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NATURALLY REDUCTIVE S-MANIFOLDS
AJ. LEDGER, L. VANHECKE

Abstract. We study naturally reductive Riemannian S -manifolds when the endomorphism
field S has no cigenvalue —1. We prove that in dimension four all of them are Kéihlerian.
Further, we determine for general dimensions all such manifolds of constant holomorphic
sectional curvature.

1. INTRODUCTION

Naturally reductive Riemannian S -manifolds have been introduced in [8] as natural gener-
alizations of naturally reductive s-regular manifolds. This last class of manifolds generalizes
symmetric spaces. Also all nearly Kéhler manifolds are naturally reductive S -manifolds and
these last manifolds share a lot of properties with the nearly Kdhler spaces, in particular when
—1 is not an cigenvalue of the endomorphism ficld S. (In this case the naturally reductive
Ricmannian S -manifolds are almost Hermitian manifolds.) For example, in [9] we proved a
Schur-like theorem similar to the one for nearly Kdhler manifolds proved in [10]. See [8] for
more examples.

In this paper we continue our exploration of these proprieties. More specifically, we deter-
minc the four-dimensional ones and prove, just as for the nearly Kdhler manifolds, that they
are all Kéhler manifolds. Further, we prove that the ones of constant holomorphic sectional
curvature are precisely the nearly Kédhler manifolds with the same property.

2. PRELIMINARIES

Let (M,g) be a connected, smooth, n-dimensional Riemannian manifold with Levi-
Civita connection ¥V and Riemann curvature tensor R defined by

Ryy =[Vx,Vy] = v[J:,V]

where X, Y € £ (M), the Lie algbra of smooth vector fields on M .
A Riemannian S -manifolds (M, g, §) 1s a Riemannian manifold (M, g) together with
a (1, 1)-tensor ficld S such that ¢ and VS are §-invariant, that is,

9(SX,8Y) = g(X,Y), (VgxS)SY = 8(V4S)Y

forall X.Y € (M), and I — § is non-singular [8].
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Locally s-regular manifolds ( M, g, s) ar¢ endowed with a so-called s-structure and they
are S-manifolds where S_ = s_.|M_ forall m € M (see [1], [7] for more details). Further,
a quasi-Kiahler manifold is an almost Hermitian manifold ( M, g, J) such that

(VxJ)Y+ (VJXJ)JY - 0,

X, Y € (M), and hence, any quasi-Kdhler manifold is a Riemannian (—%—I + igj) -
manifold. Moreover, 1t 1§ clear that any element of the subclass of Kéhler manifolds (VJ = 0)
is an S -manifold for

(1) S=TIcosf+ Jsiné

where @ is an arbitrary non-zero constant.
Motivated by the study of locally s-regular manifolds, on any Riemannian S -manifold

(M, g,S) we consider the tensor ficld of type (1, 2) defined by
D(X,Y) = DyY = (V(;_g51x9)S7'Y

for all X,Y € 2 (M) . With this tensor ficld we define a connection ¥V by
vV,Y=V,Y -D,Y,
X,Y € (M) . It follows easily that ¥ is a metric connection, or equivalently,

g(DyY,Z2)+ g(Y,DyZ2) =0

forall X,Y,Z € B(M). Moreover, VS = 0. Hence, the eigenvalues of S, regarded as a
ficld of orthogonal endomorphisms, are constant. These eigenvalues have the form

eiiﬂ] — Cl i ial gy E:’:l'ﬂr —_— Cr 4 iSr

where 0 < @,,...,0_ < m, together with —1 as the only possible real eigenvalue.

Assumption. In the rest of this notec we assume that —1 does not occur as an eigenvalue for
any (M, g, S) under consideration.

In this case, associated with 0,,..., 6, , smooth distribution &J; are defined by

) Y r?

Y, = ker(S? — 2¢,5+1).
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Hence, any X € £ ( M) has a unique decomposition into a sum of distribution vector fields,
thatis, X = ) [, X; where X, € &, 1 = 1,...,r. Further, we define smooth projection

1=]

tensor fieldsI; by I,X = X; and finally, an almost complex structure J is defined by

r

J = Ei(si - c;1y),

=1 °F

where S;X = SX, and then, g is almost Hermitian. We call this J the canonical almost
complex structure,

Now, we recall a useful result for an (M, g, S) . It is a consequence of the S -invariance
of VS (see, [8, Lemma 2.5)).

Proposition 1. For any 3,7,k either
a) I:*anj,: O forall Xj,Yk, or
b) cos 8, = cos(0; + «;;,0,) where the only possibilities are
Doajjy=110;+0;+0,=2morb,=0,+0;,and
oayy=—11if0;=0,+6,0r0;,=0,+89,.
In case b) we have
L(JDy X; + a;; Dy JX;) =0

forall X;,Y, .

Motivated by the study of naturally reductive homogeneous spaces (see for example [12])
and of nearly Kdhler manifolds [3], we now turn to a special class of Riemannian S -manifolds.
A Riemannian §-manifold is said to be naturally reductive if the tensor field T° defined by

T(X:Y:Z) = Q(D}(Yr Z):

X,Y, Z € 3(M),is skew-symmetric. Since V is metric, this is equivalent to

forall X € &(M).
It is clear that any K#hler manifold is a naturally reductive S-manifold with S given by
(1). Further, nearly Kédhler manifolds are almost Hermitian manifolds ( M, g, J) such that

(V,J)X =0

forall X € £ (M). (See, for example, [3].) Since such manifolds are automatically quasi-

Kihlerian, it is casy to se¢ that they are all naturally reductive (—%—I + 3251) -manifolds.
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Of course, all naturally reductive locally s-regular manifolds, in particular naturally re-
ductive k-symmetric spaces, provide examples. Some interesting examples are given in [5].
There it is proved that the homogeneous space SU(n)/T,n > 2, where T is a maximal
torus, admits the structure of a naturally reductive almost Hermitian n-symmetric space which
1S not m-symmetric for each m < n. The author also gives other almost Hermitian examples
for SO(n) /T,n > 6 and for Sp(n)/T,n > 1. Finaly, his results are strengthened further
in [6] by considering G /T where G is any connected compact semisimple Lie group.

For the sake of brevity we give the following

Definition. A naturally reductive Riemannian S -manifold without eigenvalue —1 for S will
be called an NRS-manifold in the rest of this paper.

3. NRS-MANIFOLDS OF CONSTANT HOLOMORPHIC SECTIONAL CURVA-
TURE

Since on an NRS-manifold we have an almost Hermitian structure, we consider now the
NRS-manifolds of constant holomorphic sectional curvature. Just as for the real and complex
space forms and for the nearly Kdhler manifolds, their determination relies on a Schur-like
thecorem. We start by recalling this result, proved in [9].

Let &, be an eigenspace distribution on (M, g, S) . We say that &7, has constant holo-
morphic sectional curvature K. if K. is a smooth function on M such that at each point
p € M the sectional curvature K.(P) of every J -invariant two-plane P at p contained in
Y takes the value K;(p). Then we have from [9]

Proposition 2. Let (M,g,S) be an NRS-manifold and suppose & is an eigenspace dis-
tribution of dimension > 2 which has constant holomorphic sectional curvature K; with
respect to the canonical almost complex structure. Then K. is constant on M .

From this we get at once

Corollary 3. Let (M,g,S) be an NRS-manifold with canonical almost complex structure J
and suppose that at least one eigenspace distribution has dimension > 2 . If (M,q,J) has
constant holomorphic sectional curvature K(p) at each point p € M, then K is constant

on M.

Then we have

Theorem 4. Let (M, q,S,J) be an NRS-space of constant holomorphic sectional curvature
with respect to the canonical almost complex structure J and with at least one eigenspace
distribution of dimension > 2. Then (M,q,S,J) is a nearly Kdhler manifold and hence
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locally isometric to a complex space form of constant holomorphic sectional curvature K or
to S®( K) where the last case arises only if S has order 3 (that is, S? = I).

Proof. First we have from [9, (2)] and for a general NRS-space:

R(X.::Y}:Zk: WI) = g( R(X,;; Y:,) Wh Zk) = Zg(Dx‘Yj:DziWI)

(2)

if 1,7, k,l are not all equal.
Next, when the holomorphic sectional curvature is a constant K, we get from [9, (16)]

1
R(Xi:},ﬂzﬂwi) = ZK{Q(-X”Z,)Q(Kiwl) _Q(X::w;)g(}',ﬂz;)
+ 9(X;,JZ))g(Y;, IW}) — g(X;, IW))g(Y,, ] Z;)
+29(X;,IY)g(Z;,JW;) )}
+29(DyY;, D, W,) — g(DxW;, Dy 2)) + g(Dyx Z;, Dy W,).

(3)

Hence, by combining (2) and (3), we obtain

l r
R(X,Y,2,W) = 2K Y {9(X;, Z)9(Y;, W) — 9(X;, W)g(Y;, Z))

y=]
+ Q(X,': JZ{)Q(Y“- JW;) — g( X, JH/{)Q(Y;; JZ;')
(4) +29(X;,JY)9(Z;,JW))}

+2 E{Q(Dxiz.n Dy W;) — 9(Dx W;, Dy Z,) }

i=1
+29(DyY,D,W) —g(DxZ,DyW) + g(DyW, Dy 7).

Thus, we get

(5) R(X,JX,X,JX) = K(g(X,X))* + g(DyJX,DyJX),

where we have used the relation Dxi JX; = 0 which follows at once from Proposition 1.

The hypothesis and () then yield D, JX = 0 forall X € £ (M) . But, since VJ=0,
this is equivalent to (V4 J)X = 0 and so, (M, g,J) is a nearly Kahler manifold. A result
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of A. Gray [4] then implies that ( M, ¢, J) is locally isometric to a complex space form or to
S®.

To prove the last part we note that it follows from aresult in [11] that S%™ never admits an
S -manifold structure where § has more than one eigenspace distribution. Further, forn > 2,
only S® can have an almost complex structure and this is never Kihlerian. So, Proposition
1 then yields 6 = 131 and hence, S has order 3 because # 23—' leads to D = 0, the Kihler

Casc,

Remarks. A. The arguments in the proof imply that S® can never admit a naturally reductive

S -structure of order k£ > 3.
B. It is still an open problem to decide what spaces we have if we suppose that the NRS-

manifold has constant holomorphic sectional curvatures K;,1 < 1 < r,r > 1, without the
assumption that all K are equal.

C. In the case considered above we supposed all K; equal. The most important step in
the proof was to show that the manifold is nearly Kihlerian and in fact, once we know that,
we can avoid the use of our Schur-like theorem. Instead, we may use the similar theorem for
nearly Kihler manifolds proved in [10]. As a consequence we see that Theorem 4 still holds
when we replace the condition on the dimension of at least one eigenspace distribution by the
condition dim M > 4 .

4. FOUR-DIMENSIONAL NRS-MANIFOLDS
In this section we consider four-dimensional NRS-manifolds and prove

Theorem §. A four-dimensional NRS-manifold is Kdhlerian with respect to the canonical
almost complex structure.

6

Proof. First, we suppose that there is only one eigenspace distribution, that is, e** are the

only eigenvalues of S. Then, for 0# 23—' Proposition 1 yields D = 0 and hence, since
VJ=VJ=0, (M,g,J) is Kihlerian. For § = 4% the same proposition gives

which implies (V4 J)X = 0. So (M, g, J) is nearly Kahlerian and then, since any four-
dimensional nearly Kahler space is a Kahler manifold [2], we get again the required result. In
these cases S = Icos @+ Jsin@.

So, we are left with the case of distinct eigenvalues e**% e*'% with corresponding vec-
tor fields X,,JX,, X,,JX, which form a local basis for the distributions &,, %, . Since
Dy X; = Dy JX,; =0 fori=1,2,weget D,Z, =0 forall ¥;,Z;, € &;. Hence, for
177,

Q(DY{W:;HZ:E) = —g(Wj, DHZE) =0
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and
9(DyW;,V;) = —g(Dy, Y;, V) = 9(Y;, Dy, V;) = 0.

So DHW). = (0. Then we obtain again D = 0 and the result follows as before.

(Note that in this last case and since VS = 0, the distribution &, %, are invariant
under parallel transport. Hence, ( M, g, S) 1s locally a product of two 2-dimensional NRS-
manifolds (M, g,,S,) x(M,,g,,S,) where S, is obtained by restricting Sto &;,1=1,2.
We can define J; similarly and then S; = I;cos 6; + J;sin §;. Clearly J; determines an
orientation on M;.)

Remarks. A. It is clear that Proposition 1 implies easily that each NRS-manifold with only
one cigenspace distribution is either a Kdhler manifold or a nearly K4hler space. In the last

case S° = 1.
B. As we noted already, Proposition 1 and the definition yield that

DxiXi=0. DXIJ‘X*I=O

for all X; € &;. Hence, if {E,,s+ = 1,...,dim M} is an orthonormal basis of vectors
spanning the eigenspace distributions, we see that

Y (Vg)E; =0

and so, 62 = 0, where € is the associated Kihler form of the NRS-manifold. This im-
plies that each NRS-manifold is a semi-Ké&hler manifold with respect to the canonical almost

complex structure.
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