ON CERTAIN TRANSLATION COVERS

K. BEZDEK *

Let \mathscr{C}_1 be the collection of closed curves of length ≤ 1 in the d-dimensional Euclidean space E^d . We say a set $X \subset E^d$ is a translation cover for \mathscr{C}_1 if every curve in \mathscr{C}_1 can be covered by a translate of X.

A hyperplane is called a supporting hyperplane for a convex body in E^d if the hyperplane has a non-empty intersection with the body and the body is contained in one of the closed half-spaces called a supporting half-space with the hyperplane as boundary. The minimal width w of a convex body B of E^d is the distance between a pair of distinct parallel supporting hyperplanes for B with the property that the distance between any pair of distinct parallel supporting hyperplanes of B is $\geq w$.

We start with

Problem 1. Determine the smallest positive real number w(d) for which it is true that any convex body of E^d (i.e. any compact convex set of E^d with a non-empty interior) of minimal width $\geq w(d)$ ($d \geq 2$) is a translation cover for \mathscr{C}_1 .

The results we are going to prove below reduce Problem 1 to a special problem of simplices, which is also unsolved but seems to be simpler than the original problem (see Problem 2 and Theorem 2 below). First we have

Remark 1. It is obvious that $w(2) \le w(3) \le ... \le w(d) \le w(d+1) \le ...$

Definition. 0 is called a (d + 1)-gon of E^d if it is the union of the segments $\overline{A_1}\overline{A_2}$, $\overline{A_2}\overline{A_3},\ldots,\overline{A_{s-1}}\overline{A_s},\overline{A_s}\overline{A_1}$ where $A_1A_2,\ldots,A_{s-1}A_s$ are pairwise different points in E^d with $2 \le s \le d + 1$. We suppose that the angles of (d + 1)-gons of E^d are distinct from the straight angle.

For our investigations the following definition is the most important.

Definition. $0_b = \overline{A_1 A_2} \cup ... \cup \overline{A_{s-1} A_s} \cup \overline{A_s A_1}$ (2 \le s \le d + 1) is called a billiard (d + 1)-gon of the convex body B of E^d (d \ge 2) if

- (1) 0_b is a(d+1)-gon in E^d ,
- (2) $A_i \in bd B$ (=the boundary of B) for any $i \in \{1, 2, ..., s\}$ and there exists a supporting hyperplane H_i of B which passes through the point A_i having inner normal vector \underline{n}_i such that,
- (3) the ray emanating from A_i having direction vector \underline{n}_i is the inner angle bisector of the angle $A_{i-1}A_iA_{i+1}$ (with $A_{s+1}=A_1$ and $A_0=A_s$, see Fig. 1).

^{*} Supported by Hung. Nat. Found. for Sci. Research, number 1238.

Figure 1

Remark 2. If $\emptyset_b = \overline{A_1 A_2} \cup ... \cup \overline{A_{s-1} A_s} \cup \overline{A_s A_1}$ is a billiard (d+1)-gon of a convex body of E^d , then either for all $i \in \{1, 2, ..., s\}$ we have $0 < \not \subset A_{i-1} A_i A_{i+1} < \pi$ or s = 2 and $\emptyset_b = \overline{A_1 A_2} \cup \overline{A_2 A_1}$ and $\overline{A_1 A_2} || \underline{n_1}$ and $\overline{A_2 A_1} || \underline{n_2}$ (where || stands for the parallelism).

Before we prove some lemmas we need three more definitions.

Definition. The billiard (d+1)-gon 0_b of the previous definition is called a real billiard (d+1)-gon of the convex body B of E^d $(d \ge 2)$ if for all $i \in \{1, 2, ..., s\}H_i$ is the unique supporting hyperplane of B at A_i .

Definition. The billiard (d+1)-gon $0_b = \overline{A_1 A_2} \cup \ldots \cup \overline{A_{s-1} A_s} \cup \overline{A_s A_1}$ $(2 \le s \le d+1)$ is called a simplicial billiard path (of dimension s-1) of the convex body B of E^d $(d \ge 2)$ if $\dim(aff(0_b)) = s-1$ where $aff(\ldots)$ means the affine hull of the corresponding set in E^d . (Among other things this means that A_1, A_2, \ldots, A_s form the vertices of an (s-1)-simplex inscribed in B).

The next definition is taken from [1] and [2].

Definition. A set $\{H_i^+\}_{i=1}^s$ of closed half-spaces of E^d ($d \ge 2$) is called nearly bounded if $\bigcap_{i=1}^s H_i^+$ is contained in the set between two parallel hyperplanes of E^d . (Further on let

 \underline{n}_i be the inner normal vector of the hyperplane $H_i(1 \le i \le s)$ which bounds H_i^+ . (So \underline{n}_i points into the interior of H_i^+ .)

Lemma 1. A set $\{H_i^+\}_{i=1}^s$ of closed half-spaces of E^d whose origin is say, 0 is nearly bounded if and only if any of the following three properties holds:

- (a) $\bigcup_{i=1}^{s} (\underline{t}_i + H_i^+) = E^d$ where $\underline{t}_i + H_i^+$ means the translate of H_i^+ by the vector \underline{t}_i with $0 \in \underline{t}_i + H_i$;
- (b) $0 \in \text{conv}\{\underline{n}_1, \underline{n}_2, \dots, \underline{n}_s\}$ where of course the vectors emanating from 0 mean the points into which they point;
- (c) $\bigcap_{i=1}^s H_i^+$ cannot be covered by a translate of int $(\bigcap_{i=1}^s H_i^+)$. (Here and further on also int(...) means the interior of a set in E^d .)

Proof. Suppose that:

(a*) The set $\{H_i^+\}_{i=1}^s$ of closed half-spaces of E^d is nearly bounded i.e. $\bigcap_{i=1}^s H_i^+$ is contained in the set between two parallel hyperplanes of E^d .

Then it is easy to show that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$ and $(a^*) \Longleftrightarrow (b)$ which proves our assertion.

Lemma 2. If $0_b = \overline{A_1 A_2} \cup ... \cup \overline{A_{s-1} A_s} \cup \overline{A_s A_1}$ ($2 \le s \le d+1, d \ge 2$) is a billiard (d+1)-gon of the convex body B of E^d , then it cannot be covered by a translate of int B.

Proof. Let H_i be the supporting hyperplane of B going through $A_i \in bdB$ for any $i \in bdB$ $\{1,2,\ldots,s\}$. Also, let H_i^+ be the supporting half-space of B which is bounded by H_i , and which is closed by definition (see page 1), and suppose that \underline{n}_i is the inner normal vector of H_i (i.e. \underline{n}_i points into the interior of H_i^+). Because of (c) of Lemma 1 it is enough to show that the set $\{H_i^+\}_{i=1}^s$ of closed half-spaces of E^d ($d \ge 2$) is nearly bounded. Without loss of generality we may suppose that \underline{n}_i emanates from A_i and the vector \underline{n}_i^* emanating from 0 (i.e. from the origin of E^d) is equal to \underline{n}_i for any $i \in \{1, 2, ..., s\}$. In this way \underline{n}_{i}^{*} corresponds to a unique point of E^{d} for any $i \in \{1, 2, ..., s\}$. It is enough to prove that $0 \in \text{conv } \{\underline{n}_1^*, \underline{n}_2^*, \dots, \underline{n}_s^*\}$ (see (b) of Lemma 1). In order to prove it consider an arbitrary hyperplane H of E^{d} passing through 0. Let H^{+} , H^{-} be the two closed half-spaces of E^d bounded by H. We have to prove that $H^+ \cap \{\underline{n}_1^*, \underline{n}_2^*, \dots, \underline{n}_s^*\} \neq \emptyset$ and $H^- \cap \{\underline{n}_1^*, \underline{n}_2^*, \dots, \underline{n}_s^*\} \neq \emptyset$. Because of the «symmetry» we prove only that $H^+ \cap$ $\{\underline{n}_1^*, \underline{n}_2^*, \dots, \underline{n}_s^*\} \neq \emptyset$. But that follows from the simple fact that for the supporting half-space H_t^+ of conv $\{A_1, A_2, \ldots, A_s\}$ which is in addition a translate of H^+ we can find at least one point say, A_{i_o} $(i_o \in \{1, 2, ..., s\})$ with the property that $A_{i_o} \in bd H_t^+$ and $\underline{n}_{i_o} \subseteq H_t^+$ which means here that the endpoint of \underline{n}_{i_a} different from A_{i_a} belongs to H_t^+ .

Lemma 3. Let Y be any set of E^d ($d \ge 2$) with at least (d + 1) points. A compact convex set X of E^d has a translate which covers Y if and only if X has a translate which covers every (d + 1)-point subset of Y.

Proof. We leave the proof to the reader since it is a simple exercise.

Lemma 4. The (d+1)-gon $0 = \overline{A_1 A_2} \cup ... \cup \overline{A_{s-1} A_s} \cup \overline{A_s A_1}$ $(2 \le s \le d+1, d \ge 2)$ of E^d cannot be covered by a translate of the interior of a given convex body B of E^d if and only if there exists a vector \underline{t} such that for the translates $\underline{t} + A_{i_1}, t + A_{i_2}, ..., \underline{t} + A_{i_l}(\{i_1, i_2, ..., i_l\}) \subset \{1, 2, ..., s\}, 2 \le l \le s$ of certain vertices $A_{i_1}, A_{i_2}, ..., A_{i_l}$ of 0 we can find a nearly bounded set of supporting half-spaces $H^+_{i_1}, H^+_{i_2}, ..., H^+_{i_l}$ of B with $\underline{t} + A_{i_1} \in H^-_{i_1}, \underline{t} + A_{i_2} \in H^-_{i_2}, ..., \underline{t} + A_{i_l} \in H^-_{i_l}$ where $H^-_{i_1} = (E^d \setminus H^+_{i_1}) \cup bd H^+_{i_1}, H^-_{i_2} = (E^d \setminus H^+_{i_2}) \cup bd H^+_{i_2}, ..., H^-_{i_l} = (E^d \setminus H^+_{i_l}) \cup bd H^+_{i_l}$.

Proof. It is easy to prove that the existence of the vector \underline{t} of our lemma yields that the (d+1)-gon 0 cannot be covered by a translate of int B (see (c) of Lemma 1 again). So we have to deal with the case where we suppose that the (d + 1)-gon 0 cannot be covered by a translate of int B and having this fact in our mind we look for a vector t with the property mentioned in the lemma. Without loss of generality we may suppose that B is strictly convex and smooth. (Since each convex body can be approximated by a sequence of smooth strictly convex bodies the general case of the lemma follows from the mentioned special case quite easily.) So let $\lambda_0 = \sup\{\lambda | \lambda > 0, \lambda \in \emptyset \text{ can be covered by a translate of } B\}$ where of course $\lambda \cdot 0 = \{\underline{x} | \underline{x} = \lambda \cdot \underline{y} \text{ with } \underline{y} \in 0 \}$ i.e. $\lambda \cdot 0$ is a scalar multiple of 0. It is obvious that λ_0 . 0 can be covered by a translate of B say, by B_0 . Hence $0 < \lambda_0 \le 1$. Because of the definition of λ_0 and because of the strictly convexity of B_0 some vertices of λ_0 . \Diamond say, $A_{i_1}^0, A_{i_2}^0, \ldots, A_{i_\ell}^0$ and only those points of $\lambda_0 \cdot 0$ belong to bdB_0 . (Obviously $2 \le \ell \le s$.) Let \overline{H}_{i_j} be the unique supporting hyperplane of B_0 through the vertex $A_{i_j}^0 (1 \le j \le \ell)$. Also, let $\overline{H}_{i_j}^*$ be the supporting half-space of B_0 bounded by $\overline{H}_{i_j}(1 \le j \le \ell)$. Now the set $\{\overline{H}_{i_i}^{\dagger}\}_{j=1}^{\ell}$ of closed half-spaces of E^{d} has to be nearly bounded since otherwise $\bigcap_{j=1}^{\ell} \overline{H}_{i_j}^{\dagger}$ were covered by a translate of int $(\bigcap_{j=1}^{\ell} \overrightarrow{H}_{i_j}^{\dagger})$. That would yield the existence of a translate of λ_0 . O which were covered by int B_0 . (Here we used the fact again that B_0 is a smooth strictly convex body.) The contradiction obtained in this way shows that the set $\{\overline{H}_{i_i}^{\dagger}\}_{i=1}^{\ell}$ is nearly bounded indeed. Since $0 < \lambda_0 \le 1$ a homothetic transformation will transform the vertices $A_{i_1}^0, A_{i_2}^0, \ldots, A_{i_\ell}^0$ of $\lambda_0 \cdot \emptyset$ into the points $\underline{t} + A_{i_1}, \underline{t} + A_{i_2}, \ldots, \underline{t} + A_{i_\ell}$ and also, the supporting half-spaces $\overline{H}_{i_{\ell}}$ (1 $\leq j \leq \ell$) of B_0 will be translated into the supporting half-spaces $\overline{H}_{i_i}^{\dagger}$ ($1 \le j \le \ell$) of B having all the properties mentioned in the lemma.

On certain translation covers 283

Definition. For any convex body B of E^d ($d \ge 2$) and L > 0, let $\mathcal{T}_B = \{(d + 1)\text{-gon } 0 \text{ in } E^d \mid \text{there is a translate of } 0 \text{ which is covered by } B\}$,

 $\mathcal{L}_L = \{(d+1) \text{-gon } \cap E^d | \ell(0) \leq L \text{, where } \ell(0) \text{ means the length of } 0 \}.$

We need the following technical assertion.

Lemma 5. For any convex body B of E^d ($d \ge 2$) exists a (d+1)-gon $0 * \in \mathscr{T}_B \setminus \mathscr{T}_{int B}$ (of E^d) such that $\ell(0 *) = \inf \{\ell(0) \mid 0 \text{ is } a (d+1) \text{-gon with } 0 \notin \mathscr{T}_{int B}\} = \sup \{L > 0 \mid \mathscr{L}_L \subset \mathscr{T}_b\}.$

Proof. We omit the simple proof.

Lemma 6. The (d+1)-gon \circ * of Lemma 5 has a translate which is a billiard (d+1)-gon of B.

Proof. Let 0^* be the (d+1)-gon $\overline{A_1^*A_2^*} \cup ... \cup \overline{A_{s-1}^*A_s^*} \cup \overline{A_s^*A_1^*}$ $(2 \le s \le d+1, d \ge 2)$ in E^{d} . We know that $0 * \notin \mathscr{F}_{int B}$ so because of Lemma 4 there exists a translate of 0 * by a vector \underline{t} such that for certain vertices of $\underline{t} + 0$ * say, for $\underline{t} + A_{i_1}^*, \underline{t} + A_{i_2}^*, \dots, \underline{t} +$ $A_{i,\ell}^*(\{i_1,i_2,\ldots,i_\ell\}\subset\{1,2,\ldots,s\},2\leq\ell\leq s)$ we can find a nearly bounded set of supporting half-spaces $H_{i_1}^+, H_{i_2}^+, \dots, H_{i_t}^+$ of B with $\underline{t} + A_{i_1}^* \in H_{i_1}^-, \underline{t} + A_{i_2}^* \in H_{i_2}^-, \dots, \underline{t} + A_{i_t}^* \in H_{i_t}^$ where $H_{i_1}^- = (E^d \setminus H_{i_1}^+) \cup bd H_{i_1}^+$, $H_{i_2}^- = (E^d \setminus H_{i_2}^+) \cup bd H_{i_2}^+$, ..., $H_{i_2}^- = (E^d \setminus H_{i_2}^+) \cup bd H_{i_2}^+$. First of all $\{i_1, i_2, \ldots, i_\ell\} = \{1, 2, \ldots, s\}$. Namely, suppose that say, $1 \notin \{i_1, i_2, \ldots, i_\ell\}$. Then because of Lemma 4 the new (d+1)-gon $0 = \overline{A_2^* A_3^*} \cup ... \cup \overline{A_{n-1}^* A_n^*} \cup \overline{A_n^* A_n^*}$ which is a contradiction. Hence we have a nearly bounded set of supporting half-spaces $H_1^+, H_2^+, \dots, H_s^+$ of B with $\underline{t} + A_1^* \in H_1^-, \underline{t} + A_2^* \in H_2^-, \dots, \underline{t} + A_s^* \in H_s^-$ where $H_1^- =$ $(E^d \setminus H_1^+) \cup bd H_1^+, \dots, H_s^- = (E^d \setminus H_s^+) \cup bd H_s^+$. Now we claim that $\underline{t} + A_i^* \in bdB \cap H_i^$ for any $i \in \{1, 2, ..., s\}$. In order to prove it suppose that $\underline{t} + A_{i_0}^* \notin bdB \cap H_{i_0}^*$ for a certain $i_0 \in \{1, 2, ..., s\}$. Since $0 * \in \mathcal{F}_B$ therefore there exists a non-zero vector \underline{t}^* such that $\{\underline{t}^* + \underline{t} + A_1^*, \underline{t}^* + \underline{t} + A_2^*, \dots, \underline{t}^* + \underline{t} + A_s^*\} \subset B$. Consequently $\underline{t}^* + \bigcap_{i=1}^s H_i^*$ is covered by $\bigcap_{i=1}^s H_i^+$ with $t^* \neq 0$. So using the fact that $\{H_i^+\}_{i=1}^s$ is nearly bounded we get immediately that there exists a real subset I of $\{1, 2, ..., s\}$ such that $\{H_i^+\}_{i \in I}$ is still a nearly bounded set of closed half-spaces. But then the new (d + 1)-gon 0 ** which passes through the vertices $\{\underline{t} + A_i^*\}_{i \in I}$ of $\underline{t} + 0^*$ according to the natural order of the set $\{1, 2, ..., s\}$ has the property that $0 \stackrel{**}{\cdot} \in \mathscr{T}_B \setminus \mathscr{T}_{int B}$ and $\ell(0 \stackrel{**}{\cdot}) < \ell(0 \stackrel{*}{\cdot})$ which is a contradiction. Hence $\underline{t} + A_i^* \in bd B \cap H_i^-$ with $H_i^- = (E^d \setminus H_i^+) \cup bd H_i^+$ for any $i \in \{1, 2, ..., s\}$ and the set $\{H_i^+\}_{i=1}^s$ of certain supporting half-spaces of B is nearly bounded in E^d . Finally we show that t + 0 is a billiard (d + 1)-gon of B indeed. In the definition of

billiard (d + 1)-gons we required three properties. Now $H_i = bd H_i^+ = bd H_i^-$ for any $i \in \{1, 2, ..., s\}$. It is obvious that (1) and (2) is true for $\underline{t} + 0^*$. Considering the property (3) we have to distinguish the cases s = 2 and s > 2. In the first case $\underline{t} + 0^*$ is a double covered segment with endpoints $\underline{t} + A_1^*, \underline{t} + A_2^*$. Since the set $\{H_1^+, H_2^+\}$ has to be nearly bounded in E^d we obviously have that $H_1 \mid\mid H_2$. So because of the definition of 0^* we get that $A_1^+A_2^*\mid\mid \underline{n}_1$ and $A_2^+A_1^*\mid\mid \underline{n}_2$, which means that also (3) is satisfied in this case. For s > 2 suppose that there exists a vertex of $\underline{t} + 0$, * say, $\underline{t} + A_2^*$ where (3) is not true. Then it is easy to see that there exists a point $\underline{t} + A_2^{**} \in H_2$ with the property that the new (d+1)-gon $\vdots = \overline{A_1^*A_2^{**}} \cup \overline{A_2^*A_3^*} \cup ... \cup \overline{A_{s-1}^*A_s^*} \cup \overline{A_s^*A_1^*} \notin \mathcal{F}_{int}$ and $\ell(0^*) < \ell(0^*)$, which is a contradiction. This completes the proof of the lemma.

Definition. For any convex body B of $E^d(d \ge 2)$, let $m_b = \inf\{\ell(0_b) | 0_b \text{ is a billiard } (d+1)\text{-gon of } B\}$.

Lemma 7. $m_b = \ell(0^*)$ where 0^* is the (d+1)-gon of Lemma 5.

Proof. Because of Lemma 2 we know that $m_b \ge \ell(0^*)$. On the other hand Lemma 6 shows that $m_b \le \ell(0^*)$. Consequently $m_b = \ell(0^*)$.

Now we are in the position to prove the following.

Theorem 1. Any closed curve of length one or less of E^d ($d \ge 2$) can be covered by a translate of a given convex body $B \subset E^d$ if and only if $m_b = \inf\{\ell(0_b) | 0_b \text{ is a billiard } (d+1)\text{-gon of } B\} \ge 1$.

Proof. We have proved (see Lemma 7) that $m_b = \ell(0^*)$ where the (d+1)-gon 0^* of E^d has the property (see Lemma 5) that $0^* \mathscr{T}_B \setminus \mathscr{T}_{int \ B}$ and $\ell(0^*) = \inf \{\ell(0^*) \mid 0^* \text{ is a } (d+1)$ -gon with $0^* \notin \mathscr{T}_{int \ B} \} = \sup \{L > 0 \mid \mathscr{L}_L \subset \mathscr{T}_B \}$. So the result follows using Lemma 3.

Definition. Let $s_b(d) = \inf \{\ell(\Delta) | \Delta \text{ is a real simplicity all billiard path (of dimension d) of a d-simplex of minimal width 1} where <math>\ell(\Delta)$ means the length of the billiard path $\Delta(d \geq 2)$.

Theorem 2. For any integer $d \ge 2$ we have $w(d) = \frac{1}{s_b^*(d)}$ where $s_b^*(d) = \min\{s_b(2), s_b(3), \ldots, s_b(d)\}$.

Proof. Obviously, it is enough to prove that $s_b^*(d) = L^*(d) = \sup\{\ell^* > 0 \mid \text{ any convex body of } E^d \text{ of minimal width 1 is a translation cover for the collection of closed curves of length <math>\leq \ell^* \text{ in } E^d \}$. From Theorem 1 we get that $s_b^*(d) \geq L^*(d)$. On the other hand we prove that $s_b^*(d) \leq L^*(d)$ i.e. any convex body B of $E^d(d \geq 2)$ of minimal width 1 is a translation cover for the collection of closed curves of length $\leq s_b^*(d)$. Prove it by induction on d. For

On certain translation covers 285

d = $2 \ s_b^*(2) = \sqrt{3} < 2$ so it is easy to show that any convex domain of E^2 of minimal width 1 is a translation cover for the collection of closed curves of length $\leq \sqrt{3}$ (use Theorem 1 again). Now suppose that we have proved: $s_b^*(d') \leq L^*(d')$ for any $2 \leq d' < d$. We show that from these follows the inequality $s_b^*(d) \leq L^*(d)$. Consider an arbitrary convex body B of E^d of minimal width 1. Because of Theorem 1 B is a translation cover for the collection of closed curves of length $\leq s_b^*(d)$ if and only if $m_b = \inf\{\ell(0_b) \mid 0_b$ is a billiard (d+1)-gon of $B\} \geq s_b^*(d)$. So we have to prove that $m_b \geq s_b^*(d)$. Therefore let 0_b be an arbitrary billiard (d+1)-gon of B. If $\dim(\text{aff}(0_b)) < d$, then by induction we get that $\ell(0_b) \geq s_b^*(d-1) \geq s_b^*(d)$ in which case we are done. So we are left with the case where $\dim(\text{aff}(0_b)) = d$. This means that 0_b is a simplicial billiard path (of dimension d) of the convex body $B \subset E^d$. But then 0_b is a real simplicial billiard path of the d-simplex of minimal width ≥ 1 determined by the supporting hyperplanes of B passing through the vertices of 0_b consequently, $\ell(0_b) \geq s_b(d) \geq s_b^*(d)$ indeed.

Because of Theorem 2 our first problem is equivalent to the following special

Problem 2. Determine $s_b(d)$ for all $d \ge 3$.

Finally we mention the following

Proposition 1. For any integer $d \ge 3$ we have the inequalities: $s_b(d) \ge \frac{d+1}{d}$, $s_b^*(d) \ge \frac{d+1}{d}$, $w(d) \le \frac{d}{d+1}$.

Proof. The proof is based on the fact (see [2]) that any convex body of E^d ($d \ge 2$) of minimal width 1 is a translation cover for the collection of arcs (i.e. of not necessarily closed curves) of length ≤ 1 in E^d . We leave the further details of the proof to the reader since they are simple.

REFERENCES

[1] K. BEZDEK, R. CONNELLY, Covering curves by translates of a convex set, Amer. Math. Monthly 96 n. 9 (1989) pp. 789-806.

[2] K. BEZDEK, On billiard arcs, Beiträge zur Algebra und Geom. 30 (1990) pp. 155-166.

Received May 22, 1989 and in revised form May 17, 1990.

K. Bezdek
Eötvös L. University
Dept. of Geometry
Rákóczi út 5
1088 Budapest, Hungary