane H of the projective geometry $P G(5, x)$ in which $Q_{5}^{+}(x)$ is naturally embedded. Given a point a of Γ, let H_{a} be the hyperplane of $P G(5, x)$ defining Γ_{a}^{*} as a hyperplane section of $Q_{5}^{\ddagger}(\mathrm{z})$ and let $f(a)$ be the pole of H_{a} with respect to the quadratic form defining $Q_{5}^{ \pm}(x)$ in $\operatorname{PG}(5, x)$. If $a \neq b$, then $H_{a} \cap H_{b} \cap Q_{5}^{+}(x)$ consists of the $x^{2}+1$ lines of Γ through the points a, b and is an ovoid both in $H_{a} \cap Q_{5}^{+}(x)$ and in $H_{b} \cap Q_{5}^{\dagger}(x)$. Now it is not so difficult to check that $\mathrm{X}=\{f(a) \mid$ a point of $\Gamma\}$ is a maximal
exterior set with respect to $Q_{5}^{+}(x)$ and that Γ is isomorphic with the geometry obtained from X as in [39].

Thus, if we succeeded to force $L(\Gamma)$ to be a projective space, we would have proved that the \boldsymbol{A}, -geometry is the only surviving possibility in (i) of Theorem 2 (See § 1.4).

What about the other «possible» flat case (namely,(ii) of Theorem 2)? Does some contradiction arisc from the existence of many ovoids in residues of points?

Remark 3. By Theorem 2 and Basic Theorem B we immediately obtain that all ordinary finite C_{n}-geometries with parameters of known type are simply connected. However it would be nice to find a direct proof of this fact.

3.4. The case of rank $n \geq 4$.

Let Γ bc a finite ordinary C_{n}-geometry admitting parameters x, y of known type and let $n \geq 4$. By what we have already seen in 93.3 and by Proposition 3, we immediately obtain that Γ is a building in ali cases but when $x=y^{2}$, where $\alpha=y^{3}$ might hold in some C_{3} residues of Γ. Anyway, the following lemma is proved in [31]:

Lemma 4. Let Γ be a finite ordinary C_{4}-geometry admitting parameters x, y where $x>y$ and let us assume that,for every point a of Γ, we have either $\alpha(a)=0$ or $\alpha(a)=y^{3}$ (where $\alpha(a)$ is the inner local Ott-Lieblernumber of Γ at a). Then Γ is a building (hence $\alpha(a)=0$ in any case).

The proof consists of a long series of computations involving inner and outer local OttLicblcr numbers and a non trivial rcsult by Liebler [19] is used, concerning Hecke algebras of finite C_{4}-geometries. The rcadcr is rcferred to [31] for deiails.

What remaincs to prove of Theorem $\mathbf{2}$ easily follows from Lemma $\mathbf{4}$ and Basic Theorems A and B.

Wc remark that the following improvement of Proposition $\mathbf{3}$ immediately follows from Lemma 4 :

Proposition 3 bis. Let Γ be a finite ordinary C_{n}-geometry where $\boldsymbol{n} \geq \mathbf{4}$ and let us assume that the statement of conjecture 2 of $\$ 3.2$ holds in all C_{3}-residues of Γ. Then Γ is a building.

4. PARAMETERS OF SEMI-CLASSICAL TYPE

In this section Γ will bc a C_{n}-geometry admitting parameters of semi-classical type $x=p^{h}$ and $\mathbf{y}=p^{k}(p$ prime, $x>1)$.

By [36] (1.2.2) we have that, if $h<k$, then $k=(1+\lambda) \mu$ and $h=\lambda \mu$ for suitable positive integers λ and μ. If $h>k$, we obtain $h=(1+\lambda) \mu$ and $k=\lambda \mu(\lambda, \mu$ as above, but now $\lambda=0$ is allowed).

Let $n=3$. Then $\mathbf{y}=$ g.c.d. $\left(x^{2}, y\right)$. Hence $\mathbf{z y}$ divides \mathbf{a}, by Proposition 8. But we cannot go so much further exploiting the machinery of $\$ 3.2$.

Let $n=4$. Let us fix a flag $F=(a, r, u)$ of type $(0,1,3)$ in Γ. Given a point $b \mathrm{E}$ $\sigma_{0}(T-)-\{\boldsymbol{a}\}$, let v and \boldsymbol{w} be a solid and a plane, respectively, both incident with b and such that $u * \boldsymbol{w} * v * r$ and $\tau \notin \sigma_{1}(\boldsymbol{w})$. Then u and v are non concurrent lines of the generalized quadrangle $\Gamma_{a r}$, residue of the flag (a, r). Let $b \neq b$ be another point in $\sigma_{0}(r)-\{a\}$ and let v^{\prime}, w^{\prime} be chosen in the residue of b^{\prime} similarly as v, \boldsymbol{w} in the residue of b. Wc have $v \neq v^{\prime}$. Indeed, if $v=v^{\prime}$, then $\boldsymbol{w}=w^{\prime}$ by $(L L)_{2}^{*}$ of $\$ 1.2$ (we have $n-2=2$), hence $r * w\left(=w^{\prime}\right)$ in Γ_{u} and this contradicts our choice of w. Then we have:

$$
\sum_{b \in X} \alpha(b) \leq x y^{2}
$$

where $\boldsymbol{a}(b)$ is the inner local Ott-Liebler number of Γ at b and $X=\sigma_{0}(T-)-\{a\}$. Indecd $x y^{2}$ is the number of lines of $\Gamma_{a r}$ (i.e., solids of Γ through r) that are not concurrent with u in $\Gamma_{a r}$. Let $\alpha^{*}=\min (\alpha(b) \mid b \mathrm{E} \boldsymbol{X})$. From the above we have $x \alpha^{*} \leq x y^{2}$. Then $\alpha^{*} \leq y^{2}$ and either $\alpha^{*}=0$ or $x \leq \mathbf{y}$, because $x y$ divides $\alpha(b)$ for every point b of Γ (see thc beginning of this paragraph).

If $\alpha^{*}=0$, then Γ has parameters of classical type, because some of the C_{3}-residues of Γ is a building (Proposition 4). Hence, Γ is a building by Theorem 2.

Let us assume that $\alpha^{*}>0$. Then $x \leq \mathbf{y}$. We can also assume $x<\mathbf{y}$ (otherwise Γ is a building by Theorem 2). Then we have $k=(1+\lambda) \mu$ and $h=\lambda \mu$ for suitable positive intcgcrs λ, μ. If $\lambda=1$, then $\mathbf{y}=x^{2}$ and Γ is a building by Thcorem 2. Let us assume $\lambda>1$. Wc havc $\alpha^{*}=\bar{\alpha} p^{(2 \lambda+1) \mu}$ forsomepositiveinteger $\bar{\alpha}$, because $\mathbf{z y}$ divides $\boldsymbol{\alpha}^{*}$. Let usset $t=p^{\mu}$, so that $x^{2} y+1=t^{3 \lambda+1}+1, x^{2}+x+1=t^{2 \lambda}+t^{\lambda}+1$ and $(x y+1)(y+1)=t^{3 \lambda+2}+t^{2 \lambda+1}+t^{\lambda+1}+1$. It is easily seen that the g.c.d. of $t^{2 \lambda}+t^{\lambda}+1$ and $t^{3 \lambda+2}+t^{2 \lambda+1}+t^{\lambda+1}+1$ divides $t^{2}-t+1$. Then $\bar{\alpha} t^{2 \lambda+1}+1\left(=\alpha^{*}+1\right)$ divides $\left(t^{2}-t+1\right)\left(t^{3 \lambda+1}+1\right)$, by Proposition 6. Hencc, $\bar{\alpha} t^{2 \lambda+1}+1$ divides $\left(t^{2}-t+1\right)\left(t^{\lambda}-\bar{\alpha}\right)$. As $\alpha^{*} \leq y^{2}$ and $\lambda>1$, we have $\bar{\alpha}<t^{\lambda}$. Therefore $\bar{\alpha} t^{2 \lambda+1}+1<t^{\lambda+2}$. Hence $t^{2 \lambda+1}<t^{\lambda+2}$. This coniradicts our assumptions on λ.

Therefore, Γ is a building.
Theorem 4 easily follows from this and from Basic Thcorcm A and B.

5. FLAG-TRANSITIVITY

In this section we give a sketch of the proofs of Theorem 5 and 6 . We will use results on flag-transitive projective planes, on generalized quadrangles and propertics of primitive or 2-transitive permutation groups.
5.1. Flag-transitive projective planes

It has been conjectured that a finite projective piane with a flag-transitivecollineation group must be desarguesian. A weaker version of this conjecture has been proved by Kantor [14], using the classification of primitive groups of odd degree. More precisely, we have:

Theorem 7. (Kantor [14], Theorem A). Let π be a finite projective plane of order x and let G be a flag-transitive collineation group of π. Then one of thefollowing holds:
(i) The plane π is desarguesian and G contains $\operatorname{PSL}(3, x)$ in its natural action on π.
(ii) G is a Frobenius group of order $(x+1)\left(x^{2}+x+1\right)$, x is even and $x^{2}+x+1$ is prime.

We remark that π may be desarguesian in (ii) only if $\mathrm{x}=2$ or $\mathbf{8}$ ([8], 4.4.16). In this case we have $\mathrm{G}=\operatorname{Frob}(21)$ or $\mathrm{G}=\operatorname{Frob}(73.9)$, respectively, and these possibilities actuaily occur in $\operatorname{PG}(2,2)$ and $\operatorname{PG}(2,8)$.

Let us give a short sketch of the proof by Kantor for Theorem 7.
The following properties of collineation groups of a finite projective plane π of order x are known.
(1) ([8], 4.1.9). Let o be an involutorial collineation of π. Then either a is a central collineation or il pointwise fixes a Baer subplane of π.
(2) ([8], 4.4.10). If H is a point-transitivecollineation group of π containing a non-trivial central collineation, then π is desarguesian and H contains $\operatorname{PSL}(3, \mathrm{x})$ in its naturai action on π.
(3) ([8], 2.3.7a). Flag-transitive collineation groups of π are point-primitive and lineprimitive.

Moreover, by $\S \S 4.4 .11-4.4 .20$ of [8] we have:
(4) Let G be a flag-transitive collineation group of π and let us assume that either π is not desarguesian or $\mathrm{G} \nsupseteq P S L(3, x)$. Then one of the following holds:
(a) $x^{2}+x+1$ is prime, x is even and G is a Frobenius group containing a sharply Bag-transitive (Frobenius) subgroup F.
(b) x is a square and either x is even or x is a fourth power.

Eliminating (b) (and forcing $G=F$ in (a)) is the problem solved by Theorem 7. The proof runs as follows.

The group G is point-primitive, by (3). If G has a normal abelian subgroup, then $x^{2}+x+1$ is prime and G is a Frobenius group of order $(x+1)\left(x^{2}+x+1\right)$ (Lemma 6.5 of [14]). Thus, we assume that G has no normal abelian subgroups (apart from the trivial one, of course). The group G is primitive of odd degree and primitivegroups of odd degree having no normal abelian subgroups are known ([14] or [17]). They have even order. Hence G contains involutions. By (1) and (2) we may assume that each of the involutions of G pointwise fixes a Baer subplane of π. Assuming this, Kantor finds a contradiction for each of the primitive groups of odd degree having no normal abelian subgroups and he proves Theorem 7 in this way.

Something more can be said in (ii) of Theorem 7: by 4.4.4.c of [8] we have $x+1 \equiv 0$ (mod. 3). Moreover, x cannot be a prime power if $x \leq 3006$, except of course when $x=2$ or 8 , ([8], page 209, footnote 2).

Very deep relations exists between sharply flag-transitive collineation groups of finite projective planes and finite chamber systems \mathscr{E} belonging to the following diagram

and admitting a group of special automorphisms transitive on the set of chambers of \mathscr{E} (finite flag-transitive \tilde{A}_{2}-chamber systems, forshort; flag-transitive triangle geometries in [47]). We are not going to insist on this here. The reader is referred to [47], [53] and [54] (3.3 and 3.4) for details.

5.2. Remarks on flag-transitivegeneralized quadrangles

All classical generalized quadrangles have flag-transitive automorphism groups. Non classical flag-transitivefinite generalized quadrangles also exist. Let H be a piane in $\operatorname{PG}(3, q), q$ even, and let 0 be a hyperoval of H (i.e., a $(\mathrm{g}+2)$-arc). Let $T_{2}^{*}(0)$ be the generalized quadrangie defined by 0 as in 3.1.3 of [36]. The generalized quadrangle $T_{2}^{*}(0)$ has parameters $(q-1, q+1)$ and is not classical if $q \neq 2$ (if $q=2$, then $T_{2}^{*}(0)$ is a dual grid). Let G be the stabilizer of 0 in $P \Gamma L(4, \mathrm{~g})$ and let K be the pointwise stabilizer of 0 in G , so that $\bar{G}=\mathrm{G} / \mathrm{K}$ is the action of G on 0 . The group K is transitive on the q^{2} lines of $T_{2}^{*}(0)$ through a given point of 0 , and on the points of each of those lines. Therefore, if \bar{G} is transitive on 0 , then the group G is flag-transitive in $T_{2}^{*}(0)$.

Hyperovals 0 as above, such that \bar{G} is transitive on 0 , exist iff $q=2,4$ or 16 . ([12], page 177). Thus, non classical flag-transitive generalized quadrangles are obtained of order $(3,5)$ and $(15,17)$ (or $(5,3)$ and $(17,15)$, dually). However none of them can occur as a rank 2 residue in a finite ordinary C_{3}-geometry (Theorem 2).

In $\$ 5.1$ we have remarked that $\operatorname{Frob}(21)<\operatorname{PSL}(3,2)$ and $\operatorname{Frob}(73.9)<\operatorname{PSL}(3,8)$ are the only possible examples of subgroups of $P \Gamma L(3, q)$ acting flag-transitively on $P G(2, q)$ and non containing $P S L(3, q)$. The analogue of this result is known for classical generalized quadrangles. Here are the only possible examples of groups acting flag-transitively on a thick classical generalized quadrangle S but non containing the classical simple group naturally associated with S ([15], Theorem C.7.1): A, actingon $W(2)\left(\cong Q_{4}(2)\right), 2^{4} \cdot A_{5}, 2^{4} \cdot S_{5}$ or $2^{4} \cdot \operatorname{Frob}(20)$ actingon $\mathrm{W}(3)$ and $\operatorname{PSL}(3,4) \cdot 2$ or $\operatorname{PSL}(3,4) \cdot 2^{2}$ actingon $H_{3}\left(3^{2}\right)$.

Non surprisingly, an analogue of Theorem 7 is not yet known for generalized quadrangles. Things are even worse. An analogue of (1) of $\$ 5.1$ can be obtained for generalized quadrangles using $\S \S 2.3$ and 2.4 of [36], but the conclusions we get are rather weaker than in (1) of $\$ 5.1$. Simiiarremarks can be made for (2) of $\S 1.5$ (see chps. 8 and 9 of [36]). Finally, the analogue of
(3) is false for generalized quadrangles. Apart from groups of automorphisms of grids, which never can be line-primitive, the groups $2^{4} \cdot A_{5}, 2^{4} \cdot S_{5}$ and 2^{4}.Frob(20) are flag-transitive but point-imprimitive in $Q_{4}(3), P S L(3,4) .2$ and $P S L(3,4) .2^{2}$ are flag-transitive but point-imprimitive in $Q_{5}^{-}(3)$. Flag-transitive but line-imprimitive groups are also easily recognized in the $T_{2}^{*}(0)$ examples described before, wheri $q=4$ or 16 .

5.3. The flat case

We begin with the description of the construction of flat C_{3}-geometries by means of maximal exterior sets given by Rees in [39]. A maximal exterior set X with respect to $\boldsymbol{Q} \boldsymbol{f}(\boldsymbol{f})$ is a set of $q^{2}+q+1$ points of $P G(5, q)$ such that each line of $\operatorname{PG}(5, q)$ joining two distinct points of X does not meet $Q_{5}^{+}(q)$. Given a maximal exterior set X with respect to $Q_{5}^{+}(q)$ we can define a flat C_{3}-geometry $\Gamma(X)$ as follows. X is the set of points of $\Gamma \quad(X)$ and the lines of $\Gamma \boldsymbol{(X)}$ are the points of $Q_{5}^{+}(q)$. The set of planes of $\Gamma(X)$ is one of the two families of planes of $Q_{5}^{+}(q)$. The incidence relation is defined as follows. Every point of $\Gamma(X)$ is incident with all planes of $\Gamma(X)$ A point p and a line r of Γ (X)are incident iff r belongs to the polar plane of p with respect to $Q_{5}^{+}(q)$.

The geometry $\Gamma(X)$ is flat of type $C_{3}([39], 92)$.
This construction can be generalized to the infinite case, modulo some minor changes (see [39]). But we are interested in the finite case here. When $q=2$, a maximal exterior set with respect to $Q_{S}^{+}(2)$ exists and $\Gamma(X)$ is the A, -geometry (91.4). However, this is the only possibility in the finite case (Thas [60]).

Let Γ be a flat C_{3}-geometry with parameters x, y. We can define a partial linear space $\Pi(\Gamma)=(\mathscr{P}, \mathscr{C})$ as follows. $i^{\prime \prime}$ is the set of lines of Γ and \mathscr{C} is the set of point-plane flags of Γ. A line and a point-plane flag of Γ are said to be incident as elements of $\Pi(\Gamma)$ precisely when they are incident in Γ. In short, $\Pi(\Gamma)$ is the point-line system of the linearization of Γ with respect to the centrai node of the diagram ([25], page 317).

Proposition 11. (Rees [39], (3.3)). Let Γ be a flat C_{3}-geometry with uniform parameter x. If $\pi(\Gamma)$ is isomorphic to the system of points and lines of $Q_{5}^{+}(q)$, then a maximal exterior set X exists with respect to $Q_{5}^{+}(q)$ such that $\Gamma \cong \Gamma(X)$

Now we are ready to prove the part of Theorem 5 of $\S 1.7$ that concems the flat case.
Theorem 8. ([20]). The A, -geometry is the only flag-transitive flat finite ordinary C_{3} geometry.

We give a sketch of the proof here. Let Γ be a flat finite ordinary C_{3}-geometry and let x, y be the parameters of Γ. As Γ is flat and ordinary, we have $1<x \leq y \leq x^{2}-x$, by 1.2 .5 of [36] and Theorem 2. If $x=2$, then $y=x=2$ and Γ is the A, -geometry by

Lemma 5.14 of [42]. Let us assume $x>2$ and let $\mathrm{A}=\operatorname{Aut}(\Gamma)$ be flag-transitive,by way of contradiction.

Using Theorem 7, a theorem of Burnside on permutationgroups of prime degree and the classification of 2-transitive permutation groups and exploiting the inequaiity $x>2$, we can prove the following:

Statement i. Let K be the kemel of the action of $\mathrm{A}=A u t(\Gamma)$ on the set S_{0} of the points of Γ and $\bar{A}=A / K$ be the action of A on S_{0}. Then x is a prime power and $\operatorname{PSL}(3, \mathrm{z}) \leq$ $\bar{A} \leq P \Gamma L(3, x)$. Moreover, if A, is the stabilizer in A of a plane u of Γ and $\bar{A}_{u}=$ $A_{u} /\left(K \cap A\right.$,) is the action of A , on the residue Γ_{u} of u, then $\operatorname{PSL}(3, x) \leq \bar{A}_{u}$ (that is, case (ii) of Theorem 7 never $\propto c c u r s$ on \bar{A}_{u}).

By statement 1 we easily obtain the following:
Statement 2. If two lines r, s of Γ meet in two distinct points, then $\sigma_{0}(r)=\sigma_{0}(s)$. That is, Γ is obtained from $\operatorname{PG}(2, x)$ repeating its lines $x^{2}+1$ times, counting the plane $\operatorname{PG}(2, x)$ itself $\left(x^{2}+\mathbf{1}\right)(x+1)$ times and defining the line-plane incidence in a suitable way.

We remark that statement 2 is false in the A, -geometry. Statement 2 essentially depends on the inclusions $\bar{A}_{u} \geq P S L(3, x) \leq \bar{A} \leq P \Gamma L(3, x)$, which cannot be proved if $x=2$.

Indeed, if $x=2$, then we have $\bar{A}=\mathrm{A},>\operatorname{PSL}(3,2)=\bar{A}_{\mathrm{u}}$ as further surviving possibility, and this in fact corresponds to the A, -geometry,

Using statements 1 and 2 and exploiting the flag-transitivity again, we can prove the following:

Statement 3. Given a plane u and a line $r \notin \sigma_{1}(u)$, a point $a_{u, r}$ of u is uniquely determined such that the lines incident with u and coplanar with τ are precisely the lines of u through $a_{u, r}$.

Using statement 3 , it is not so difficult to prove that $\mathbf{i l}(\Gamma)$ is a rank 3 polar space. The polar space $\Pi(\Gamma)$ is classical by [56] and has parameters x, z as follows

where $z=x^{\top}$ and $r=0,1 / 2,1,3 / 2$ or 2 . As the points of $\Pi(\Gamma)$ are the lines of Γ and as $y \leq x^{2}-x$, we obtain that either $z=1 \mathbf{a r} z^{2}=x$, by easy computations. If $x=z^{2}$ then $y=x^{3}$ and residues of points of Γ are isomorphic with $H_{4}\left(z^{2}\right)$. However $H_{4}\left(z^{2}\right)$ has no ovoids ([36], 3.4.1(iii)), whereas, given any two distinct points a,b of Γ, the set of lines of Γ through a and b is an ovoid in the residue Γ_{a} of a. Therefore $z=1, y=x$ and $\Pi(\Gamma) \cong Q_{5}^{+}(x)$.

By Proposition 11, a maximal exterior set exists with respect to $Q_{5}^{+}(x)$ such that $\Gamma \cong$ $\Gamma(X)$. Hence $x=2$ by [60]. The final contradiction is reached and Theorem $\mathbf{8}$ is proved.

Remark 1. The situation descnbed in statement 2 actually occurs in non finite flat geometries $\Gamma(X)$ where X is a plane of $\operatorname{PG}(5, K)$ exterior to $O_{5}^{+}(K)$ (such a plane exists iff K is an ordered field: [39], 2.2ii). It occurs also in all flat C_{3}-geometries with all thin lines (see [40]).

Are these the only possibiiities? If we were able to obtain statement 3 directly from statement 2 , without using groups or finiteness assumptions at ail, then we would be very close to a positive answer. Indecd the reamining part of the proof of Theorem 8 could be generaiized in some way. It is worth remarking that properties like that of statement 2 occur in a number of examples of rank $n \geq 4$ (see [32] and [49], \$5). Moreover, the A, -geometry is the only known flat geometry where statement 2 faiis to hold. Thus we might even hope to succeed to prove that statement 2 is a conscquence of the flatness whenever $x \neq 2$.

Remark 2. It may be interesting remarking that, if we tricd to prove that the system $L(\Gamma)$ of planes and lines of a flat C_{3}-geometry Γ with uniform parameter x is a projective space (\$3.3,Remark 2), then we would soon get stuck with statements which, in one form oranother, say the same thing as statement 3. This is not surprising in view of Remark 2 of 93.3, of Proposition 11 and of the final part of the proof of Theorem 8.

5.4. The anomalous case

We finish the proof of Theorem 5 of \S 1.7. In this paragraph Γ is an anomalous finite ordinary C_{3}-gcometry with parameters x, y and flag-transitiveautomorphism group $\mathbf{A}=A u t(\Gamma)$. S_{0}, S, and S_{2} are the sets of points, lines and planes of Γ, respectively. K is the kemel of the action of A on S_{0} and $\bar{A}=A / K$ is that action.

For cach plane u, iet A, and N_{u} be the stabilizer of u in A and the kemel of the action of A, on the residue Γ_{u} of u, respectively. Thus, $\bar{A}_{u}=A_{u} / N_{u}$ is the action of \mathbf{A}, on Γ_{u}. We remark that $\boldsymbol{A}, \cap K \leq N_{u}$, but the equality might fail to hold, as far as we know (indeed Γ is not flat). Finally, α is the Ott-Liebler number of Γ.

Proposition 12. For everypoint \mathbf{u} of Γ, \bar{A}_{u} is a Frobeniusgroup, sharplyflag-transitive on Γ_{u}

That is, (ii) of Theorem 7 occurs for every $u \in S_{2}$. Indeed, otherwise we have $\bar{A}_{u} \geq$ $\operatorname{PSL}(\mathbf{3}, \boldsymbol{x})$ for every u E S , , by Theorem 7. Hence \bar{A} is transitive on the set of pairs of distinct collincar points of Γ. Therefore, the number of lines through two distinct collinear points a, b of Γ does not depend on the choice of the collinear pair (a, b). Then Γ is either a building or flat, by Proposition 7. On the other hand, Γ is anomalous by assumption and we have the conuadiction.

Proposition 13. (Arithmetic conditions). All thefollowing hold:

(i) x is even, $1+x+x^{2}$ isprime and $x+1 \equiv 0(\bmod .3)$.
(ii) $x<y<x^{2}-x$.
(iii) $(x+y)(\alpha+1)$ divides $(1+s y)\left(x y-\frac{\alpha}{\boldsymbol{x}}\right)$ and $\left(x^{2}+y\right)(\alpha+i)$ divides $\left(x^{2} y+1\right)\left(x^{3} y-\frac{\boldsymbol{\alpha}}{x}\right)$. If $d=$ g.c.d. $\left(x^{2}, y\right)$, then
(iil.a) $d^{2}<\mathbf{x}$.
(iii.b) $(x-1) d^{2}+d \leq y$.
(iii.c) $x d$ divides a.
(iii.d) $\alpha+1$ divides both $\frac{x y}{d}-\frac{\alpha}{x d}$ and $\frac{Y}{d}+\frac{\alpha^{2}}{x^{2} d}$.

Property (i) follows from Proposition 12 and Theorem 7 (see 4.4.4.c of [8]for $x+1 \equiv$ 0 (mod. 3)). Property (ii) follows from Theorem 2, from 1.2.5 of [36] and from (iii.b). Property (iii.c) is nothing but Proposition 8. All remaining properties listed in (iii) arc obtained exploiting (iii.c) and the fact that $1+x+x^{2}$ is prime in the divisibility conditions given by the formulas for the multiplicities m_{φ} of the irreducible representations of thc Hcckc algebra of Γ (53.2); the reader is referred to [29] for details of these computations. Wc warn that the two divisibility conditions in (iii.d) are equivalent.

It may be that some way exists to reach a contradiction taking all previous properties together with the divisibility condition of $\S 1.2 .2$ of [36] and with the well known BruckRyser condition on the order of a finite projective plane. One of the authors has tried to do this by a computer some time ago, testing all values of $x \leq 1000$. It tumed out that none of them worked. Therefore:

Proposition 14. We have $s>1000$.
By Proposition 12 and 14 and by 4.4.16 of [8], we immediately have the following:
Corollary. For every plane u of Γ, Γ_{u} is not desarguesian.
Thus, as we have already observed in § 1.7 (remarks following the statement of Theorcm 5), x cannot be a prime power if $x \leq \mathbf{3 0 0 6}$. We remark that, by Proposition 12 , the previous Corollary amounts to say that $x \neq 2,8$. That is, $x=2$ or $x=\mathbf{8}$ do not fit with Proposition 13. Of course, this can be checked even «by hand», without using computcrs.

The next step is collecting information on involutions. Unfortunately, the information we have is very weak when y is odd.

Proposition 15. (Involutions). Let σ be an involution of A and let Γ_{σ} be the set of elements of Γ fuxed by o. Then one of thefollowing holds:
(i) The configuration Γ_{σ} consists of exactly one plane u and of its residue Γ_{u}. We have $y \equiv 0$ (mod. 2) in this case.
(ii) The configuration Γ_{σ} consists of a nonempty set of pairwise non coplanar lines, together with all their points. We have $\mathrm{y} \equiv 1$ (mod. 2) in this case.

The reader is referred to [29] (Lemmas 6, 7, 9, 10 and 11) for the case of y even. As a by-product of (i), we obtain a similar statement for Sylow 2-subgroups of A in the case of y even ([29], Lemma 9). This provides a very useful geometric interpretation of Sylow 2-subgroups of A in this case.

As for the case of y odd, a second possibility were left open in [29] (Lemmas 6 and 7) besides (ii) above, namely the following one:
(iii) There is point p fixed by o such that the configuration $\left(\Gamma_{\rho}\right)_{\sigma}$ fixed by o in Γ_{ρ} is a grid with parameters $x, 1$:

and y is odd.
We rule out this case here.
Let $u_{0}^{+}, \ldots, u_{x}^{+}, u_{0}^{-}, \ldots, u_{i}^{-}$be the two families of planes (lines in Γ_{ρ}) of the grid $\left(\Gamma_{\rho}\right)_{\sigma}$ Let r be a line through p (point in Γ_{p}) not belonging to $\left(\Gamma_{p}\right)_{\sigma}$. For each $\mathbf{i}=0,1, \ldots, x$, there is a line r_{i} in u_{i}^{+}through p such that r and r_{i} are coplanar. The lines $r_{0}, r_{1}, \ldots, r_{x}$ are mutually non coplanar (i.e., they form an $(x+1)-\operatorname{arc}$ in Γ_{p}). Let $r^{\prime}=\sigma(r)$. As r does not bciong to (Γ_{p}), we have $r \neq r^{\prime}$. The set $\left(r^{\prime}\right)^{\perp} \mathbf{n}_{r^{\perp}}$ of the lines through p coplanar with both r^{\prime} and r contains the lines $r_{0}, r_{1}, \ldots, r_{x}$ and $y-x$ further lines s_{1}, \ldots, s_{y-x}. As $r^{\prime}=\sigma(r)$, the involution o fixes $\left(r^{\prime}\right)^{\perp} \mathrm{n}_{r^{\perp}}$ and, as it fixes each of the lines r_{0}, \ldots, r_{x}, it permutes the lines s_{1}, \ldots, s_{y-x}. However y is odd, whereas \mathcal{x} is even. Hence o fixes some of the lines s_{1}, \ldots, s_{y-x}. We have a contradiction, because none of these lines belongs to $\left(\Gamma_{p}\right)_{\sigma}$. We are done.

The group K is studied in [29] only in the case of y even. It is proved that $|K|$ is odd if $y \equiv 0(\bmod .2)([29]$, Lemma 8$)$. We give a more complete result here.

Proposition 16. (Properties of K). The group K has odd order and acts as a Frobenius group on each of its orbits on the set ofplanes of Γ.

Given planes u, v of Γ, let $\mathrm{K},=\mathrm{A}, \mathrm{n} \mathrm{K}$ be the stabilizer of u in K and let K , $=$ $K_{u} \cap \mathrm{~K}$, be the siabilizer of both u and v in K .

Let u, v belong to the same orbit of K and let $g \mathrm{E} K_{u v}$. As v $\mathbf{E} K(u)$, we have $\sigma_{0}(u)=\sigma_{0}(v)$ and a bijection f of $\sigma_{1}(u)$ onto $\sigma_{1}(v)$ exists such that $\tau^{\prime}=f(\tau)$ iff $\sigma_{0}(r)=\sigma_{0}\left(r^{\prime}\right) \quad\left(r \mathrm{E} \sigma_{1}(u), r^{\prime} \mathrm{E} \sigma_{1}(v)\right)$. Let $\tau \mathrm{E} \sigma_{1}(u)-\sigma_{1}(v)$. Foreverypoint a of r a linc-plane flag $\left(r_{a}, u_{a}\right)$ is uniquely determined in Γ_{a} such that $\tau * u_{a}$ and $\tau_{a} * v$. It is easily
seen that $u_{a} \neq u_{b}$ if $a \# b \quad\left(a, b \mathbf{E} \sigma_{0}(r)\right)$. Moreover, g fixes everything in the residues of u and v, as $g \mathrm{E} K_{u v}$. Hence g fixes τ_{a} for every point a of r and, as it fixes r too, it fixes $u_{a}\left(a \mathrm{E} \sigma_{0}(r)\right.$) Therefore there are at least $x+1$ planes through r fixed by g other than u. As g fixes the residue of every plane that it fixes, the configuration elementwise fixed by g in Γ_{0} (where a is a point of u) is a subquadrangle of order (x, t), whcre $t \geq x+1$ ([36], §2.4). By $\S 2.2 .2$ of [36] we obtain $t=\mathrm{y}$. Therefore g fixes everything in the residue of a, for every point a of u.

Let now p be a point such that \mathbf{g} fixes everything in Γ_{p}. If b is a point distinct from p and joined with p by two distinct lines s, s^{\prime}, then s and s^{\prime} are not coplanar and g fixes all planes incident with either s or \mathbf{s}^{\prime}. Therefore g fixes everything in the residue of b, by $\S 2.4$ of [36].

Next, let $b \neq p$ be joined with p by precisely one line s. Let \boldsymbol{w} be a plane on s. As $\alpha>0$, two line-plane flags $\left(s_{p}, w_{p}\right),\left(s_{b}, w_{b}\right)$ exist such that $w_{p} \neq w \neq w_{b}, s_{p} * w * s_{b}, s_{p} \notin$ $\sigma_{1}(p), s_{b} \notin \sigma_{1}(b), p * w_{p}$ and $b * w_{b}$. It is easily seen that none of w_{p} or w_{b} is incident with s. Hence $w_{p} \neq w_{b}$, as s is unique line through p and b. Let c bc a point incident with both s_{p} and s_{b} (we can find c in Γ_{w}, and we have $c \neq p, b$). Let $s_{p}^{\prime}, s_{p}{ }_{p}$ be the lines through p and c in w_{p} and w, respectively, and let $s_{p}^{\prime}, s^{\prime \prime}{ }_{b}$ be those through b and c in w_{b} and w, respectively. We have $s_{p}^{\prime} \neq s_{p}{ }_{p}$ and $s_{b}^{\prime} \neq s^{\prime \prime}{ }_{b}$, by $(L L)_{2}^{*}$ of $\S 1.2$ and because $p \notin \sigma_{0}\left(s_{p}\right)$ and $b \notin \sigma_{0}\left(s_{b}\right)$. By the previous argument, g fixes everything in Γ_{c} because it fixes everything in Γ_{ρ} and c is joined with p by two distinct lines. Next, g fixes everything in Γ_{b}, as it fixes everything in Γ_{c} and b is joined with c by two lines.

Then \mathbf{g} fixes everything in Γ_{b} as soon as $b \perp p$. Iterating this argument, g fixcs all of Γ. K, $=1$.

We have proved in this way that K acts as a Frobenius group on each of its orbits on S_{2}. Let us prove that K has odd order. Let a be an involution of K, by way of coniradiction. Let u be a plane such that $\mathrm{a}(u) \neq u$.

Let us assume that u and $\mathrm{a}(u)$ are not cocollinear. The planes u and $\mathrm{a}(u)$ havc the samc set of points, because $\sigma \mathrm{E} K$. For every point a in u (and in a(u)), thcre are $x+1$ planes in Γ_{a} cocollinear with both u and $\mathrm{a}(u)$. As x is even, a fixes at least one of those planes. On the other hand, there are $x^{2}+x+1$ points in u and, using ($\left.L L\right)_{1}^{*}$ of $\$ 1.2$, it is easily seen that, if a, b are distinct points of u and u_{a}, u_{b} are planes in Γ_{a} and Γ_{b}, respectively, cocollincar with both u and $\sigma(u)$, then $u_{a} \neq u_{b}$. Hence there are at least $x^{2}+x+1$ plancs fixed by a. However this contradicts Proposition 15. Therefore, for every plane u, u and $\sigma(u)$ are cocollinear and, if $u \neq \mathrm{a}(u)$, then the line incident with both u and $\sigma(u)\left(\$ 1.2,(L L)_{1}^{*}\right)$ is fixed by a. Howeverit is easily seen that this contradicts Proposition 15 if y is even. Hence y is odd and, for every point a, the lines through a fixed by a form an ovoid in Γ_{a}. Therefore, given any plane u, for every point a of u there is exactiy one line of u through a fixed by
σ. On the other hand, at most one of the lines of u is fixed by o (Proposition 15 (ii)). We have reached a contradiction.

Therefore, K has odd order.
Proposition 16 is proved.
Proposition 16 makes it easier to study Sylow 2-subgroups of \boldsymbol{A} : they can be identified with those of \bar{A}, and \bar{A} should be easier to study than \boldsymbol{A} itself.

Another prime number has considerablerclevance here besides 2 , namely $p=1+x+x^{2}$ (Proposition 13, (i)). We have:

Proposition 17. ([29], Lemmas 2 and 3). The Sylow p-subgroups of A have order p and act semi-regularly on the set of points of Γ.

So far we go without making any extra assumption on \boldsymbol{A}. If we assume the primitivity of \bar{A}, then we have the following partial result (which completes the proof of Theorem 5 of 1.7 in the rank 3 case):

Proposition 18. ([29], Theorem 1.C). If \bar{A} is primitive, then y is odd.
We give just a sketch of the proof.
Let \bar{A} be primitive and let L be its socle. The number n_{0} of points of Γ is neither prime nor a proper power (see (1) of $\S 1.6$ and the arithmetic conditions of Proposition 13). Therefore L is a nonabelian simple group. As $p=1+x+x^{2}$ is pnme (Proposition 13) and $x>10^{3}$ (Proposition 14), the order of L is divisible by a prime factor bigger than 10^{6}. Then L cannot be sporadic (the classification of finite simple groups is used here, of course). By straightforward computations ([29], proof of Lemma 4) we can see that L cannot be an alternating group either. Hence, we have the following:

Statement 1. L is simple of Lie type.
Therefore L contains involutions. Let y be even. By Proposition 15 (i), we have that L has a strongly embedded subgroup([29], proof of Lemma 12). Hence, using a theorem of Ben$\operatorname{der}\left([3]\right.$, Theorem 4.24), we obtain that L is one of the following groups: $\operatorname{SL}\left(2,2^{n}\right) \quad(n>$ 2), $P S U\left(3,2^{n}\right) \quad(n \geq 2)$ or ${ }^{2} B_{2}\left(2^{2 m+1}\right) \quad(m \geq 1)$. Exploiting this information it is possible to prove that p^{2} divides $|A|$, where $p=1+x+x^{2}$ (see [29], end of the proof of Theorem 1). But this contradicts Proposition 17. Therefore,

Statement 2. y is odd.

Remarks. When y is odd, Proposition 15 (ii) does not give us so much of information and we are in troubles.

As for the imprimitive case, it is casily seen that, if \bar{A} is imprimitive on S_{0}, then, given an imprimitivity class \boldsymbol{X} for \bar{A} and a piane u of Γ, we have $\left|X \cap \sigma_{0}(u)\right| \leq 1$. Unfortunately remarks like this do not seem to be very deep. Furthermore, imprimitiveflag-transitive
automorphism groups of finite thick generalized quadrangles exist (see $\$ 5.2$) even if they are exceptional phenomena. We can guess from this that assuming the imprimitivity on \bar{A} will hardly give us contradictions for free and some work will be, needed to reach any of them.

5.5. The case of rank $n \geq 4$.

In this paragraph Γ is a finite ordinary C_{n}-geometry with $n \geq 4$ and flag-transitive automorphism group $A u t(\Gamma)$.

Theorem 9. The geometry Γ is a building.

This theorem completes the proof of Theorem 5 of $\$ 1.7$. It appeared in [30]. It can be proved in a number of different ways. A very short proof can be given using Proposition 12, the Corollary of Proposition 14, Proposition 7 and Proposition 2 , but here we recall the proof given in [30], which is not long either, does not depend on Theorem 7 or on Proposition 13; it uses a celebrated theorem by Seitz (see [15], Theorem C.7.1). As $\mathrm{n} \geq \mathbf{4}$, residues of hyperlines of Γ are desarguesian projective geometries of dimension $n-1 \geq 3$ and x is a prime power. By Seitz's theorem ([15], Theorem C.7.1), the stabilizer A, of a flag F of Γ of type $\{0,1, \ldots, n-4, n-1\}$ acts on Γ_{F} as a classical group. Hence all $C_{3}-$ residues of Γ are either buildings or flat, by the same argument used in the proof of Proposition 12 and by Proposition 7. Therefore Γ is a building, by Proposition 2 .

REFERENCES

[i] M. ASCHBACHER, Finite geomefries of fype C_{3} with fag transitive automorphism groups, Geom. Dedicata 16 A (1984) 195-200.
[2] L. Bader, G. Lunardon, On the flocks of $Q^{+}(3, q)$,Geom. Dedicata 29 A (1989) 177-183.
[3] H. Bender, Transilive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlasst, J. Algebra i7 (1971) 527-554.
[4] A. Brouwer, A. Cohen, Some remarks on Tits's geomefries,Indag. Math. 45 (1983) 393-402.
[5] F. Buekenhout, The basic diagram of a geomeiry, in "Geometries and Groups". Lecture Notes in Math. 893 Springer, (1981) 1-29.
[6] F. Buekenhout, A. Sprague, Polar spaces having some line of cardinality iwo, J. Combin. Theory A 33 (1982) 223-228.
[7] F. Declerck, J. Thas, Exterior sets with respect to the hyperbolic quadric in $P G(\mathbf{2 n - i}, \boldsymbol{q})$, in "Finite Geometries" (eds.: C. Baker and L. Batten), Dekker, 1985, 83-90.
[8] P. Dembowski, Finite Geomefries,Springer. 1968.
[9] W. Fert, G. Higman, The nonexistence of cerlain generalized polygons, J. Algebra 1 (1964) 114-131.
[10] D.G. Higman, J. Mclaugicin, Geometric ABA.groups, Illinois J. Math. 5 (1961) 382-397.
[1i] G. Helsbrandt, On Ihin geomefries (part ('wo). The thin spherical geometries, (unpublished).
[12] J. Hirsafeld, A Projective Geomefriesover Finite Fields, Clarendon Press, 1979.
[13] P. Hoefsmit, Representations of Hecke algebras of finite groups with BN-pairs of classical fype, Ph. D. Thesis. University of British Columbia, August 1974.
[14] W. Kantor, Primitive groups of odd degree and an application to frite projective planes, J. Algebra 106 (19837) 14-45.
[15] W. Kantor, Generalized polygons, SCABs and GABs, In "Buildings and the Geometry of Diagrams" Lecture Notes in Math. 1181 Springer. 1986.79-158.
[16] W. LEMPKEN, A remark on the A7 -geomerry, preprint 1985.
[17] M. Liebeck, J. Saxl, The primitive permutation groups of odd degree. J. London Math. Soc. 31 (1985) 250-264.
[18] M. L巨sbeck, J. Saxl, Primitive permutation groups containing an element aflarge prime order, J. London Math. Soc. 31 (1985) 237-249.
[19] R. Liebler, A representation theoretic approach to finite geometries of spherical fype, (1985, unpublished).
[20] G. Lunardon, A. Pasini, A resull on C_{3}-geometries, European J. Combin. 10 (1989) 265-271.
[21] A. Neumaier, Some sporadic geomefriestelated to $P G(3,2)$, Arch. Math. 42 (1984) 89-96.
[22] U. Ott, Beright iiber Hecke Algebren und Coxeter Algebren endlicher geometrien, in "Finite Geometries and Designs" (eds.: P. Cameron, J. Hirschfeld and D. Hughes), Cambridge Unv. Press, 1981,260-271.
[23] U. OTt, Some remarks on representation thevry infinite geomefry. in "Geometries and Groups". Lecture Notes in Math. 893 Springer, 1981.68-110.
[24] U. Ott, On finise geomefries of fype B_{3}, J. Combin. Theory A 39 (1985) 209-221.
[25] A. Pasinl, Geometric and algebraic methods in the classification of geomefriesbelonging to Lie diagrams, Ann. Discrete Math. 37 (1988) 315-356,
[26] A. Pasini, On Tits geometries of iype C_{n}, European J. Combin. 8 (1987) 45-54.
[27] A. Pasini, On geometries of fype C_{3} thal are either buildings or fat, Bull. Soc. Math. Belg. Sér. B. 38 (1986) 75-99.
[28] A. Pasini, On finite geometries of type C_{3} wiih thick lines, Note Mat. (Lecce). 6 (1986) 205-236.
[29] A. Pasinı, Flag transitive C_{3}-geometries, Discrete Math. (accepted in 1987. still to be published).
[30] A. PASNI, Geometries of iype C_{n} and F_{4} with flag-transilive automorphism groups, Gwm . Dedicata 25 (1988) 317-337.
[31] A. Pasinl, On the classification of finite C_{n}-geometries with thick lines, Contemp. Math.. 111 (1990). 153. 169.
[32] A. Pasini, Some non-building $\boldsymbol{C}_{\mathbf{n}}$-geometries, Quaderno Dip. Mat. Univ. Napoli. 1987.
[33] A. Pasini, On F_{4}-geomerries, Boll. Un. Mat. Ital. B (7) 2 (1988) 339-409.
[34] A. Pasini, S. Rees, \boldsymbol{A} iheorem on Tits geomeiries of iype \boldsymbol{C}_{n},J. Geom. 30 (1987) 123-143.
[35] S. PAYNE, A census of finite generalized quadrangles , in "Finite Geometries, Buildings and Related Topics", (W. Kantor, R. Liebler, S. Payne and E. Shult eds.), Clarendon Press, Oxford 1990.
[36] S. Payne, J. Thas, Finite Generalized Quadrangles, Pitman, 1984.
[37] G. PIcA, Geometrie di tipo C4 e C5 con relle futle, to appear in the Proceedings of the Conference "Combinatories '88".
[38] S. Rees, Products of Tits geomeiries. J. Geom. 25 (1985)77-87.
[39] S. Rees, C3 geomeiries arising from ihe Klein quadric, Geom. Dedicata 18(1985) 67-85.
[40] S. Rees, Finite cs geomeiries in which all lines are ihin, Math. Z. 189 (1985)263-271.
[41] S. Rees, Aclassification of a class of C3 geomeiries, J. Combin. Theory A 44 (1987) 173-181.
[42] S. Rees, On diagram geometry, Ph. D. Thesis, Oxford 1983.
[43] S. Rees, Weakbuildings of spherical iype, Gwm. Dedicala 27 (1988) 15-47.
[44] S. Rees, R. Scharlau, A generalization of OU's theorem on C3, (unpublished. 1984).
[45] S. Rinauro, On some extensions of generalized quadrangles of grid type, J. Geometry. 38 (1990).158-164.
[46] M. Ronan, Coverings and automorphisms of chamber systems, European J. Combin. 1(1980)249-269.
[47] M. Ronan. Triangle geomeiries, J. Combin. Theory A 37 (1984) 294-319.
[48] R. Scharlau, A structure iheoremfor weak buildings of spherical type. Gwm. Dedicata 24 (1987)77-84.
[49] E. Shurt, Remarks on geometries of type C_{N},Geom. Dedicata 25 (1988) 223-268.
[50] D. Surowski, Decompositions and automorphisms of certain $C_{\boldsymbol{n}}$ geomeiries, Algebras Groups Geom. 4 (1987) 421-437.
[51] D. Surowski, Represeniaiion ofa subalgebra of the generic algebra corresponding to ihe Weylgroup of iype F_{4},Comm. Algebra 5 (1977) 873-888.
[52] J. Thas, Flocks, maximal exterior sets and inverse planes, Contcmp. Math.. 111 (1990). 187-218
[53] F. Tmmesfeld, Tits geomeiries and parabolic systems in finitely generated groups I, Math. Z. 184 (1983) 377-396.
[54] F. Tmmesfeld, Tiis chamber systems and finite group iheory, in "Buildings and the Geometry of Diagrams" Lecture Notes in Math, 1181 Springer, 1986, 249-269.
[55] J. TrTs, A local upproach io buildings, in "The Geometric Vein", Springer, 1981, 519-547.
[56] J. Tits, Buildings of Spherical type and Finite BN-pairs, Lecture Notes in Math. 386. Springer, 1974.
[57] P. Zieschang, The non-exiitence of ceriain geometries of type C_{3}, European J. Combin. 9 (1988)495-500
[58] R. Lebler, Private communication to the 2nd author (May. 1985).
[59] G. PICA, Ott-Liebler numbers, Geom. Dedicata. 39 (1991), 307-320.
[60] J. Thas, Maximal exterior sets of hyperbolic quadrics: ihe complete classification, J. Comb. Th. A, 56 (1991), 303-308.
G. Lunardon

Dipartimento di Matematica e Applicazioni
"R. Caccioppoli"
Università di Napoli
Via Mezzocannone 8,80134 Napoli (Italy)
A. Pasini

Facoltà di Ingegneria (biennio)
Università di Napoli
Via Claudio 21,80125 Napoli (Italy)
Dipartimento di Matematica
Università di Siena
Via del Capitano 15.53100 Siena (Italy)

