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FUZZY PSEUDO-TOPOLOGICAL PROPERTIES AND MAXIMALITY (*)
C. DE MITRI, C. GUIDO

0. INTRODUCTION

It is well known that compact Hausdorff topological spaces are maximal compact.

The maximality property with respect to compactness seems to be rather interesting in
fuzzy topology where it is possible to find a lot of different formulations of fuzzy compactness
axioms and of fuzzy T, separation axioms.

In fact, the simultaneous assumption in fuzzy topology of two axioms that generalize com-
pactness and Hausdorfness, respectively, might be made in such a way that any «fuzzy com-
pact» «fuzzy T’ » fuzzy topological space be maximal «fuzzy compact» (see for example [16]
and [10]).

Therefore an intrinsic characterization of maximal «fuzzy compact» fuzzy topologies
seems to be useful. In this paper we shall give such a characterization for a large class of
properties, namely the fuzzy pseudo-topological properties which verify conditions (1), (2)
and (3) given in section 2.

We believe that one of the most important properties of compact (fuzzy) topological spaces
is the hereditary property with respect to the closed (fuzzy) subsets and, anyway, such a prop-
erty plays an important role within the investigation of maximal (fuzzy) compact (fuzzy)
topological spaces (see [2] for ordinary topological spaces and section 2 below for fuzzy
topological spaces).

In order to formulate the definition of the closed hereditary property of compactlike prop-
erties related to a fuzzy topological space we introduce pseudo-topological properties of fuzzy
subsets as a non-trivial generalization of fuzzy topological properties (see definition 2.1).

It 1s obviously meaningful to say that a given (fuzzy) topological property is hereditary
with respect to some kind of (crisp) subsets or not, by using the subspace (fuzzy) topology.
But this is not the case for fuzzy subsets in a fuzzy topological space, at least in the point-set
(or point-free) lattice-theoretic context (in the sense of Rodabaugh [22]).

In fact, if (X, &) is a fuzzy topological space and Y € IX is any fuzzy subset of X , it is
not clear which is the induced subtopology on Y.

To our knowledge there are at least two different definitions of subtopologies on a fuzzy
subset in a fuzzy topological space ( X, §) .

The first one was given by Foster [6] and used by Sarkar [24]: the fuzzy subtopology on
any fuzzy subset Y C X is defined to be the family 6, = {ANY : A € §}.

This naturally extends the classical definition of a topological subspace obtained by the
trace system of open sets, but it has the drawback that the closed fuzzy sets in ¢, , namely

(*) Work performed under the auspices of the M.U.R.S.T.
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the fuzzy sets obtained by setting Y — (ANY) with A € §, are generally not the traces on
Y of the closed fuzzy sets in §.

Such a drawback was removed in the second definition, that was given by Erceg [5] and
used by Rodabaugh [23].

Erceg modified essentially the notion of the «trace» of a fuzzy set A on a fuzzy set Y';
more precisely he called fuzzy subtopology on Y induced by the fuzzy topology § on L%
the family é, = {A, = (ANY)U(Y NY') : A € 6§}, which is a fuzzy topology on the
lattice &y, = {4, : A € L*}.

In such a fuzzy subtopology the closed fuzzy sets are the «trace» on Y of the closed fuzzy
sets of the whole fuzzy space (X, 9).

Nevertheless, by modifying the definition of the «trace system» of open fuzzy subsets, it
is possible to give further definitions of fuzzy subtopologies. We consider such a possibility
in another paper [4]. The definition of Erceg can be gencralized by using the generalization
of «fuzzy subset» introduced by Artico and Moresco in the category of fuzzes (see [1] sect.
3).

Our conclusion 1s that at this time fuzzy topological properties of fuzzy topological spaces
do not concern unequivocally to fuzzy subsets either in the point-set or in the point-free setting.

In a categorical framework with a given mechanism which associates to any fuzzy set a
fuzzy topological space (as an object of the category), any fuzzy topological property might
be of concern to each fuzzy set too.

But by the constant use of categories of fuzzy topological spaces whose objects have nec-
essarily crisp supports, it often happens that fuzzy topological properties are defined in such
a way that they cannot apply to fuzzy (sub)topological spaces on a non-crisp fuzzy (sub)set.

The above seems to be a good motivation to formalize the idea of considering properties of
fuzzy subsets in a fuzzy topological space ( X, 6) in such a way that they become properties of
the fuzzy topological space provided they are verified by the whole set X (in the point-fuzzy
set context) or by the maximum 1 € L (in the point-free context).

Keeping in mind the applications and the examples we will give in sections 2, 3 and 4, we
formulate our idea in the point-fuzzy set framework using the lattice I, but the same might
be done using a different lattice L and a similar formulation might be done in the point-free
lattice-theoretic setting.

We call fuzzy pseudo-topological property each property that may be of concern to any
fuzzy subset in any fuzzy topological space (X, 8) , and that is preserved under fuzzy home-
omorphic 1mages.

This idea is not essentially new since it can be found in some way in a paper of Sarkar
[24] and, incorrectly from the point of view we present here, in a paper of Lowen [14].

More recently we can refer to Wang (28], whose N -compactness property we consider in
section 3, to Li[11] and Luo [18].



Fuzzy pseudo-topological properties and maximality 305

With a higher fuzzyness level Sostak generalized classical topological properties i.e. by
defining the compactness degree and the connectedness degree of a fuzzy subset in a fuzzy

topological space in the sense of Sostak [26].

Here we consider a class of fuzzy pseudo-topological properties including some definitions
of compactness and we study the problem of maximality of the fuzzy topologies with respect
to the properties of this class.

A new fuzzy pseudo-topological property, S*compactness, is introduced and studied with
several examples.

1. PRELIMINARIES

Let X be a non-empty set; we denote by capital letters, for example A : X — [0,1],
the fuzzy sets on X and by IX, I = [0, 1], the family of all fuzzy sets on X .

We indicate by z, the fuzzy point with support z € X and value a € (0, 1], that is the
fuzzy set suchas z,(t) =0 if t # z and z_(z) = a.

The complement A’ of a fuzzy set A is defined by A'(z) = 1 — A(z)Vz € X.

If {A; : j € J} is a family of fuzzy sets on X, the union and the intersection are de-
fined, respectively, by the formulae (UJ-E_,Aj)(m) = sup{AJ-(z) :j € J} and (njE_,Aj) =
inf{A,(z):j€J} Vz€X.

Moreover, if A and B are two fuzzy sets on X , we call A over B the fuzzy set defined
by (AAB)(z) = A(z) if A(z) > B(z) and (AAB)(z) = 0 if A(z) < B(z). The
fuzzy set AA B was denoted by A ~ B in [19].

We say that A is includedin B, A C B, if A(z) < B(z)Vz € X. If the fuzzy point
z, is included in A, we say also that z_, belongs to A and write z_, € A.

A fuzzy set A is called a crisp set if A(z) € {0,1}Vz € X. From now on we identify
a crisp set with 1ts support so that all the subsets of X we consider are fuzzy sets included in
X.

Let f: X — Y beafunction from X to Y'; forany A and B fuzzy sets given in X
and Y respectively, we define the image f(A) of A by f to be the fuzzy set in Y such as
f(A)(y) = sup{A(z) : f(z) =y} if y € f(X) and f(A)(y) =0 if y ¢ f(X),and call
inverse image of B by f the fuzzy setin X f~'(B) = Bo f.

Following Chang [3] we consider a fuzzy topology é on X to be a family of fuzzy sets
on X containing the fuzzy sets ¢ and X and closed under unioins and finite intersections.
The fuzzy sets belonging to & are said to be open, their complements closed.

A fuzzy topology containing all the constant functions of IX (i.e. a fuzzy topology in the
scnse of Lowen [14]) is usually called stratified (it was called fuzzy stratified by Pu and Liu

[20] and laminated by Sostak [27]).
We say that the fuzzy topology < is coarser than the fuzzy topology &, or é finer than +,
if v C 6; we shall call § a refinement of ~ too.
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If Aisafuzzysetin X and 6 1s a fuzzy topology on X , we denote by cl( A) the closure
of A in 8, that is the smallest closed fuzzy set containing A.

6(A) denotes the simple extension of 6 by A, that is the fuzzy topology whose elements
are the fuzzy sets O = RU(SNA) whenever R, S € 6. 6(A) is the coarsest fuzzy topology
containing A and all the members of §.

Let (X,8) and (Y,~) be two fuzzy topological spaces, or fts for short, we say that
the function f : X — Y is fuzzy continuous if f~'(B) € § VB € . Moreover we say
that f is a fuzzy homeomorphism if f is a fuzzy continuous bijective map of X onto Y
such as the inverse map f~! : Y — X is fuzzy continuous too. f is called fuzzy open if
f(A) eqVA €.

We say that the fts (X, ) is T\ if every fuzzy pointin X is closed for & (see [19], [24]
and others).

(X, 6) istobe T, if for every pair of fuzzy points z, and yg4 such as z # y there exist
closed fuzzy sets P, not containing z, and P, not containing y4 suchas P, UP, = X (see

for example [19] and [28]).

2. FUZZY PSEUDO-TOPOLOGICAL PROPERTIES AND MAXIMALITY

Definition 2.1. We call fuzzy pseudo-topological property, fptp for short, a function &
which associates to each fts (X, 8) afunction $(X,8) from the set I* to {0,1} in such
away that, if (X,8) and (Y,n) aretwo fts'sand f: X — Y is afuzzy homeomorphism,
ane has P(X,8)(A) = A(Y,y)(f(A)),VA € I, i.e. the diagram

Ix f ’ IY
QD(X,N /95(1’, )
{0,1}
is commutative, if f is the function defined by f(A) = f(A) VA € IX.

We shall suggest some generalizations of this definition at the end of this section.
Now we produce trivial examples of fptp's.

Example 2.1. We obtain fptp's @, &, & by setting, respectively, for any fts( X, 6) and for
any fuzzy set A on X,

@(X,6)(A)=1(=0)if Acé(A é ),

F(X,6)(A) = 1(=0) if A €6(A ¢56),
D(X,6)(A) = 1(=0) if Ais a dense fuzzy set in X, i.e.cl(A) = X
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(otherwise).

We shall provide in the sequel non-trivial examples.

If % is an fptp and ¢ is a fuzzy topology on X , we say that a fuzzy set A C X satisfies
Fford,ordis Pin A,iff P(X,8)(A) =1.

In particular, when X satisfies &2 for §, we say that (X, §) is a £fts.

Obviously two fptp's P, and 9, coincide (in U) iff Vfts(X,8) and VA € I*X one
has 2, (X, 8)(A) = (X, 8)(A). In other words, &, coincides with &2, iff the fuzzy
sets which satisfy 9°, for § are exactly the ones that satisfy 9%, for §, whatever may be the
fts(X,0).

Definition 2.2. A fuzzy topology § onaset X is said to be maximal with respect to the fptp P
(for X ), or maximal &P (in X ), if P(X,8)(X) =1 and P(X,y)(X) = 0 whenever ~ is
a proper refinement of 6(y D 6).

If (X,6)(X) = 1 and from P(X,4)(X) = 1 it follows that v C 6 for each
fts(X,~), then we say that § is maximum % (in X ).

More briefly we can say that the fts(X,6) is maximal 9 or maximum & respectively.

Obviously an fts( X, ) fuzzy homeomorphic toa maximal 2 (maximum £2) fts(X, §)
is maximal 22 (maximum £°) too.

It is easy to show what follows.

Proposition 2.1. Let (X,6) be a P fts, the following conditions are equivalent:

i) (X,6) is maximum & (maximal P);

i) every (fuzzy continuous) bijection g : (X,vy) — (X, 8) isfuzzy open if (X,) satis-
fies P,

iii) every (fuzzy continuous) bijection f : (Y,ny) — (X,0) isfuzzy openif (Y,) satis-
fies P. .

Analogous definitions and considerations can be made for the minimality with respect to
P.

Morecover it can be shown that there exist two fptp's 22 and &2 such as (X, ) maximum
& and minimum £ (maximal 2 and minimal &?) iff every (fuzzy continuous) bijection
f:(X,8) — (X, &) is ahomeomorfism.

These considerations generalize analogous well known properties of the ordinary topolo-
gies (see [2]) and they have been used by Lowen [16] who studied the class of Hausdorff
compact stratified fuzzy topologies.

From now on 2 will denote an fptp which verifies the following properties (1), (2), (3)
and sometime (4) for every fts(X,¥8).
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(1) (&2 isclosed hereditary). If Y C X is 92 for § and F C Y isclosedin §, then F
is %2 for §.

(2) (£ iscontractive). If Y C X is 48 for § and 4 C & is another fuzzy topology on
X,thenY is % for 4.

(3) If X is J2 for 6§ and A is a fuzzy set of X such as the complement A’ is %2 for §,
then X is %8 for 6( A).

(4) If z_ is a fuzzy point of X , then z_ is F& for §.

Trivially if & is a contractive fptp and (X,6) is a Pfts, then (X, §) is maximal &
iff P(X,6(A))(X) =0 whenever A ¢ 8.

Furthermore we prove the following results which generalize analogous properties of or-
dinary topologies (see [2]).

Proposition 2.2, Let 2 be an fptp satisfying conditions (1), (2), (3) and let (X, 6) be an
9% fts. Then (X, 8) is maximal 98 iff the closed fuzzy sets of X in & are exactly the 98
fuzzy sets of X for & (thatisiff 28(X,8) = #(X,6) ).

Proof. Let (X,6) be maximal 42 . If P is closed in §, by (1) P is also 42 for §. Now
suppose P is 48 for §, then X is 2 for §( P') D & by (3). But since (X, 6) is maximal
F2 ,itmust be §( P') = §, hence P isclosedin §.

Conversely, let the closed fuzzy sets in § be the 8 fuzzy subsets for . If there were an
% fuzzy topology ~ strictly finer than § in X, then we could consider A € v — &. Then
A’ would be closed in ~y, hence it would be % for « and it should be % for §. But from
A ¢ & it would follow that A’ is not closed in &, a contradiction, .

Proposition 2.3. Let 98 be an fptp satisfying the conditions (1), (2),(3), (4)and (X, d) be
an fts. If (X,6) is maximal 9% ,then (X,6) is T).

Proof. 1t follows trivially from proposition 2.2, .
We shall now define the notion of maximality of a fuzzy subset of X with respect to an
fotp %% satisfying (1), (2) and (3).

Definition 2.3. If (X,6) isan fts and' Y C X is a fuzzy set, we say that § is maximal 5%
inY if Y is # for 6§ and VF CY onehas F' € § <= #£(X,86)(F) = 1.

It is easily seen that if § is maximal %8 inY and if P isclosed in é,then PNY is
closedin § and PNY is % for é. In particular Y is closed in § and the closed fuzzy scts
of & contained in Y are the traces on Y of the closed fuzzy sets in 4.

It is clear moreover that § is maximal .28 in X according to the definition 2.3 iff (X, 6)
is maximal % according to definition 2.2,

We prove now the following results, where (X, 6) isan fts and Y, T are fuzzy sets on

X.
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",

Proposition 2.4. If 6§ is maximal # inY and TCY
inT.

ISR Jor 8, then & is maximal R

Proof. From the hypothesis it follows that every fuzzy set F' C T is closed in § iff F is %
for §,since FF CY and § is maximal 48 inY . &

Corollary 2.1. If (X, 6) is maximal F8 , § is maximal J8 in each fuzzy subset Y C X
which is % for §. =

Proposition 2.5. Let §,, & be fuzzy topologies on X , &, C &, and let §, be maximal 9%
inY and'Y be J& for §. Then 6 is maximal #8 inY and & and 6, have the same closed
fuzzy setsin'Y .

Proof. We assume F C Y . If F is closed for §,by (1) F is 98 for & since Y is %8 for §.
If Fis J& for &, by (2)itis also # for §,, which is maximal 48 in Y ; so F is closed for
8§, and, of course, F' is closed for §. Thus § is maximal % inY.

If F is closed for &, then F' is 8 for é and also fo §, , hence F is closed for §, too.
Therefore é and §, have the same closed fuzzy setsin Y. &

Now we introduce a new condition attributable toan fptp %8 . Clearly it will be a strenght-
ening of the condition (3).

(3°) IfthefuzzysetY C X is 48 for the fuzzy topology & on X and A is a fuzzy setin
X suchas A’ is % for 6 and A’ C Y,thenY is 42 also with respect to the fuzzy topology
6(A).

Proposition 2.6. If % verifies the conditions (1), (2), (3'),if Y C X is # for § and if
VF CY onehasthat F is %8 for § iff F isthetraceon'Y of a closed fuzzy set of 6, then
the simple extension 6(Y') is maximal %8 inY .

Proof, Since Y is % for §, it follows from (3’) that Y is J8 for §(Y") ; furthermore Y
is closed for 6(Y'). So,if F C Y is # for 6(Y'),itis % for § too and there exists P
closedin § suchas F = PNY. Evidently both P and Y are closed in §(Y') hence F is
closed in §(Y") . Since each closed fuzzy set of 6(Y') containedin Y is %2 for 6(Y'), we
conclude that §(Y') is maximal %2 inY . 3

Proposition 2.7. Let 9% be an fptp satisfying (1), (2) and (3’), (X,8) be an fts and
Y C X be a fuzzy set. Then § is maximal 8 inY iff Y is 98 for 6 and Y is not %8 for
§(G) whenever G ¢ 6§ and G' C Y.

Proof. (Necessity). Consider G ¢ 6, G' C Y, if §(G) were £ in Y , then, by proposition
2.5, 8(G@) would be maximal 42 in Y and it would have the same closed fuzzy sets as &
within Y . Since & is closed in §( G) we would have that G’ is closed in §, which is absurd.
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(Sufficiency). Every fuzzy set FF C Y closed in 6 is % for §, since Y is % for §.
Conversely, if F C Y is 48 for &, then F is closed in §. Otherwise let G = F' be the
complement of F'; then we should have G ¢ 6§ and G' C Y, so that Y would not be % for
6(G) ; on the other hand, since G’ is %2 for § and G' C Y, from (3") it would follow that
Y is %8 for 6(G), which is impossible. -

We conclude this section by suggesting some generalizations of the definition 2.1 (for the
definitions not given in section 1 we shall refer expressely to some papers listed among the
references).

The first one may be given in the category FUZZ considered by Rodabaugh in [22] and
including subcategories that can be identified with the categories of Chang-Goguen (point-set
lattice-theoretic) fts's or of Lowen (stratified) fts's or of Hutton (point-free) fts's respec-
tively.

Definition 2.4. A FUZZ pseudo-topological property is a function 9 which assignes to each
object (X,L,T) of FUZZ a function from L* to {0,1} in such a way that for every F—
-homeomorphism ( f, ) from (X, L, T) to another fts(Y, M, o) the diagram.

LX 7 . MY
gﬂ(x,L,\ /ﬂ(i’. M,0)
{0,1}

commutes, where f(u) = p o }"_l € MY, Yu € LX and the minimum 0 and the maximum 1

of the lattices L and M are identified.
When & is defined in a subcategory & of FUZZ, it is called a restricted FUZZ pseudo-

topological property (relative to & ).

The definitions 2.1 and 2.4 may be generalized by using the whole lattices I, L, M
instead of their trivial sublattice {0,1}.

Definition 2.1°. A generalized fuzzy pseudo-topological property is a function 9° which as-
sociates to each fts(X,8) afunction $(X,8) from the set I* to I in such a way that
every fuzzy homeomorphism from (X,8) to (Y,~) induces a commutative diagram like in
definition 2.1

IX

f Ir
>
?(X,N /g""(Y,'r)

I
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Definition 2.4°. A generalized fuzzy pseudo-topological property is a function 9° which as-
sociales to each object (X, L,T) of FUZZ a function from L% to L in such a way that every
F-homeomorphism ( f, ) between two arbitrarily given objects (X,L,T) and (Y, M, o)

induces the below commutative diagram, where f is obtained like in definition 2.4

LX f MY

>

A(X,L,T) P(Y, M, 0)

w w

>

L © M

Remark. The degree of openess, the degree of closcedness, the compactness degree and the

conncctdness degree considered by Sostak (see [25], [26]) define in a trivial way generalized
fuzzy pscudo-topological properties in the category 3F(I) (see [22]) of Chang fts's as

well as in the category FT (see [25]) of Sostak fts's.

An L-fuzzy topology on X inthe sense of Sostak [27] (see also [25]) may be considered as
the image of an object ( X, L, ) of FUZZ by a suitable generalized FUZZ pseudo-topological

property.

3. SOME KNOWN FUZZY PSEUDO-TOPOLOGICAL PROPERTIES
We recall some dcfinitions given by G. J. Wang [28].

Definition 3.1. A closed fuzzy set P of an fts is called remoted-neighborhood of the fuzzy
pointe=z_ifzx_¢& P.

The family of all the remoted-neighborhoods of e is indicated by n(e).

Definition 3.2. If D is the set of all the fuzzy points of X , a fuzzy net § = {S(n) : n € D}
isamap S : D — E,where (D, >) is adirected set.

The fuzzy net S is said to be an a-net, o € (0,1], if the net {\_ : n € D} converges
to o, where X is the value of the fuzzy point §5(n) .

Definition 3.3. We say that the fuzzy point e is a cluster point of the fuzzy net S if VP € n(e)
and NYm € D thereisn>m,n€ D,s.t. S(n) ¢ P.

Definition 3.4. If (X,08) isan fls and A isa fuzzy setin X , we assume that A is N-com-
pact for § if for each o« € (0, 1] and for each a-net S contained in A there existsin A a
cluster point S of value «.

(X, 6) is called N -compact if X is N-compact for .

Obviously N-compactness is an fptp which is closed hereditary (see [28]).
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Moreover it is plain to show that this fptp is contractive and that every fuzzy point of an
fts(X,8) is N-compact for §.

Therefore N-compactness verifies the properties (1), (2) and (4) of the preceding scction.,
We shall prove also that condition (3’) is true.

Proposition 3.1. Let (X,8) bean fts and Y C X a fuzzy set which is N-compact for §.
If the fuzzy set A C X issuchas A" is N-compact for § and A' CY ,thenY is N-compact
for 6( A) too.

Proof. Take a € (0,1)] and take S = {S(n) : n € D} an «-net contained in Y. We
distinguish between two cases.

Case a) Suppose that there exists ny € D so that Vn > ny one has S(n) ¢ A’. Since
Y is N-compact for §, thereis £, € Y cluster point for S(n) withrespectto §. Now let F
beclosedin 6(A) and z_, ¢ F;itisknown thatitcan be writtenas F = PN(QUA'), where
P and Q areclosed in §. It follows from z_ ¢ F thateitherz, ¢ Porz_ ¢ QUA’.

If z, ¢ P, since z_ is a cluster point for S with respect to §, one has S(n) ¢ P
frequently, and hence S(n) ¢ F frequently.

If instead z, ¢ Q U A’ and m is any element of D, take an element r € D such as
r>mand r > n,. Since z, ¢ Q and z_ is a cluster point for S with respect to §, there
is n > r suchas S(n) ¢ Q; onthe other hand Vn > r > ny it results clearly S(n) ¢ A’,
then it must be S(n) ¢ Q U A’ and consequently S(n) ¢ F.

So we verified that z_, is a cluster point for S with respect to 6( A) in the case a).

Case b) The other possibility is that for every n € D there exists k > n suchas S(k) €
A'. Theset E = {k € D: S(k) € A’} is then a cofinal subset of D and {S(k) : k € E}
is a subnet of {S(n) : n € D}; we denote this subnet by T, so that T'(k) = S(k) Vk € E.

If A, is the value of the fuzzy point S(m) , itis clear that the net {)\, : k € E} converges
to ar; thus T is an a-net. Since T is included in A’ and A’ is N-compact with respect to
6, there is a fuzzy point z_ of value o, z, € A’ C Y, which is a cluster point for T with
respect to §.

We shall prove that z_ is a cluster point for T" with respect to 6( A) too.

Infact,let F= PN(QUA'), where P and Q are closed in §, be a closed fuzzy set in
6(A) with z ¢ F. It follows from z, € A’ C QU A’ that z, ¢ P. Since z_ is a cluster
point for T" with respect to §, we know that T'(k) ¢ P frequently and hence T'(k) ¢ F
frequently. Now it is clear that a property which is frequently verified in a cofinal subset of a
directed set is still frequently true in the directed set, so we conclude that z_ is a cluster point
for S with respect to 6( A) in the case b) too. m

We refer now to some definitions given by Z. F. Li [11] and recalled by M. K. Luo [18].
As usual, we consider an ordinary non-empty set X , its fuzzy subsets and a fuzzy topology
& on X , when the need arises.
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Definition 3.5. Wesaythat {U;:j € J},U,; C X ,isan a-Q-coverof Y C X ,a € (0,1],
fvre X st. Y(z) 2a JjeJ st U(z) >1-a.

Y issaidto be Q_-compact for &, a € (0, 1], if every open a-Q-cover of Y has a finite
a-Q-subcover of Y .
Y is called strong-Q-compact for § if Y is Q_-compact for each a € (0, 1].

It is plain that a family of fuzzy sets is an a-Q-cover of X iff it is an (1 — «)-shading
and hence ( X, 6) is Q_-compact (strong-Q-compact) iff it is (1 — ) -compact (strong fuzzy
compact) (see [15] for the definitions we have not given).

It can be verified that the strong-Q-compactness is an fptp and it satisfies the conditions
(1), (2), (4) given in the preceding section,

We prove that the condition (3°) holds too.

Proposition 3.2. IfY C X is strong-Q-compact for the fuzzy topology 6 on X and A C X
has a strong-Q-compact complement A' CY , then'Y is strong-Q-compact for §( A) .

Proof. Let a € (0,1] and let {V, U(W; N A) :j € J} be anopen a-Q-cover of Y, with
V., W;eéVjel.
{Vj : J € J} is an a-Q-cover of A'; in fact it follows from A'(z) > a that Y(z) > o

and, since (ANW;)(z) < A(z) <1 —-aVje J,some; € J mustbe such as Vi(z) >
l — «.

By the assumption that A’ is strong-Q-compact for §, we can find a finite subset J, C J
suchas {V; : j € J,} isan a-Q-cover of A’. Ontheotherhand {V; : j € J}U{W; : j € J}
1s trivially an open a-Q-cover of the strong-Q-compact subset Y for §. Hence there exist
finite subsets J,,J; C J suchas {V;:j e J,}U{W,:j € J3} isan a-Q-cover of Y.

If we consider the finite set H = J, UJ, U J,, then we have the finite a-Q-cover of Y’
{(V;u(W,nA):je H}.

Infactlet z € X besuchas Y(z) > a. Suppose A'(z) > «,then j € J, exists with
V;(z) > 1 — « and consequently (V; U(W; N A))(z) > 1 — a. Ifotherwise A'(z) < a,
ie. A(z) > 1 —a,then ) € J, UJ; C H exists such as either L}(z) >1—-—aor
W,;(z) > 1 -« andanyway (V;U(W;NA))(z) > 1-a. =

Other examples of fptp's can be found in [24], [18] and [14], but none of them verifies
all the conditions (1), (2), (3), (4) togheter.

In fact Sarkar showed that proper compactness is not closed hereditary and it is obvious
that neither S x -paracompactness nor S-paracompactness are contractive (see [18]).

The fuzzy compaactness property of the subsets of an fts given in [14] is not jet closed
hereditary. Furthermore we remark that the fuzzy compactness of the fts(X, §) defined by
Lowen [14] is not equivalent to the fuzzy compactness of the fuzzy set X with respect to 6.
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In the next section we are going to study an fptp which does not verify the condition (3°)
but verifies all the conditions (1), (2), (3), (4).

Zhao [30], Liu and LUo [12], [13] considered N-compactness in L-fts’s i.e. essentially
in the category &3 (L) with a subcategory of FUZZ, like in [22], N-compaciness can be
viewed as a restricted FUZZ pseudo-topological property (see definition 2.4).

4. S*COMPACTNESS

Definition 4.1. Let (X,6) bean fts and A C X a fuzzy set. We say that the family {Uj :
J € J} offuzzy setsin X isan(openin §)A*shading if Vz € X 3j € J s5.t. U;(z) > A(x)
(andU; € 6,Vj € J).

In this case we say that {U; : j € J} is a *shading of A too.

If U, isacrispset Vj € J orif J is finite, then an A*shading is nothing else than a cover
of A or, as also we will say, an A-cover.

Definition 4.2, We say that the fuzzy set Y C X is S*compact for b if, given an arbitrary
closed fuzzy set P in &, every open *shading in § of PNY orof PAY' orof (PNY)AY'
has a finite *subshading of PNY orof PAY' orof (PNY)AY' respectively.

Trivially (X, 8) is S*compact iff for each closed fuzzy set P in é and for each open
P*shading in é there exists a finite P*subshading.

Furthermore, if (X, §) is an ordinary topological space and Y C X is an ordinary subset,
then Y is S*compact for 6 iff Y is a compact subset in the topological space (X, §8) .

It is easily seen that the notion of S*compactness is an fptp fulfilling the conditions (2)
and (4). We will show that this fptp verifies also the conditions (1) and (3).

Proposition 4.1. If Y C X is S*compact for the fuzzy topology 6 on X and FF C Y is
closed for &, then F is S*¥compact for §.

Proof, Let P C X beclosedin § and §' be the family of closed subsets in §. If {U;:7€J}

is an open F' N P * shading in § and if we take Q = FN P € §, then we have that
FNP=YNQand {U;:j € J}isan (Y NQ) *shading open in § which of course has
a finite *subshadingof Y N Q,iec.of FNP.

If {V,: k€ K} isan (PAF') » shading openin §,then {V, : k € K}U{F'} isa
(PAY') * shading openin §. If {V},...,V,, F'} is a finite (PAY') * subshading, then
{Vi,...,V,} is afinite (PA F') % subshading .

Ifeventually {W, : h € H} isa ((PNF)A F') xshading openin §, then by noting that
Q = PNF € §,one defines, as in the preceding case, a finite (( PN F)A F') » subshading .
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Proposition 4.2. If (X,6) is S*compact and the fuzzy set A C X has its complement A’
S*compact for &, then (X,8(A)) is S*compact.

Proof. Let Q = FU(GNA') beclosed in §( A) , with F, G € §', and take an open Q*shading
in §(A), A ={U;U(V;NA):jeJ}. '

Obviously .# is an open F*shading in 6( A). In particular {Uj : J € J} is an open
(FA A) = shading in § and, since A’ is S*compact for &, there exists J, C J finite such as
{U;:j € J}isan (FA A) » subshading .

Morcover {U; : j € J}U{V, : j € J} is an open F*shading in § and since F is closed
thence S*compact for §, there are finite subsets J,,J; C J suchas {U; : j € J,}U{V;:
j € J3} is an F*subshading.

Let K = J, UJ, UJy; weknow that {U,U(V,NA) : k € K} is afinite F*subshading
of 4.

Infactif z € X and if 3k € K suchas U,(z) > F(z),then (U, U(V,NA))(z) >
F(zx),ifinstead U, (z) < F(z) Vk € K, thenitmustbe F(z) < A(z) and it results that
V,(z) > F(z) forsome h € K.

Consequently (V, N A)(z) > F(z) andso (U, U(V,NA))(z) > F(z).

On the other hand £ is an open (G N A’) * shading in §(A) and, in particular, {U; :
jeJ}yand {U;:j e J}U{V,:j € J} arerespectively a ((G'N A) A A) * shading and a
(G N A") » shading which are open in §.

Let J{,J3,J3 befinite subsets of J suchas {U; : j € J1},{U; : j € [ JU{V; :j € J3}
are a ((GNA)A A) »subshading and a (G N A’) » subshading respectively.

As in the preceding case it can be verified that {U,U(V,NA) : h€ H}, H = J]UJ;UJ3,
is a finite (G'N A’) * subshading .

Itis clear that {U, U(V;NA) : 1 € L} is afinite Q*subshadingof A4 f L= KUH .=

Now we give some examples which show that the notion of S*compactness is indipendent
from those we considered in the preceding section and it does not satisfy condition (3°).

Example 4.1. Let N be the set of positive integers and denote by §, the fuzzy topology on
N whose open sets are the sequences A : N — [0, 1] converging and having their limit as
upper bound. Obviously the fuzzy topology 4, is stratified.

Consider the unit interval I = [0, 1] and let §; be the fuzzy topology on I having as
open fuzzy sets I and the functions that take their values in the interval [0,1/3].

Denote by 6, the fuzzy topology on I whose open fuzzy sets different from I and ¢ are
the functions assuming their values in the interval [3 /4,4 /5].

With regard to the examples 5.1 and 5.2 of [28] we observe that the first one provides a
space which is neither N-compact nor S*compact, while in the second one a space which is
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both N-compact and S*compact is given.

The space (N, §,) i1s a-compact for each a € [0, 1), s0 it is strong fuzzy compact [15]
and strong-Q-compact [11]. Since every closed fuzzy set in §, has a maximum it follows
from theorem 5.3 of [28] that (N, d) is N-compact.

Nevertheless (N, d,) is not S*compact. In fact, let A be a sequence converging to 1 and
such as A(z) < 1Vx € N, and let, foreach y € N, Aj(j) = ] and Aj(n:) = A(z) if

T # 7; we obtain an open N*shading {AJ,- : J € N'} which has no finite N*subshading.

The spaces (I, 6,) and (I,d,) are S*compact but none of them is strong-Q-compact or
strong fuzzy compact and thence they are not N-compact.

In particular (I,4,) is not Q_-compact if a« € (2/3,1] and it is not a-compact if
o€ (0,1/3].

We remark that a fuzzy set Y C I is S*compact for §, if z € I exists suchas Y(z) >
4 /5 orif Y takes its values in the interval (3 /5,4 /5] at most in a finite number of elements
of I.

Now let Y be the fuzzy seton I suchas Y(1) = 9/10 and Y(z) = 7/10 if x # 1,
and let A be the fuzzy set defined by A(z) = (2z+3)/5,Vz € I.

Obviously A' C Y and both A’ and Y are S*compact for §, . But Y is not S*compact
for the simple extension 4, (A) . In fact consider the fuzzy sets A_, z € [0, 1), defined by
A (z) =Y (z) and A_(t) =3/5 if t # x; the family {A} U {A, : z € [0,1)} is an open
Y*shading in §, (A) which has no finite Y*subshading.

Therefare the S*compactness property does not satisfy the condition (3°).

A drawback of S*compactness is that in general it is not preserved under continuous im-
ages as the following example shows.

We shall prove in the sequel that in some meaningful cases, for example when injective
functions or crisp subsets are considered, given a fuzzy continuous function f between two
fts's (X,8) and (Z,~) and considered a fuzzy set Y C X which is S*compact for §, then
the image f(Y) of Y is S*compact.

Example 4.2, Let 6 be the fuzzy topology on the unit interval I whose open fuzzy sets are
I and all the functions A : I — I suchas A(1) =0, A(z) <z Vz # 1,andlct 4 be
the fuzzy topology on I having as open fuzzy sets I and the functions B : I — I such as
B(z) <z Vzel.

Furthermore let f : I — [ be the function defined by f(1) =0 and f(z) =z Vz # 1.

Clearly f:(1,6) — (I,~) is fuzzy continuous and, if Y : I — [ is the fuzzy scton |
defined by Y(z) = z, thenits image, f(Y) : I — I,isdefinedby f(Y)(z) =z if £ # 1
and f(Y)(1) =0.

However f(Y) is not S*compact for « although Y is S*compact for §.

Lemma 4.1. Let f : X — Z be a function between ordinary sets. Let A C X, B C Z,
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W;CZ,T, C Z befuzzy subsets for j € J and h € H.

If {W;:j €J}isan (f(A) N B)  shading, then {f~' (W) : j € J} isan (AN
f~Y(B)) * shading . |

If {T, : h € H} is a (BAf(A)'") * shading, then {f'(T,) : h € H} isan
(f~Y(B)A A") = shading .
Proof. Suppose that Vz € Z Jj € J suchas W,(2) > (f(A) N B)(2) and take z, € X.

If 2y = f(z,) and W; (24) 2 (f(A) N B)(z,) where j, € J, then f‘I(WL)(mU) =
W; (2y) > inf {sup{A(z) : f(z) = 2}, B(f(%,))} > inf {A(zy), f7(B)(z4)} =
(AN f~1(B))(z,) ,hence {f~1(W,) : j € J} isan (AN f~1(B)) * shading.

Now suppose that Vz € Z 3h € H suchas T, (z) > (BN f(A)")(z) and fix z, € X

If 2, = f(z,) and T, (2,) > (BAf(A)')(z,) where ho € H, then it must result
FUT(xy) >0=(f1(B)AA")(z,) Vh € H whenever f~1(B)(z,) < A'(z,).

When instead f~'(B)(xy) > A'(zy), thern B(zy) = B(f(z9)) = f~1(B)(z4) >
A(zy) > inf{A'(z) : f(z) = 2,} = f(A)'(24); it follows that f~1(T} )(z,) =
Tho(20) > (BAf(A))(2y) = B(2zy) = B(f(zy)) = f1(B)(z) = (f1(B)AA)
(zo).

In any case f~1(T, ) (zy) > (fH(B)AA)(zy), 50 {f~'(T}) : h € H} is an
(f~1(B)A A") = shading . =

Lemmad4.2. Let f : X — Z be a function between ordinary sets. Let AC Z, B C X,
U, C Z,V; C Z be fuzzy subsetswith k € K and j € J.

If {f7"(U) : k€ K}isan (f~'(A) N B)-coverthen {U, : k € K} isan (AN
f(B))-cover.

If {f“(%{,‘) :j € J}Yisan (f~1(A)AB')-cover, fhen{{@ +j € J}isan (AA f(B)")
-Cover. .

Proof. Suppose that Vz € X sup{f~1(U)(z) : k € K} > (f~1(A) N B)(z) and fix
2 € 7. |

If f~'(2) = ¢ then 0= f(B)(2) = (AN f(B))(2) <sup{U,(2) : k € K}.

If instead f~'(2) # ¢, then, Vz € X such as f(x) = z, one has sup{U,)(2) : k €
K} =sup{f~ N (U (z) : k€ K} > inf {f1(A)(z),(B)(z)},so we have sup{U,)(2) :

k€ K} >inf {A(2), sup{B(z) : f(z) = z}} = inf {A(2), f(B)(2)} = (ANf(B))(2).
Anyway {U, : k € K} isan (AN f(B))-cover.

Now by supposing that sup{f‘l(Vj)(m) 17 €J} > (fI(AAB)Y(z) Vz € X we
shall prove that {V; : j € J} is a cover of AA f( B)'.
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Excluding the trivial cases when (AA f(B)')(z) = 0, it is sufficient to show that sup
{I/}(z) : ) € J} > A(2) V2 € Z suchas A(z) > f(B)'(2), thatis Vz € Z such as
f~1(2) # ¢ and A(2) > inf {B'(z) : f(z) = 2}.

Let z, be such an element of Z; we know that there 1s z, € X suchas f(z,) = z, and
FH(A)(x9) = A(zp) > B'(z4), hence (f~1(A)AB')(z4) = f~' (A)(zp).

Then we have sup{V; : j € J} = sup{f~"(V})(z) : J € J} > (F " (A)AB')(z,) =

ful(A)(In) = A(zu) — (Aﬁf(B)!)(zg) .
Therefore {V, : j € J} isacoverof AA f(B)'. m

Proposition 4.3. Let (X,8) and (Z,v) be two fts's, f : X — Z a fuzzy continuous
functionand Y C X a fuzzy setin X .

If Y is S*compact for § and if f~' (PN f(Y)AY' = (f~'(P) NY)AY' whenever
P' € ~, then f(Y) is S*compact for .

Proof. 1t follows immediately from lemma 4.1 and lemma 4.2 that every open *shading in ~
of either PN f(Y) or PA f(Y)' has a finite *subshading of either PN f(Y) or PA f(Y)',

respectively, whenever P’ € .
Moreover the two lemmas 4.1 and 4.2 and the condition given in the assumpuon allow us to

say thatevery open (( PNf(Y))A f(Y)')xshading in 4 has a finite ((PNf(Y))A f(Y)') *
subshading . o

Remark. We notice that the hypothesis of the preceding proposition is verified by every
S*compact subset Y C X for § if f is an injective function and it is verified 100, whatever
is the fuzzy continuous function f, if the fuzzy S*compact set Y 1s crisp or it is saturatced
with respectto f (i.e. f~H(f(Y)) =Y).

The theorem can also be proved by assuming that the S*compact fuzzy set Y has its
saturated f~'( f(Y)) which is S*compact for §.

In particular we have the following.

Corollary 4.1. Let f be a continuous function between two fts's (X,6) and (Z,~) and
let Y C X be any crisp subset of X .

If'Y 1s S*compact for & then f(Y') is S*compact for ~. =
In a stratified fts (X,8) the T, axiom defined in the first section can be formulated 1n

several equivalent ways according to the definitions given by Pu and Liu [19], Wang [28] and
Lowen [16] (see also [17]).

In Sarkar [24] a Hausdorff axiom, or F' — T, axiom, which requires the following two
conditions, 1s defined.
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(D Vz #yin X and Va,B € (0,1] 3V,W € 6 suchas V(z) > a, clg(V)(y) < B
while W(y) > 8, cls(W)(z) < «a;

(II) Ve X and V0 < a< < 13U €dsuchas U(z) > a and cl(U)(y) < B.

Clearly a T, fts satisfies the condition (I) and a stratified fts satisfies the condition (II).

Sarkar showed that if Y C X is a properly compact fuzzy set for é and if ( X, §) verifies
the F' — T, axiom, then Y is closed in §.

Moreover it is plain that in every fts the S*compact fuzzy sets are properly compact and
hence it is easy to obtain the following result.

Proposition 4.4. If (X, 6) verifies the conditions (I) and (II) and Y C X is S*compact for
o, then & is maximal S*compactinY . B

Lowen [16] proved that a stratified fuzzy compact T, fts is maximal fuzzy compact.

On the other hand Wang proved in [28] thatina T}, fts fuzzy compactness, N— com-
pactness, ultrafuzzy compactness and strong fuzzy compactness are equivalent and hence
strong-Q-compactness is equivalent to this properties too (all these properties are intended to
refer to the whole space (X, 8) of course).

So we have the following.

Proposition 4.5. A stratified fuzzy compact T, fts (X,0d) is maximal with respect to each
of the above properties of compactness. "

Notice that strong fuzzy compactness and ultrafuzzy compactness have not been defined
as fptp's and that with regard to the fuzzy compaciness property we refer to the definition
given for the whole fts in [14].

By proposition 2.2 we have the following result.

Proposition 4.6. If (X, 8) is astratified N-compact (or equivalently strong-Q-compact) T,
fts, every N-compact or strong-Q-compact fuzzy subset Y C X for é is closed in §. =

Now we recall the definition of compactness given by Hutton in [9] restating it in the
context of the present paper (1.¢. point-set context).

Definition 4.3. A fts (X, ) is Hutton-compact if every open cover of any closed fuzzy set
F C X has a finite subcover.

Clearly we have the following non-reversible implication.
Proposition 4.7, (X, ) is Hutton-compact = (X, 6) is S*compact .

Example 4.3. Let X # ¢; the family s = {K € I* : Kis constant} is a fuzzy topology on
X.
The fts (X, &) is S*¥compact while it 1s not Hutton-compact.
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The definitions 4.2 and 4.3 can be easily formulated for a whole space of the kind (L%, §)
in the lattice-theoretic context.

Proposition 4.7 holds in this context too.

Now it is easy to state the following result by using proposition 4.7 and the results given
in [21] concerning to the fuzzy unit interval [( L) dcfined by Hutton [8].

Proposition 4.8. The fuzzy unit interval I( L) is S*compact if L is a complete boolean al-
gebra. .

Lowen [15] observed that an fts gencrated by a T} ordinary topological space is not
a*-compact forany a € (0, 1].

Obviously this assertion holds for the S*compact stratified fts's 0o, since every S* com-
pact stratified fts is a*-compact if o € (0, 1].

Actually S*compactness seems to be a strong condition not only for fts's generated by
ordinary topologies, but more generally for stratified fts's. Insuch spaces in fact S*compact-
ness may exclude the Ty axiom, as the following result shows.

Proposition 4.9. No S*compact (and hence no Hutton-compact) stratified fuzzy topology on
the set N of natural numbers can be T .

Proof, Tt is evident that every sequence which converges and 1s bounded above by its limit
can be obtained as the supremum of a family of sequences which are eventually constant and
upper bounded by this constant value.

Now if x 1s the fuzzy topology of example 4.3 and 6 D « i1s a T fuzzy topology, then 6
refines the fuzzy topology &, of the example 4.1, which 1s not S*compact. @

Obviously no stratified fuzzy topology on N is maximal S*compact.

Concluding remarks. The approach we suggest for studying fptp's in fts's does not
nced an extension of the categorical framework in fuzzy topology including object associated
with non-crisp subsets, which is till now a big problem to our knowledge.

Of course, in a richer category of fuzzy topological épaccs including objects associated
with a non-crisp support, every fuzzy topological property (i.e. property of objects, that arc
fts's) could be considered as an fpip.

Nevertheless an fptp does not become necessarily a fuzzy topological property even if a
richer category can be considered in the sense above specified.

In this sense fptp's seems to be a non-trivial gencralization of fuzzy topological proper-
tes.

In another paper we will present an alternative approach to the problem originally moti-
vating the present work, ¢.g. an internal characterization of maximal «fuzzy compactike»

fuzzy topologies.
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This different approach allows us to give an intrinsic characterization of maximality of
fuzzy compactlike propertics of fuzzy subsct in an fts within a category, defined n [4],
which is, in somc sense, cquivalent to (1) (the category of fts's of Chang-Goguen) but
contains objects associated with a non-crisp support.
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