A Quantitative Characterization of Some Finite Simple Groups Through Order and Degree Pattern

Ali Reza Moghaddamfar

Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran

moghadam@kntu.ac.ir and moghadam@ipm.ir

Sakineh Rahbariyan

Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran. Iran

Received: 31.10.2013; accepted: 7.4.2014.

Abstract. Let G be a finite group with $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_h^{\alpha_h}$, where $p_1 < p_2 < \cdots < p_h$ are prime numbers and $\alpha_1, \alpha_2, \ldots, \alpha_h, h$ are natural numbers. The prime graph $\Gamma(G)$ of G is a simple graph whose vertex set is $\{p_1, p_2, \ldots, p_h\}$ and two distinct primes p_i and p_j are joined by an edge if and only if G has an element of order $p_i p_j$. The degree $\deg_G(p_i)$ of a vertex p_i is the number of edges incident on p_i , and the h-tuple $(\deg_G(p_1), \deg_G(p_2), \ldots, \deg_G(p_h))$ is called the degree pattern of G. We say that the problem of OD-characterization is solved for a finite group G if we determine the number of pairwise non-isomorphic finite groups with the same order and degree pattern as G. The purpose of this paper is twofold. First, it completely solves the OD-characterization problem for every finite non-Abelian simple groups their orders having prime divisors at most 17. Second, it provides a list of finite (simple) groups for which the problem of OD-characterization have been already solved.

Keywords: Prime graph, degree pattern, OD-characterization.

MSC 2000 classification: 20D05, 20D06, 20D08.

Introduction

Throughout this paper, all groups discussed are *finite* and simple groups are non-Abelian. Given a group G, denote by $\omega(G)$ the set of order of all elements in G, and by $\mu(G)$ the set of numbers in $\omega(G)$ that are maximal with respect to divisibility. We also denote by $\pi(n)$ the set of all prime divisors of a positive integer n. For a finite group G, we shall write $\pi(G)$ instead of $\pi(|G|)$. To every finite group G, we associate a simple graph known as prime graph (also often called the Gruenberg-Kegel graph) and denoted by $\Gamma(G)$. In this graph the vertex set is the set $\pi(G)$, and two distinct vertices p and q are joined by an edge if

and only if $pq \in \omega(G)$. Let s(G) be the number of connected components of $\Gamma(G)$. We denote the set of all the connected components of the graph $\Gamma(G)$ by $\{\pi_i(G): i=1,2,\ldots,s(G)\}$ and, if the order of G is even, we denote by $\pi_1(G)$ the component containing 2. The $degree \deg_G(p)$ of a vertex $p \in \pi(G)$ is the number of edges incident on p. In the case the distinct prime divisors of |G| are p_1, p_2, \ldots, p_h , where h is a positive integer and $p_1 < p_2 < \cdots < p_h$, we define

$$D(G) := (\deg_G(p_1), \deg_G(p_2), \dots, \deg_G(p_h)),$$

and call this h-tuple the degree pattern of G.

Let $\mathcal{OD}(G)$ be the collection of pairwise non-isomorphic groups with the same order and degree pattern as G, that is

$$\mathcal{OD}(G) = \{ H : |H| = |G|, \ D(H) = D(G) \}.$$

We put $h_{\text{OD}}(G) = |\mathcal{OD}(G)|$. In terms of the function $h_{\text{OD}}(\cdot)$, we have the following definition.

Definition 1. A finite group G is said to be k-fold OD-characterizabale if $h_{\rm OD}(G) = k$. G is OD-characterizabale if $h_{\rm OD}(G) = 1$. Moreover, we will say that the OD-characterization problem is solved for a group G, if the value of $h_{\rm OD}(G)$ is known.

According to Cayley's theorem, for each positive integer n there are only finitely many non-isomorphic groups of order n normally denoted by $\nu(n)$. Hence the following corollary is immediate.

Theorem 1. Every finite group is k-fold OD-characterizable for some natural number k.

However, the situation will be interesting when we restrict ourselves to finite simple groups. As a matter of fact, there are many non-Abelian simple groups which are OD-characterizable or 2-fold OD-characterizable (see Table 3 at the end of the paper). The first examples of OD-characterizable simple groups were found in [18]. In [15], Moghaddamfar and Zokayi obtained some infinite series of OD-characterizable simple groups such as: $\operatorname{Sz}(2^{2n+1})$, $L_2(2^n)$, \mathbb{A}_p , \mathbb{A}_{p+1} and \mathbb{A}_{p+2} , where p is a prime. Recently, Zhang and Shi in [34] obtained another infinite series of OD-characterizable simple groups, that is $L_2(q)$ for q odd. At present, the OD-characterization problem is solved for many finite non-Abelian simple and almost simple groups (a new list of such groups is available in Tables 3-4 at the end of the paper). Nevertheless, we do not know of any simple group S for which $h_{\mathrm{OD}}(S) \notin \{1,2\}$. Therefore, the following problem may be of interest.

Problem 0.2. Is there a finite simple group S for which $h_{OD}(S) \ge 3$?

In connection the finite simple groups which are k-fold OD-characterizable, for $k \geq 2$, it was shown in [3], [17] and [18] that:

```
\mathcal{OD}(\mathbb{A}_{10}) = \{\mathbb{A}_{10}, \ \mathbb{Z}_3 \times J_2\},\
\mathcal{OD}(S_6(5)) = \{S_6(5), O_7(5)\},\
\mathcal{OD}(S_{2m}(q)) = \{S_{2m}(q), O_{2m+1}(q)\}, \quad m = 2^f \geqslant 2, \ |\pi\left(\frac{q^m+1}{2}\right)| = 1,\
q \text{ odd prime power},\
\mathcal{OD}(S_{2p}(3)) = \{S_{2p}(3), O_{2p+1}(3)\}, \quad |\pi\left((3^p - 1)/2\right)| = 1, \quad p \text{ odd prime}.
```

It should be of interest to investigate the question: Let G be a finite group. How many simple groups are there in $\mathcal{OD}(G)$? Evidently, two simple groups in $\mathcal{OD}(G)$ must have the same order. The complete list of pairs of non-isomorphic finite simple groups having the same order is well-known (see [8, 19]).

Proposition 1. Two finite simple groups of the same order are isomorphic, except exactly in the cases: $\{A_8, L_3(4)\}$ and $\{O_{2n+1}(q), S_{2n}(q)\}$ for $n \ge 3$ and q odd.

An immediate consequence of Proposition 1 is the following.

Corollary 1. For every group G, the set $\mathcal{OD}(G)$ has at most two simple groups.

Generally, the orthogonal groups $O_{2n+1}(q)$ and the symplectic groups $S_{2n}(q)$ have the same order and prime graph ([23, Proposition 7.5]), hence $|O_{2n+1}(q)| = |S_{2n}(q)|$ and $D(O_{2n+1}(q)) = D(S_{2n}(q))$. Notice that $O_{2n+1}(2^m) \cong S_{2n}(2^m)$ and $O_5(q) \cong S_4(q)$ for each q, and hence, if $n \geq 3$ and q is odd, then the simple groups $O_{2n+1}(q)$ and $S_{2n}(q)$ are non-isomorphic groups). Now, we have the following result.

Proposition 2. If $n \geq 3$ and q is odd, then $h_{\text{OD}}(O_{2n+1}(q)) = h_{\text{OD}}(S_{2n}(q)) \geqslant 2$.

Remark 1.1 Although, the simple groups \mathbb{A}_8 and $L_3(4)$ have the same order, but they have different degree patterns, in fact, $D(\mathbb{A}_8) = (1, 2, 1, 0)$ and $D(L_3(4)) = (0, 0, 0, 0)$. It was proved in [15, 18] that $h_{\text{OD}}(\mathbb{A}_8) = h_{\text{OD}}(L_3(4)) = 1$.

In what follows we will consider the finite non-Abelian simple groups S with the property $\pi(S) \subseteq \{2,3,5,7,11,13,17\}$. We denote the set of all these simple groups by $S_{\leq 17}$. Using the classification of finite simple groups it is not hard to obtain a full list of all groups in $S_{\leq 17}$. Actually, there are 73 such groups (see [14, Table 4] or [28, Table 1]). For convenience, the values of |S|, $\mu(S)$, D(S), s(S) and $h_{OD}(S)$ are listed in Table 2 (see [2, 5, 10, 11, 20, 21, 23, 24]). The comparison between simple groups listed in Table 3 and the simple groups in $S_{\leq 17}$ shows that there are only 13 groups which we must solve the OD-characterization problem for them; namely, the groups $L_3(16)$, $L_5(3)$, $U_3(17)$, $U_4(4)$, $S_4(8)$, $S_4(13)$, $S_6(4)$, $G_2(4)$, $F_4(2)$, $O_8^-(2)$, $O_{10}^-(2)$, $O_8^+(3)$ and $O_8^+(4)$. The goal of the present paper is to prove that these groups are OD-characterizable.

Table 2. The simple groups in $S_{\leqslant 17}$ except alternating ones.

S	S	$\mu(S)$	D(S)	s(S)	$h_{\mathrm{OD}}(S)$
$U_4(2) \cong S_4(3)$	$2^{6} \cdot 3^{4} \cdot 5$	$\{12, 9, 5\}$	(1, 1, 0)	2	2
$L_2(7) \cong L_3(2)$	$2^{3} \cdot 3 \cdot 7$	$\{7, 4, 3\}$	(0, 0, 0)	3	1
$L_2(8)$	$2^3 \cdot 3^2 \cdot 7$	$\{9, 7, 2\}$	(0, 0, 0)	3	1
$U_3(3)$	$2^5 \cdot 3^3 \cdot 7$	$\{12, 8, 7\}$	(1, 1, 0)	2	1
$L_2(49)$	$2^4 \cdot 3 \cdot 5^2 \cdot 7^2$	$\{25, 24, 7\}$	(1, 1, 0, 0)	3	1
$U_3(5)$	$2^4 \cdot 3^2 \cdot 5^3 \cdot 7$	$\{10, 8, 7, 6\}$	(2,1,1,0)	2	1
$L_{3}(4)$	$2^6 \cdot 3^2 \cdot 5 \cdot 7$	$\{7, 5, 4, 3\}$	(0,0,0,0)	4	1
J_2	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$	$\{15, 12, 10, 8, 7\}$	(2, 2, 2, 0)	2	1
$U_4(3)$	$2^7 \cdot 3^6 \cdot 5 \cdot 7$	$\{12, 9, 8, 7, 5\}$	(1, 1, 0, 0)	3	1
$S_4(7)$	$2^8 \cdot 3^2 \cdot 5^2 \cdot 7^4$	$\{56, 42, 25, 24\}$	(2, 2, 0, 2)	2	1
$S_6(2)$	$2^9 \cdot 3^4 \cdot 5 \cdot 7$	$\{15, 12, 10, 9, 8, 7\}$	(2, 2, 2, 0)	2	1
$O_8^+(2)$	$2^{12}\cdot 3^5\cdot 5^2\cdot 7$	$\{15, 12, 10, 9, 8, 7\}$	(2, 2, 2, 0)	2	1
$L_2(11)$	$2^2 \cdot 3 \cdot 5 \cdot 11$	$\{11, 6, 5\}$	(1, 1, 0, 0)	3	1
M_{11}	$2^4 \cdot 3^2 \cdot 5 \cdot 11$	$\{11, 8, 6, 5\}$	(1, 1, 0, 0)	3	1
M_{12}	$2^6 \cdot 3^3 \cdot 5 \cdot 11$	$\{11, 10, 8, 6\}$	(2,1,1,0)	2	1
$U_5(2)$	$2^{10} \cdot 3^5 \cdot 5 \cdot 11$	$\{18, 15, 11, 8\}$	(1, 2, 1, 0)	2	1
M_{12}	$2^6 \cdot 3^3 \cdot 5 \cdot 11$	$\{11, 10, 8, 6\}$	(2,1,1,0)	2	1
M^cL	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	$\{30, 14, 12, 11, 9, 8\}$	(3, 2, 2, 1, 0)	2	1
HS	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$	$\{20, 15, 12, 11, 8, 7\}$	(2, 2, 2, 0, 0)	3	1
$U_6(2)$	$2^{15} \cdot 3^6 \cdot 5 \cdot 7 \cdot 11$	$\{18, 15, 12, 11, 10, 8, 7\}$	(2, 2, 2, 0, 0)	3	1
$L_3(3)$	$2^4 \cdot 3^3 \cdot 13$	$\{13, 8, 6\}$	(1, 1, 0)	2	1
$L_2(25)$	$2^3 \cdot 3 \cdot 5^2 \cdot 13$	$\{13, 12, 5\}$	(1, 1, 0, 0)	3	1
$U_{3}(4)$	$2^6 \cdot 3 \cdot 5^2 \cdot 13$	$\{15, 13, 10, 4\}$	(1, 1, 2, 0)	2	1
$S_4(5)$	$2^6 \cdot 3^2 \cdot 5^4 \cdot 13$	${30, 20, 13, 12}$	(2, 2, 2, 0)	2	1
$L_4(3)$	$2^7 \cdot 3^6 \cdot 5 \cdot 13$	$\{20, 13, 12, 9, 8\}$	(2,1,1,0)	2	1
$^{2}F_{4}(2)'$	$2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$	{16, 13, 12, 10}	(2,1,1,0)	2	1
$L_2(13)$	$2^2 \cdot 3 \cdot 7 \cdot 13$	$\{13, 7, 6\}$	(1, 1, 0, 0)	3	1
$L_2(27)$	$2^2 \cdot 3^3 \cdot 7 \cdot 13$	$\{14, 13, 3\}$	(1,0,1,0)	3	1
$G_2(3)$	$2^6 \cdot 3^6 \cdot 7 \cdot 13$	$\{13, 12, 9, 8, 7\}$	(1, 1, 0, 0)	3	1
$^{3}D_{4}(2)$	$2^{12} \cdot 3^4 \cdot 7^2 \cdot 13$	{28, 21, 18, 13, 12, 8}	(2, 2, 2, 0)	2	1
Sz(8)	$2^6 \cdot 5 \cdot 7 \cdot 13$	$\{13, 7, 5, 4\}$	(0,0,0,0)	4	1
$L_2(64)$	$2^6 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$	$\{65, 63, 2\}$	(0, 1, 1, 1, 1)	3	1
$U_4(5)$	$2^7 \cdot 3^4 \cdot 5^6 \cdot 7 \cdot 13$	$\{63, 60, 52, 24\}$	(3, 3, 2, 1, 1)	1	1
$L_3(9)$	$2^7 \cdot 3^6 \cdot 5 \cdot 7 \cdot 13$	{91,80,24}	(2,1,1,1,1)	2	1
$S_6(3)$	$2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$	$\{36, 30, 24, 20, 14, 13\}$	(3, 2, 2, 1, 0)	2	2
$O_7(3)$	$2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$	$\{20, 18, 15, 14, 13, 12, 8\}$	(3, 2, 2, 1, 0)	2	2
$G_2(4)$	$2^{12} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13$	{21, 15, 13, 12, 10, 8}	(2, 3, 2, 1, 0)	2	1
$S_4(8)$	$2^{12} \cdot 3^4 \cdot 5 \cdot 7^2 \cdot 13$	$\{65, 63, 18, 14, 4\}$	(2, 2, 1, 2, 1)	2	1
$O_8^+(3)$	$2^{12} \cdot 3^{12} \cdot 5^2 \cdot 7 \cdot 13$	$\{20, 18, 15, 14, 13, 12, 8\}$	(3, 2, 2, 1, 0)	2	1
$L_5(3)$	$2^9 \cdot 3^{10} \cdot 5 \cdot 11^2 \cdot 13$	{121, 104, 80, 78, 24, 18}	(3, 2, 1, 0, 2)	2	1
$L_6(3)$	$2^{11} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^2 \cdot 13^2$	{182, 121, 120, 104, 80, 78, 36}	(4, 3, 2, 2, 0, 3)	2	1
Suz	$2^{13}\cdot 3^7\cdot 5^2\cdot 7\cdot 11\cdot 13$	{24, 21, 20, 18, 15, 14, 13, 11}	(3, 3, 2, 2, 0, 0)	3	1
Fi_{22}	$2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	{30, 24, 22, 21, 20, 18, 16, 14, 13}	(4, 3, 2, 2, 1, 0)	2	1
$L_2(17)$	$2^4 \cdot 3^2 \cdot 17$	{17,9,8}	(0,0,0)	3	1
$L_2(16)$	$2^4 \cdot 3 \cdot 5 \cdot 17$	$\{17, 15, 2\}$	(0, 1, 1, 0)	3	1
$S_4(4)$	$2^8 \cdot 3^2 \cdot 5^2 \cdot 17$	$\{17, 15, 10, 6, 4\}$	(2, 2, 2, 0)	2	1

D(S) $h_{\text{OD}}(S)$ $\mu(S)$ s(S) \cdot 3³ · 5² · 7³ · 17 {28, 21, 17, 15, 12, 10, 8} He(3, 3, 2, 2, 0)2 $2^{12} \cdot 3^4 \cdot 5 \cdot 7 \cdot 17$ $O_8^-(2)$ {30, 21, 17, 12, 9, 8} (2, 3, 2, 1, 0)2 1 $2^{12}\cdot 3^4\cdot 5^2\cdot 7\cdot 17$ $L_{4}(4)$ {85, 63, 30, 12} (2,3,3,1,1) $2^{16} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 17$ $\{30, 24, 21, 20, 18, 17, 14\}$ $S_8(2)$ (3, 3, 2, 2, 0) $2^{12}\cdot 3^2\cdot 5^3\cdot 13\cdot 17$ {65, 51, 30, 20} $U_{4}(4)$ (2,3,3,1,1) $2^6 \cdot 3^4 \cdot 7 \cdot 13 \cdot 17^3$ $U_3(17)$ {102, 96, 91, 18} (2, 2, 1, 1, 2) $O_{10}^-(2)$ $\cdot \ 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 17$ {35, 33, 30, 24, 21, 20, 18, 17, 14} 2 (3, 4, 3, 3, 1, 0) $2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 13^2 \cdot 17$ $L_2(169)$ {85, 84, 13} (2, 2, 1, 2, 0, 1) $\cdot\ 5\cdot 7^2\cdot 13^4\cdot 17$ {182, 156, 85, 84} $S_4(13)$ (3, 3, 1, 3, 3, 1) $2^{12} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17$ $L_3(16)$ {91, 85, 15, 10, 4} (1, 1, 3, 1, 1, 1) $2^{18} \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 13 \cdot 17$ {85, 65, 63, 51, 34, 30, 20, 12, 8} $S_6(4)$ (3, 4, 4, 1, 1, 3) $2^{24} \cdot 3^5 \cdot 5^4 \cdot 7 \cdot 13 \cdot 17^2$ $O_8^+(4)$ {255, 65, 63, 34, 30, 20, 12, 8} (3, 4, 4, 1, 1, 3) $2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17$ $\{30, 28, 24, 21, 20, 18, 17, 16, 13\}$ (3, 3, 2, 2, 0, 0) $F_4(2)$

Table 2. (Continued)

Proposition 3. The simple groups $L_3(16)$, $L_5(3)$, $U_3(17)$, $U_4(4)$, $S_4(8)$, $S_4(13)$, $S_6(4)$, $G_2(4)$, $F_4(2)$, $O_8^-(2)$, $O_{10}^-(2)$, $O_8^+(3)$ and $O_8^+(4)$, are OD-characterizable.

This completes the problem of OD-characterization for all simple groups in $S_{\leq 17}$. More precisely, we have the following corollary.

Corollary 2. All simple groups in $S_{\leq 17}$, except $U_4(2)$, A_{10} , $A_{6}(3)$ and $A_{7}(3)$, are OD-characterizable.

We conclude the introduction with some further notation. Let $\Gamma = (V, E)$ be a simple graph. A set of vertices $I \subseteq V$ is said to be an independent set of Γ if no two vertices in I are adjacent in Γ . The independence number of Γ , denoted by $\alpha(\Gamma)$, is the maximum cardinality of an independent set among all independent sets of Γ . Given a group G, for convenience, we will denote $\alpha(\Gamma(G))$ as t(G). Moreover, for a vertex $r \in \pi(G)$, let t(r,G) denote the maximal number of vertices in independent sets of $\Gamma(G)$ containing r. Our notation for simple groups is borrowed from [5]. Especially, we denote by \mathbb{A}_m and \mathbb{S}_m , the alternating and symmetric group of degree m, respectively.

1 Preliminaries

We start with a well-known theorem due to Gruenberg and Kegel.

Theorem 2 (Theorem A, [25]). Let G be a finite group such that $s(G) \ge 2$. Then one of the following statements holds:

- (1) G is a Frobenius group or a 2-Frobenius group,
- (2) G is an extension of a nilpotent normal $\pi_1(G)$ -group N by a group G_1 , where $P \leq G_1 \leq \operatorname{Aut}(P)$, P is a non-Abelian simple group and G_1/P is a $\pi_1(G)$ -group. Moreover $s(P) \geq s(G)$, and for every $i, 2 \leq i \leq s(G)$, there exists $j, 2 \leq j \leq s(P)$, such that $\pi_i(G) = \pi_j(P)$.

Remark 2.1 (a) A group G = ABC is a 2-Frobenius group if AB is a Frobenius group with complement B and G/A = (BC)/A is a Frobenius group with complement C/A. Note that a 2-Frobenius group is always solvable.

(b) For a finite group G, the connected component $\pi_i(G)$ for each $i \geq 2$, is a clique.

The following theorem due to Vasilev can be applied to a wide class of finite groups including the groups with connected prime graph.

Theorem 3 (Theorem 1, [22]). Let G be a finite group with $t(G) \ge 3$ and $t(2,G) \ge 2$, and let K be the maximal normal solvable subgroup of G. Then the quotient group G/K is an almost simple group, i.e., there exists a finite non-Abelian simple group S such that $S \le G/K \le \operatorname{Aut}(S)$.

We will also need the following lemma which is taken from [14, Table 4].

Lemma 1. Let S be a simple group and $S \in \mathcal{S}_{17}$. Then either Out(S) = 1 or $\pi(Out(S)) \subseteq \{2,3\}$.

2 Main Results

In this section, we will deal with the simple groups $G_2(4)$, $S_4(8)$, $O_8^+(3)$, $L_5(3)$, $O_8^-(2)$, $U_4(4)$, $U_3(17)$, $O_{10}^-(2)$, $S_4(13)$, $L_3(16)$, $S_6(4)$, $O_8^+(4)$ and $F_4(2)$. For convenience, the prime graphs associated with these simple groups are depicted in Fig. 1.

Fig. 1. Prime graphs associated with some simple groups.

Proof of Proposition 3. Let H be one of the following simple groups $G_2(4)$, $S_4(8)$, $O_8^+(3)$, $L_5(3)$, $O_8^-(2)$, $U_4(4)$, $U_3(17)$, $O_{10}^-(2)$, $S_4(13)$, $L_3(16)$, $S_6(4)$, $O_8^+(4)$ or $F_4(2)$. Suppose that G is a finite group such that |G| = |H| and D(G) = D(H). We have to prove that $G \cong H$. We now consider two cases separately. Case 1. H is isomorphic to one of the groups: $G_2(4)$, $O_8^+(3)$, $L_5(3)$, $O_8^-(2)$, $O_{10}^-(2)$ or $F_4(2)$.

In all cases, we conclude that $\Gamma(G) = \Gamma(H)$ which is disconnected, and so $t(G) \geqslant 3$ and $t(2,G) \geqslant 3$. Now, it follows from Theorem 3 that there exists a finite non-Abelian simple group S such that $S \leqslant G/K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. If $S \cong H$, then K = 1 and G is isomorphic to H, because |G| = |H|. Therefore, in what follows, we will prove that $S \cong H$.

- (1) $H \cong G_2(4)$, $O_8^+(3)$, $L_5(3)$ or $O_8^-(2)$. Analysis of different possibilities for H proceeds along similar lines, so, we only handle one case. Assume that $H \cong G_2(4)$. In this case, we have $|G| = 2^{12} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13$, D(G) = (2,3,2,1,0) and $\Gamma(G) = \Gamma(G_2(4))$. Since the prime graphs of G and $G_2(4)$ coincide, $\{5,7,13\}$ is an independent set in $\Gamma(G)$. Now we claim that K is a $\{5,7,13\}'$ -group. Let $\{p_1,p_2,p_3\} = \{5,7,13\}$. If $\pi(K) \cap \{p_1,p_2,p_3\}$ contains at least 2 primes, say p_i and p_j , then a Hall $\{p_i,p_j\}$ -subgroup of K is an Abelian group. Hence $p_i \sim p_j$ in $\Gamma(K)$, and so in $\Gamma(G)$, a contradiction. Assume now that $p_i \in \pi(K)$ and $p_j \notin \pi(K)$. Let $P_i \in \operatorname{Syl}_{p_i}(K)$. By Frattini argument $G = KN_G(P_i)$. Therefore, the normalizer $N_G(P_i)$ contains an element of order p_j , say x. Now, $P\langle x \rangle$ is a subgroup of G, which is again an Abelian group, and so it leads to a contradiction as before. Finally, since K and $\operatorname{Out}(S)$ are $\{5,7,13\}'$ -groups, |S| is divisible by $5^2 \cdot 7 \cdot 13$. Comparing the orders of simple groups in $S_{\leqslant 17}$ yields S is isomorphic to $G_2(4)$.
- (2) $H \cong O_{10}^-(2)$. In this case, we have $|G| = 2^{20} \cdot 3^6 \cdot 5^2 \cdot 7 \cdot 11 \cdot 17$, D(G) = (3,4,3,3,1,0) and $\Gamma(G) = \Gamma(O_{10}^-(2))$. Again, using similar arguments as those in part (1), we can show that K is a $\{7,11,17\}'$ -group. Moreover, since K and $\mathrm{Out}(S)$ is a $\{7,11,17\}'$ -group, |S| is divisible by $7 \cdot 11 \cdot 17$. Comparing the orders of simple groups in $\mathcal{S}_{\leqslant 17}$ yields S is isomorphic to $O_{10}^-(2)$.
- (3) $H \cong F_4(2)$. In this case, we have $|G| = 2^{24} \cdot 3^6 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17$, D(G) = (3, 3, 2, 2, 0, 0) and $\Gamma(G) = \Gamma(F_4(2))$. As before, one can show that K is a $\{2, 3\}$ -group. Moreover, since K and $\operatorname{Out}(S)$ is a $\{2, 3\}$ -group, |S| is divisible by $5^2 \cdot 7^2 \cdot 13 \cdot 17$. Considering the orders of simple groups in $S_{\leq 17}$, we conclude that S is isomorphic to $F_4(2)$.

- Case 2. H is isomorphic to one of the groups: $L_3(16)$, $U_3(17)$, $U_4(4)$, $S_4(8)$, $S_4(13)$, $S_6(4)$ or $O_8^+(4)$.
 - (4) $H \cong U_3(17)$ or $S_4(8)$. Here, we will illustrate only the proof for $U_3(17)$, other case is similar. Assume that $H \cong U_3(17)$. In fact, G is a finite group such that $|G| = 2^6 \cdot 3^4 \cdot 7 \cdot 13 \cdot 17^3$ and D(G) = (2, 2, 1, 1, 2). Notice that, according to our hypothesis there are several possibilities for the prime graph of G, as shown in Fig. 2:

Fig. 2. All possibilities for the prime graph of G.

We now consider two cases separately.

- (4.1) Assume first that $\Gamma(G)$ is connected. In this case $7 \sim 13$ in $\Gamma(G)$. Since $\{7, 13, p_2\}$ is an independent set, $t(G) \ge 3$ and so G is a non-solvable group. Moreover, since $\deg_G(2) = 2$ and $|\pi(G)| = 5$, $t(2,G) \ge 2$. Thus by Theorem 3 there exists a finite non-Abelian simple group S such that $S \leq G/K \leq \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. We claim now that K is a $\{2,3\}$ -group. If $\{7,13\} \subseteq \pi(K)$, then a Hall subgroup of K has order 7·13, which is an Abelian subgroup. Hence $7 \sim 13$ in $\Gamma(G)$, a contradiction. Suppose now that $\{p,q\} = \{7,13\}, p \in \pi(K)$ and $q \notin \pi(K)$. Let $P \in \text{Syl}_p(K)$. By Frattini argument $G = KN_G(P)$. Therefore, the normalizer $N_G(P)$ contains an element of order q, say x. Now, $P\langle x\rangle$ is a subgroup of G of order $7\cdot 13$, which leads again to a contradiction. Therefore, if $17 \in \pi(K)$, then similar arguments as above show that $7 \sim 17 \sim 13$, against our hypothesis on the degree pattern of G. Finally, since K and Out(S) are $\{2,3\}$ -groups, |S| is divisible by $7 \cdot 13 \cdot 17^3$. Comparing the orders of simple groups in S_{17} yields S is isomorphic to $U_3(17)$, and so K=1 and G is isomorphic to $U_3(17)$, because $|G| = |U_3(17)|$. But then $\Gamma(G) = \Gamma(U_3(17))$ is disconnected, which is impossible.
- (4.2) Assume next that $\Gamma(G)$ is disconnected, which immediately implies that $\Gamma(G) = \Gamma(U_3(17))$. We now apply Theorem 2 to obtain a simple section of G. If G is a Frobenius group with kernel K and complement C, then $|K| = 2^6 \cdot 3^4 \cdot 17^3$ and $|C| = 7 \cdot 13$, which is a contradiction because $|C| \nmid |K| 1$. If G is a 2-Frobenius group, then G is a solvable group (Remark 2.1 (a)) and we may consider a Hall $\{7,17\}$ -subgroup L of G of order $7 \cdot 17^3$. By Sylow's Theorem it follows that every Sylow subgroup of L is normal in L and so L is a nilpotent group. This forces $7 \sim 17$ in

 $\Gamma(G)$, which is a contradiction. Therefore G is an extension of a nilpotent normal $\{2,3,17\}$ -group N by a group G_1 , where $P \leqslant G_1 \leqslant \operatorname{Aut}(P)$, P is a non-Abelian simple group and G_1/P is a $\{2,3,17\}$ -group. Hence $|P| = 2^{\alpha} \cdot 3^{\beta} \cdot 7 \cdot 13 \cdot 17^{\gamma}$, where $2 \leqslant \alpha \leqslant 6$, $1 \leqslant \beta \leqslant 4$ and $1 \leqslant \gamma \leqslant 3$, and comparing the order and degree pattern of simple groups in $S_{\leqslant 17}$ with |G| and D(G), it is easy to see that P can be isomorphic to $U_3(17)$. Therefore N = 1 and so $G = G_1$ is isomorphic to H, because |G| = |H|.

(5) $H \cong S_4(13)$. The proof is quite similar to the proof in part (4), so we avoid here full explanation of all details. Assume that G is a finite group such that $|G| = 2^6 \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 13^4 \cdot 17$ and D(G) = (3, 3, 1, 3, 3, 1). Then, the prime graph of G is one of the following graphs (as shown in Fig. 3), according to $\Gamma(G)$ is disconnected or connected.

Fig. 3. All possibilities for the prime graph of G.

We will consider two cases separately.

- (5.1) Suppose first that $\Gamma(G)$ is connected. In this case $5 \approx 17$ in $\Gamma(G)$. Since $\{5,17,p_2\}$ is an independent set, $t(G) \geqslant 3$ and so G is a non-solvable group. Moreover, since $\deg_G(2) = 3$ and $|\pi(G)| = 6$, $t(2,G) \geqslant 2$. Thus by Theorem 3 there exists a finite non-Abelian simple group S such that $S \leqslant G/K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. As before, one can show that K is a $\{2,3,13\}$ -group. Since K and $\operatorname{Out}(S)$ are $\{2,3,13\}$ -groups, |S| is divisible by $5 \cdot 7^2 \cdot 17$. Comparing the orders of simple groups in $S_{\leqslant 17}$ yields S is isomorphic to $S_4(13)$, and so K = 1 and G is isomorphic to $S_4(13)$, because $|G| = |S_4(13)|$. But then $\Gamma(G) = \Gamma(S_4(13))$ is disconnected, which is impossible.
- (5.2) Suppose next that $\Gamma(G)$ is disconnected, which immediately implies that $\Gamma(G) = \Gamma(S_4(13))$. We now apply Theorem 2 to obtain a simple section of G. Similar to the previous case, G is neither Frobenius nor 2-Frobenius. Therefore G is an extension of a nilpotent normal $\{2, 3, 7, 13\}$ -group N by a group G_1 , where $P \leq G_1 \leq \operatorname{Aut}(P)$, P is a non-Abelian simple group and G_1/P is a $\{2, 3, 7, 13\}$ -group. Hence $|P| = 2^{\alpha} \cdot 3^{\beta} \cdot 5 \cdot 7^{\gamma} \cdot 13^{\lambda} \cdot 17$, where $2 \leq \alpha \leq 6$, $0 \leq \beta \leq 2$, $0 \leq \gamma \leq 2$ and $0 \leq \lambda \leq 4$, and comparing the order and degree pattern of simple groups in $S_{\leq 17}$ with the order

and degree pattern of G, it is easy to see that P can be isomorphic to $S_4(13)$. Therefore N=1 and so $G=G_1$ is isomorphic to $S_4(13)$, because $|G|=|S_4(13)|$.

- (6) $H \cong L_3(16)$. In this case, we have $|G| = 2^{12} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 13 \cdot 17$, D(G) = (1, 1, 3, 1, 1, 1) and it is easy to see that s(G) = 2, $5 \in \pi_1(G)$ and G has no element of order 6 (Note that $\pi_2(G)$ is a clique (Remark 2.1 (b)) and hence $5 \notin \pi_2(G)$). Now, it follows from Theorem 3 that there exists a finite non-Abelian simple group S such that $S \leqslant G/K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. We claim now that K is a $\{2,3\}$ -group. In fact, if p_1, p_2, p_3 are the primes in $\pi(G) \setminus \{2,3,5\}$ and if there exists $p_j \in \pi(K)$, then with similar arguments as part (1), we can verify that for each $i \neq j, p_j \sim p_i$ in $\Gamma(G)$, and this contradicts the fact that $\deg_G(p_i) = 1$. Moreover, if $5 \in \pi(K)$, then $5 \sim p_i$ for each i = 1, 2, 3. But since $5 \in \pi_1(G)$, we also have $2 \sim 5$, against our hypothesis that $\deg_G(5) = 3$. Our claim follows. Therefore, since $\operatorname{Out}(S)$ is a $\{2,3\}$ -group, |S| is divisible by $5^2 \cdot 7 \cdot 13 \cdot 17$. Comparing the orders of simple groups in $S_{\leqslant 17}$ yields S is isomorphic to $L_3(16)$.
- (7) $H \cong U_4(4)$. Here, we have $|G| = 2^{12} \cdot 3^2 \cdot 5^3 \cdot 13 \cdot 17$ and D(G) = (2, 3, 3, 1, 1). We have to show that $G \cong U_4(5)$. First of all, from the structure of the degree pattern of G, it is easy to see that $13 \approx 17$ in $\Gamma(G)$, since otherwise $\deg(3) \leq 2$, which is impossible. In fact, there are only two possibilities for the prime graph of G shown in Fig. 4.:

Fig. 4. All possibilities for the prime graph of G.

Clearly, in both cases, $t(G) \ge 3$ and $t(2,G) \ge 2$. Now, from Theorem 3, we conclude that there exists a finite non-Abelian simple group S such that $S \le G/K \le \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. As before, one can show that K is a $\{13,17\}'$ -group, and so $\{13,17\} \subseteq \pi(S)$. Moreover, since |S| divides |G|, we obtain $|S| = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 13 \cdot 17$, where $2 \le \alpha \le 12$, $0 \le \beta \le 2$ and $0 \le \gamma \le 3$. Comparing the orders of simple groups listed in Table 2, we observe that the only possibility for S is $U_4(4)$, and since $|G| = |U_4(4)|$, we obtain |K| = 1 and G is isomorphic to $U_4(4)$.

(8) $H \cong S_6(4)$ or $O_8^+(4)$. We only prove the first case and the second one

goes similarly. Suppose that $H \cong S_6(4)$. In this case, we have $|G| = 2^{18} \cdot 3^4 \cdot 5^3 \cdot 7 \cdot 13 \cdot 17$ and D(G) = (3, 4, 4, 1, 1, 3). From the degree pattern of G, it is easy to see that $13 \nsim 7$ in $\Gamma(G)$. In fact, there are only two possibilities for the prime graph of G shown in Fig. 5.:

Fig. 5. All possibilities for the prime graph of G.

Clearly, in both cases, $t(G) \ge 3$ and $t(2,G) \ge 3$. Now, from Theorem 3, we conclude that there exists a finite non-Abelian simple group S such that $S \le G/K \le \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. As before, one can show that K is a $\{7,13,17\}'$ -group, and so $\{7,13,17\} \subseteq \pi(S)$. Moreover, since |S| divides |G|, we obtain $|S| = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7 \cdot 13 \cdot 17$, where $2 \le \alpha \le 18$, $0 \le \beta \le 4$ and $0 \le \gamma \le 3$. Comparing the orders of simple groups listed in Table 2, we observe that the only possibilities for S are $L_3(16)$ and $S_6(4)$. If $S \cong L_3(16)$, then $T = T_3(16)$ and so in $T_3(16)$ and since $T_3(16)$ and so in $T_3(16$

The proof is complete. \square

3 Appendix

As mentioned in the introduction, it was shown that many finite simple groups are OD-characterizable or 2-fold OD-characterizable. Table 3 lists finite simple groups which are currently known to be k-fold OD-characterizable for $k \in \{1, 2\}$. In this table q is a power of a prime number.

Among non-simple groups, there are many groups which are k-fold OD-characterizable for $k \geq 3$. In connection with such groups, Table 4 lists finite non-solvable groups which are currently known to be OD-characterizable or k-fold OD-characterizable with $k \geq 1$.

Table 3. Some simple groups S with $h_{\mathrm{OD}}(S)=1$ or 2.

\overline{S}	Conditions on S	$h_{ m OD}$	Refs.
A_n	$n = p, p + 1, p + 2 \ (p \text{ a prime})$	1	[15], [18]
	$5 \leqslant n \leqslant 100, n \neq 10$	1	[6], [9], [14],
			[16], [36]
	n = 106, 112	1	[26]
	n = 10	2	[17]
$L_2(q)$	$q \neq 2,3$	1	[15], [18],
			[34]
$L_3(q)$	$ \pi(\frac{q^2+q+1}{d}) = 1, \ d = (3, q-1)$	1	[18]
$U_3(q)$	$ \pi(\frac{q^2-q+1}{d}) =1, d=(3,q+1),q>5$	1	[18]
$L_4(q)$	$q \leqslant 17$	1	[1],[4]
$L_3(9)$		1	[35]
$U_3(5)$		1	[33]
$U_4(5)$		1	[2]
$U_4(7)$		1	[4]
$L_6(3)$		1	[2]
$L_n(2)$	$n = p \text{ or } p + 1, \ 2^p - 1$ Mersenne prime	1	[4]
$L_n(2)$	n = 9, 10, 11	1	[7], [13]
R(q)	$ \pi(q \pm \sqrt{3q} + 1) = 1, \ q = 3^{2m+1}, \ m \ge 1$	1	[18]
$\operatorname{Sz}(q)$	$q = 2^{2n+1} \ge 8$	1	[15], [18]
$B_m(q), C_m(q)$	$ m = 2^f \ge 4, \pi((q^m + 1)/2) = 1,$	2	[3]
$B_2(q) \cong C_2(q)$	$ \pi((q^2+1)/2) = 1, \ q \neq 3$	1	[3]
$B_m(q) \cong C_m(q)$	$ m = 2^f \ge 2, \ 2 q, \ \pi(q^m + 1) = 1,$	1	[3]
	$(m,q) \neq (2,2)$		
$B_p(3), C_p(3)$	$ \pi((3^p-1)/2) =1$, p is an odd prime	2	[3], [18]
$B_3(5), C_3(5)$		2	[3]
$C_3(4)$		1	[12]
S	A sporadic group	1	[18]
S	A group with $ \pi(S) = 4$, $S \neq \mathbb{A}_{10}$	1	[32]
S	A group with $ S \leq 10^8$, $S \neq \mathbb{A}_{10}$, $U_4(2)$	1	[30]
S	A simple $C_{2,2}$ - group	1	[15]

G	Conditions on G	$h_{\mathrm{OD}}(G)$	Refs.
Aut(M)	M is a sporadic group $\neq J_2, M^c L$	1	[15]
\mathbb{S}_n	$n = p, p + 1 \ (p \ge 5 \text{ is a prime})$	1	[15]
PGL(2,q)	,	1	[29]
M	$M \in \mathcal{C}_1$	2	[17]
M	$M \in \mathcal{C}_2$	8	[17]
M	$M \in \mathcal{C}_3$	3	[6], [9], [14], [16], [26]
M	$M \in \mathcal{C}_4$	2	[17]
M	$M \in \mathcal{C}_5$	3	[17]
M	$M \in \mathcal{C}_6$	6	[14]
M	$M \in \mathcal{C}_7$	1	[31]
M	$M \in \mathcal{C}_8$	9	[31]
M	$M \in \mathcal{C}_9$	1	[33]
M	$M \in \mathcal{C}_{10}$	3	[33]
M	$M \in \mathcal{C}_{11}$	6	[33]
M	$M \in \mathcal{C}_{12}$	1	
M	$M \in \mathcal{C}_{13}$	1	[13]

Table 4. Some non-solvable groups G with certain $h_{\rm OD}(G)$.

```
\mathcal{C}_1 = \{\mathbb{A}_{10}, J_2 \times \mathbb{Z}_3\}
\mathcal{C}_2 = \{ \mathbb{S}_{10}, \ \mathbb{Z}_2 \times \mathbb{A}_{10}, \ \mathbb{Z}_2 \cdot \mathbb{A}_{10}, \ \mathbb{Z}_6 \times J_2, \ \mathbb{S}_3 \times J_2, \ \mathbb{Z}_3 \times (\mathbb{Z}_2 \cdot J_2), 
                                                    (\mathbb{Z}_3 \times J_2) \cdot \mathbb{Z}_2, \ \mathbb{Z}_3 \times \operatorname{Aut}(J_2) \}.
C_3 = \{ \mathbb{S}_n, \ \mathbb{Z}_2 \cdot \mathbb{A}_n, \ \mathbb{Z}_2 \times \mathbb{A}_n \}, \text{ where } 9 \leqslant n \leqslant 100 
                                                    with n \neq 10, 27, p, p + 1 (p a prime) or n = 106, 112.
C_4 = \{ \operatorname{Aut}(M^c L), \ \mathbb{Z}_2 \times M^c L \}.

\begin{array}{lll}
\mathcal{C}_5 &= \{ \mathrm{Aut}(J_2), \ \mathbb{Z}_2 \times J_2, \ \mathbb{Z}_2 \cdot J_2 \}. \\
\mathcal{C}_6 &= \{ \mathrm{Aut}(S_6(3)), \ \mathbb{Z}_2 \times S_6(3), \ \mathbb{Z}_2 \cdot S_6(3), \ \mathbb{Z}_2 \times O_7(3), \end{array}

                                                     \mathbb{Z}_2 \cdot O_7(3), \ \operatorname{Aut}(O_7(3)) \}.
C_7 = \{L_2(49) : 2_1, L_2(49) : 2_2, L_2(49) : 2_3\}.
\mathcal{C}_{8} = \{L \cdot 2^{2}, \ \mathbb{Z}_{2} \times (L : 2_{1}), \ \mathbb{Z}_{2} \times (L : 2_{2}), \ \mathbb{Z}_{2} \times (L \cdot 2_{3}), \ \mathbb{Z}_{2} \cdot (L : 2_{1}), \ \mathbb{Z}_{3} \times (L : 2_{2}), \ \mathbb{Z}_{4} \times (L : 2_{3}), \ \mathbb{Z}_{5} \times (L : 2_{1}), \ \mathbb{Z}_{5} \times (L : 2
                                                    \mathbb{Z}_2 \cdot (L:2_2), \ \mathbb{Z}_2 \cdot (L\cdot 2_3), \ \mathbb{Z}_4 \times L, \ (\mathbb{Z}_2 \times \mathbb{Z}_2) \times L \}
                                                       where L = L_2(49).
C_9 = \{U_3(5), U_3(5): 2\}
C_{10} = \{U_3(5): 3, \mathbb{Z}_3 \times U_3(5), \mathbb{Z}_3 \cdot U_3(5)\}
C_{11} = \{L: \mathbb{S}_3, \ \mathbb{Z}_2 \cdot (L:3), \ \mathbb{Z}_3 \times (L:2), \ \mathbb{Z}_3 \cdot (L:2), \ (\mathbb{Z}_2 \times L) \cdot \mathbb{Z}_2, 
                                                         (\mathbb{Z}_3 \cdot L) \cdot \mathbb{Z}_2, where L = U_3(5).
C_{12} = \{ \operatorname{Aut}(O_{10}^+(2), \operatorname{Aut}(O_{10}^-(2)) \},
C_{13} = \{ \text{Aut}(L_p(2)), \text{Aut}(L_{p+1}(2)) \}, \text{ where } 2^p - 1 \text{ is a prime.}
```

References

[1] B. Akbari, A. R. Moghaddamfar: Recognizing by order and degree pattern of some projective special linear groups, Internat. J. Algebra Comput., 22 (2012), 22 pages.

- [2] B. Akbari, A. R. Moghaddamfar: Recognition by order and degree pattern of finite simple groups, Southeast Asian Bullettin of Mathematics (to appear).
- [3] M. Akbari, A. R. Moghaddamfar: Simple groups which are 2-fold OD-characterizable, Bull. Malays. Math. Sci. Soc., **35** (2012), 65–77.
- [4] M. Akbari, A. R. Moghaddamfar, S. Rahbariyan: A characterization of some finite simple groups through their orders and degree patterns, Algebra Colloq., 19 (2012), 473– 482.
- [5] J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER, R. A. WILSON: Atlas of Finite Groups, Clarendon Press, oxford, 1985.
- [6] A. A. HOSEINI, A. R. MOGHADDAMFAR: Recognizing alternating groups A_{p+3} for certain primes p by their orders and degree patterns, Front. Math. China, 5 (2010), 541–553.
- [7] B. Khosravi: Some characterizations of $L_9(2)$ related to its prime graph, Publ. Math. Debrecen, Tomus 75, Fasc. 3-4, (2009).
- [8] W. KIMMERLE, R. LYONS, R. SANDLING, D. N. TEAGUE: Composition factors from the group ring and Artin's theorem on orders of simple groups, Proc. London Math. Soc., 60 (1990), 89–122.
- [9] R. KOGANI-MOGHADDAM, A. R. MOGHADDAMFAR: Groups with the same order and degree pattern, Sci. China Math., 55 (2012), 701–720.
- [10] V. D. MAZUROV: Recognition of the finite simple groups S₄(q) by their element orders, Algebra Logic, 41 (2002), 93–110.
- [11] V. D. MAZUROV, G. Y. CHEN: Recognizability of the finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by the spectrum, Algebra Logic, 47 (2008), 49–55.
- [12] A. R. MOGHADDAMFAR: Recognizability of finite groups by order and degree pattern, Proceedings of the International Conference on Algebra 2010, 422–433.
- [13] A. R. MOGHADDAMFAR, S. RAHBARIYAN: OD-Characterization of some projective special linear groups over the binary field and their automorphism groups, Communications in Algebra (to appear).
- [14] A. R. MOGHADDAMFAR, S. RAHBARIYAN: More on the OD-characterizability of a finite group, Algebra Colloq., 18 (2011), 663–674.
- [15] A. R. MOGHADDAMFAR, A. R. ZOKAYI: Recognizing finite groups through order and degree pattern, Algebra Colloq., 15 (2008), 449–456.
- [16] A. R. MOGHADDAMFAR, A. R. ZOKAYI: OD-Characterization of alternating and symmetric groups of degrees 16 and 22, Front. Math. China, 4 (2009), 669–680.
- [17] A. R. MOGHADDAMFAR, A. R. ZOKAYI: OD-Characterization of certain finite groups having connected prime graphs, Algebra Colloq., 17 (2010), 121–130.
- [18] A. R. MOGHADDAMFAR, A. R. ZOKAYI, M. R. DARAFSHEH: A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Colloq., 12 (2005), 431–442.
- [19] W. J. Shi: On the orders of the finite simple groups, Chinese Sci. Bull., 38 (1993), 296–298.
- [20] W. J. Shi, C. Y. Tang: A characterization of some orthogonal groups, Progr. Natur. Sci. (English Ed.), 7 (1997), 155–162.
- [21] A. M. STAROLETOV: On the recognizability of the simple groups $B_3(q)$, $C_3(q)$ and $D_4(q)$ by the spectrum, Sib. Math. J., **53** (2012), 532–538.

- [22] A. V. VASILEV, I. B. GORSHKOV: On the recognition of finite simple groups with a connected prime graph, Sib. Math. J., 50 (2009), 233–238.
- [23] A. V. VASILEV, E. P. VDOVIN: An adjacency criterion in the prime graph of a finite simple group, Algebra Logic, 44 (2005), 381–406.
- [24] A. V. VASILEV, E. P. VDOVIN: Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logic, **50** (2011), 291–322.
- [25] J. S. WILLIAMS: Prime graph components of finite groups, J. Algebra, 69 (1981), 487–513.
- [26] Y. X. YAN, G. Y. CHEN: OD-Characterization of alternating and symmetric groups of degree 106 and 112, Proceedings of the International Conference on Algebra 2010, 690– 696.
- [27] Y. X. YAN, G. Y. CHEN, L. L. WANG: *OD-Characterization of the automorphism groups of* $O_{10}^{\pm}(2)$, Indian J. Pure Appl. Math., **43** (2012), 183–195.
- [28] A. V. ZAVARNITSINE: Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv., 6 (2009), 1–12.
- [29] L. C. Zhang, X. F. Liu: Characterization of the projective general linear groups PGL(2,q) by their orders and degree patterns, Internat. J. Algebra Comput., 19 (2009), 873–889.
- [30] L. C. Zhang, W. J. Shi: OD-Characterization of all simple groups whose orders are less than 10⁸, Front. Math. China, **3** (2008), 461–474.
- [31] L. C. ZHANG, W. J. SHI: OD-Characterization of almost simple groups related to L₂(49), Arch. Math. (Brno), 44 (2008), 191–199.
- [32] L. C. Zhang, W. J. Shi: *OD-Characterization of simple K*₄-groups, Algebra Colloq., **16** (2009) 275–282.
- [33] L. C. Zhang, W. J. Shi: *OD-Characterization of almost simple groups related to U*₃(5), Acta Math. Sin. (Engl. Ser.), **26** (2010), 161–168.
- [34] L. C. Zhang, W. J. Shi: OD-Characterization of the projective special linear groups $L_2(q)$, Algebra Colloq., 19 (2012), 509–524.
- [35] L. C. ZHANG, W. J. SHI, C. G. SHAO, L. L. WANG: OD-Characterization of the simple group L₃(9), Journal of Guangxi University (Natural Science Edition), 34 (2009), 120– 122.
- [36] L. C. Zhang, W. J. Shi, L. L. Wang, C. G. Shao: *OD-Characterization of A*₁₆, Journal of Suzhou University (Natural Science Edition), **24** (2008), 7–10.