A Quantitative Characterization of Some Finite Simple Groups Through Order and Degree Pattern

Ali Reza Moghaddamfar
Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran
moghadam@kntu.ac.ir and moghadam@ipm.ir

Sakineh Rahbariyan

Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran

Received: 31.10.2013; accepted: 7.4.2014.

Abstract

Let G be a finite group with $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{h}^{\alpha_{h}}$, where $p_{1}<p_{2}<\cdots<p_{h}$ are prime numbers and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}, h$ are natural numbers. The prime graph $\Gamma(G)$ of G is a simple graph whose vertex set is $\left\{p_{1}, p_{2}, \ldots, p_{h}\right\}$ and two distinct primes p_{i} and p_{j} are joined by an edge if and only if G has an element of order $p_{i} p_{j}$. The degree $\operatorname{deg}_{G}\left(p_{i}\right)$ of a vertex p_{i} is the number of edges incident on p_{i}, and the h-tuple $\left(\operatorname{deg}_{G}\left(p_{1}\right), \operatorname{deg}_{G}\left(p_{2}\right), \ldots, \operatorname{deg}_{G}\left(p_{h}\right)\right)$ is called the degree pattern of G. We say that the problem of OD-characterization is solved for a finite group G if we determine the number of pairwise non-isomorphic finite groups with the same order and degree pattern as G. The purpose of this paper is twofold. First, it completely solves the OD-characterization problem for every finite non-Abelian simple groups their orders having prime divisors at most 17. Second, it provides a list of finite (simple) groups for which the problem of OD-characterization have been already solved.

Keywords: Prime graph, degree pattern, OD-characterization.
MSC 2000 classification: 20D05, 20D06, 20D08.

Introduction

Throughout this paper, all groups discussed are finite and simple groups are non-Abelian. Given a group G, denote by $\omega(G)$ the set of order of all elements in G, and by $\mu(G)$ the set of numbers in $\omega(G)$ that are maximal with respect to divisibility. We also denote by $\pi(n)$ the set of all prime divisors of a positive integer n. For a finite group G, we shall write $\pi(G)$ instead of $\pi(|G|)$. To every finite group G, we associate a simple graph known as prime graph (also often called the Gruenberg-Kegel graph) and denoted by $\Gamma(G)$. In this graph the vertex set is the set $\pi(G)$, and two distinct vertices p and q are joined by an edge if
and only if $p q \in \omega(G)$. Let $s(G)$ be the number of connected components of $\Gamma(G)$. We denote the set of all the connected components of the graph $\Gamma(G)$ by $\left\{\pi_{i}(G): i=1,2, \ldots, s(G)\right\}$ and, if the order of G is even, we denote by $\pi_{1}(G)$ the component containing 2. The degree $\operatorname{deg}_{G}(p)$ of a vertex $p \in \pi(G)$ is the number of edges incident on p. In the case the distinct prime divisors of $|G|$ are $p_{1}, p_{2}, \ldots, p_{h}$, where h is a positive integer and $p_{1}<p_{2}<\cdots<p_{h}$, we define

$$
\mathrm{D}(G):=\left(\operatorname{deg}_{G}\left(p_{1}\right), \operatorname{deg}_{G}\left(p_{2}\right), \ldots, \operatorname{deg}_{G}\left(p_{h}\right)\right),
$$

and call this h-tuple the degree pattern of G.
Let $\mathcal{O D}(G)$ be the collection of pairwise non-isomorphic groups with the same order and degree pattern as G, that is

$$
\mathcal{O D}(G)=\{H:|H|=|G|, D(H)=D(G)\} .
$$

We put $h_{\mathrm{OD}}(G)=|\mathcal{O D}(G)|$. In terms of the function $h_{\mathrm{OD}}(\cdot)$, we have the following definition.

Definition 1. A finite group G is said to be k-fold OD-characterizabale if $h_{\mathrm{OD}}(G)=k . G$ is OD-characterizabale if $h_{\mathrm{OD}}(G)=1$. Moreover, we will say that the OD-characterization problem is solved for a group G, if the value of $h_{\mathrm{OD}}(G)$ is known.

According to Cayley's theorem, for each positive integer n there are only finitely many non-isomorphic groups of order n normally denoted by $\nu(n)$. Hence the following corollary is immediate.

Theorem 1. Every finite group is k-fold OD-characterizable for some natural number k.

However, the situation will be interesting when we restrict ourselves to finite simple groups. As a matter of fact, there are many non-Abelian simple groups which are OD-characterizable or 2 -fold OD-characterizable (see Table 3 at the end of the paper). The first examples of OD-characterizable simple groups were found in [18]. In [15], Moghaddamfar and Zokayi obtained some infinite series of OD-characterizable simple groups such as: $\mathrm{Sz}\left(2^{2 n+1}\right), L_{2}\left(2^{n}\right), \mathbb{A}_{p}, \mathbb{A}_{p+1}$ and \mathbb{A}_{p+2}, where p is a prime. Recently, Zhang and Shi in [34] obtained another infinite series of OD-characterizable simple groups, that is $L_{2}(q)$ for q odd. At present, the OD-characerization problem is solved for many finite non-Abelian simple and almost simple groups (a new list of such groups is available in Tables $3-4$ at the end of the paper). Nevertheless, we do not know of any simple group S for which $h_{\mathrm{OD}}(S) \notin\{1,2\}$. Therefore, the following problem may be of interest.

Problem 0.2. Is there a finite simple group S for which $h_{\mathrm{OD}}(S) \geqslant 3$?
In connection the finite simple groups which are k-fold OD-characterizable, for $k \geq 2$, it was shown in [3], [17] and [18] that:

$$
\begin{aligned}
& \mathcal{O D}\left(\mathbb{A}_{10}\right)=\left\{\mathbb{A}_{10}, \mathbb{Z}_{3} \times J_{2}\right\}, \\
& \mathcal{O D}\left(S_{6}(5)\right)=\left\{S_{6}(5), O_{7}(5)\right\}, \\
& \mathcal{O} \mathcal{D}\left(S_{2 m}(q)\right)=\left\{S_{2 m}(q), O_{2 m+1}(q)\right\}, \quad m=2^{f} \geqslant 2,\left|\pi\left(\frac{q^{m}+1}{2}\right)\right|=1, \\
& q \text { odd prime power, } \\
& \mathcal{O} \mathcal{D}\left(S_{2 p}(3)\right)=\left\{S_{2 p}(3), O_{2 p+1}(3)\right\}, \quad\left|\pi\left(\left(3^{p}-1\right) / 2\right)\right|=1, \quad p \text { odd prime. }
\end{aligned}
$$

It should be of interest to investigate the question: Let G be a finite group. How many simple groups are there in $\mathcal{O D}(G)$? Evidently, two simple groups in $\mathcal{O} \mathcal{D}(G)$ must have the same order. The complete list of pairs of non-isomorphic finite simple groups having the same order is well-known (see [8, 19]).

Proposition 1. Two finite simple groups of the same order are isomorphic, except exactly in the cases: $\left\{\mathbb{A}_{8}, L_{3}(4)\right\}$ and $\left\{O_{2 n+1}(q), S_{2 n}(q)\right\}$ for $n \geqslant 3$ and q odd.

An immediate consequence of Proposition 1 is the following.
Corollary 1. For every group G, the set $\mathcal{O D}(G)$ has at most two simple groups.

Generally, the orthogonal groups $O_{2 n+1}(q)$ and the symplectic groups $S_{2 n}(q)$ have the same order and prime graph ([23, Proposition 7.5]), hence $\left|O_{2 n+1}(q)\right|=$ $\left|S_{2 n}(q)\right|$ and $\mathrm{D}\left(O_{2 n+1}(q)\right)=\mathrm{D}\left(S_{2 n}(q)\right)$. Notice that $O_{2 n+1}\left(2^{m}\right) \cong S_{2 n}\left(2^{m}\right)$ and $O_{5}(q) \cong S_{4}(q)$ for each q, and hence, if $n \geq 3$ and q is odd, then the simple groups $O_{2 n+1}(q)$ and $S_{2 n}(q)$ are non-isomorphic groups). Now, we have the following result.

Proposition 2. If $n \geq 3$ and q is odd, then $h_{\mathrm{OD}}\left(O_{2 n+1}(q)\right)=h_{\mathrm{OD}}\left(S_{2 n}(q)\right) \geqslant$ 2.

Remark 1.1 Although, the simple groups \mathbb{A}_{8} and $L_{3}(4)$ have the same order, but they have different degree patterns, in fact, $D\left(\mathbb{A}_{8}\right)=(1,2,1,0)$ and $D\left(L_{3}(4)\right)=(0,0,0,0)$. It was proved in $[15,18]$ that $h_{\mathrm{OD}}\left(\mathbb{A}_{8}\right)=h_{\mathrm{OD}}\left(L_{3}(4)\right)=$ 1.

In what follows we will consider the finite non-Abelian simple groups S with the property $\pi(S) \subseteq\{2,3,5,7,11,13,17\}$. We denote the set of all these simple groups by $\mathcal{S}_{\leqslant 17}$. Using the classification of finite simple groups it is not hard to obtain a full list of all groups in $\mathcal{S}_{\leqslant 17}$. Actually, there are 73 such groups (see [14, Table 4] or [28, Table 1]). For convenience, the values of $|S|, \mu(S)$, $D(S), s(S)$ and $h_{\mathrm{OD}}(S)$ are listed in Table 2 (see $[2,5,10,11,20,21,23,24]$). The comparison between simple groups listed in Table 3 and the simple groups in $\mathcal{S}_{\leqslant 17}$ shows that there are only 13 groups which we must solve the ODcharacterization problem for them; namely, the groups $L_{3}(16), L_{5}(3), U_{3}(17)$, $U_{4}(4), S_{4}(8), S_{4}(13), S_{6}(4), G_{2}(4), F_{4}(2), O_{8}^{-}(2), O_{10}^{-}(2), O_{8}^{+}(3)$ and $O_{8}^{+}(4)$. The goal of the present paper is to prove that these groups are OD-characterizable.

Table 2. The simple groups in $\mathcal{S}_{\leqslant 17}$ except alternating ones.

| S | \|S| | $\mu(S)$ | $D(S)$ | $s(S)$ | $h_{\text {OD }}(S)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $U_{4}(2) \cong S_{4}(3)$ | $2^{6} \cdot 3^{4} \cdot 5$ | $\{12,9,5\}$ | $(1,1,0)$ | 2 | 2 |
| $L_{2}(7) \cong L_{3}(2)$ | $2^{3} \cdot 3 \cdot 7$ | $\{7,4,3\}$ | $(0,0,0)$ | 3 | 1 |
| $L_{2}(8)$ | $2^{3} \cdot 3^{2} \cdot 7$ | $\{9,7,2\}$ | ($0,0,0$) | 3 | 1 |
| $U_{3}(3)$ | $2^{5} \cdot 3^{3} \cdot 7$ | $\{12,8,7\}$ | ($1,1,0$) | 2 | 1 |
| $L_{2}(49)$ | $2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$ | $\{25,24,7\}$ | (1, 1, 0, 0) | 3 | 1 |
| $U_{3}(5)$ | $2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$ | \{10, $8,7,6\}$ | (2, 1, 1, 0) | 2 | 1 |
| $L_{3}(4)$ | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | \{7, 5, 4, 3\} | ($0,0,0,0$) | 4 | 1 |
| J_{2} | $2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$ | $\{15,12,10,8,7\}$ | (2, 2, 2, 0) | 2 | 1 |
| $U_{4}(3)$ | $2^{7} \cdot 3^{6} \cdot 5 \cdot 7$ | \{12, 9, 8, 7, 5\} | (1, 1, 0, 0) | 3 | 1 |
| $S_{4}(7)$ | $2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$ | \{56, 42, 25, 24\} | (2, 2, 0, 2) | 2 | 1 |
| $S_{6}(2)$ | $2^{9} \cdot 3^{4} \cdot 5 \cdot 7$ | $\{15,12,10,9,8,7\}$ | (2, 2, 2, 0) | 2 | 1 |
| $O_{8}^{+}(2)$ | $2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$ | $\{15,12,10,9,8,7\}$ | (2, 2, 2, 0) | 2 | 1 |
| $L_{2}(11)$ | $2^{2} \cdot 3 \cdot 5 \cdot 11$ | \{11, 6, 5\} | (1, 1, 0, 0) | 3 | 1 |
| M_{11} | $2^{4} \cdot 3^{2} \cdot 5 \cdot 11$ | $\{11,8,6,5\}$ | (1, 1, 0, 0) | 3 | 1 |
| M_{12} | $2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ | \{11, 10, 8, 6\} | (2, 1, 1, 0) | 2 | 1 |
| $U_{5}(2)$ | $2^{10} \cdot 3^{5} \cdot 5 \cdot 11$ | $\{18,15,11,8\}$ | (1, 2, 1, 0) | 2 | 1 |
| M_{12} | $2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ | \{11, 10, 8, 6\} | ($2,1,1,0$) | 2 | 1 |
| $M^{c} L$ | $2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$ | $\{30,14,12,11,9,8\}$ | (3, 2, 2, 1, 0) | 2 | 1 |
| HS | $2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$ | $\{20,15,12,11,8,7\}$ | (2, 2, 2, 0, 0) | 3 | 1 |
| $U_{6}(2)$ | $2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11$ | $\{18,15,12,11,10,8,7\}$ | ($2,2,2,0,0$) | 3 | 1 |
| $L_{3}(3)$ | $2^{4} \cdot 3^{3} \cdot 13$ | $\{13,8,6\}$ | $(1,1,0)$ | 2 | 1 |
| $L_{2}(25)$ | $2^{3} \cdot 3 \cdot 5^{2} \cdot 13$ | $\{13,12,5\}$ | (1, 1, 0, 0) | 3 | 1 |
| $U_{3}(4)$ | $2^{6} \cdot 3 \cdot 5^{2} \cdot 13$ | $\{15,13,10,4\}$ | (1, 1, 2, 0) | 2 | 1 |
| $S_{4}(5)$ | $2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 13$ | $\{30,20,13,12\}$ | (2, 2, 2, 0) | 2 | 1 |
| $L_{4}(3)$ | $2^{7} \cdot 3^{6} \cdot 5 \cdot 13$ | $\{20,13,12,9,8\}$ | (2, 1, 1, 0) | 2 | 1 |
| ${ }^{2} F_{4}(2){ }^{\prime}$ | $2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$ | $\{16,13,12,10\}$ | (2, 1, 1, 0) | 2 | 1 |
| $L_{2}(13)$ | $2^{2} \cdot 3 \cdot 7 \cdot 13$ | $\{13,7,6\}$ | ($1,1,0,0$) | 3 | 1 |
| $L_{2}(27)$ | $2^{2} \cdot 3^{3} \cdot 7 \cdot 13$ | \{14, 13, 3 \} | (1, 0, 1, 0) | 3 | 1 |
| $G_{2}(3)$ | $2^{6} \cdot 3^{6} \cdot 7 \cdot 13$ | $\{13,12,9,8,7\}$ | (1, 1, 0, 0) | 3 | 1 |
| ${ }^{3} D_{4}(2)$ | $2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$ | $\{28,21,18,13,12,8\}$ | (2, 2, 2, 0) | 2 | 1 |
| $\mathrm{Sz}(8)$ | $2^{6} \cdot 5 \cdot 7 \cdot 13$ | \{13, 7, 5, 4\} | ($0,0,0,0$) | 4 | 1 |
| $L_{2}(64)$ | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ | \{65, 63, 2 \} | ($0,1,1,1,1$) | 3 | 1 |
| $U_{4}(5)$ | $2^{7} \cdot 3^{4} \cdot 5^{6} \cdot 7 \cdot 13$ | $\{63,60,52,24\}$ | (3, 3, 2, 1, 1) | 1 | 1 |
| $L_{3}(9)$ | $2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13$ | \{91, 80, 24\} | (2, 1, 1, 1, 1) | 2 | 1 |
| $S_{6}(3)$ | $2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$ | $\{36,30,24,20,14,13\}$ | (3, 2, 2, 1, 0) | 2 | 2 |
| $O_{7}(3)$ | $2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$ | $\{20,18,15,14,13,12,8\}$ | (3, 2, 2, 1, 0) | 2 | 2 |
| $G_{2}(4)$ | $2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13$ | $\{21,15,13,12,10,8\}$ | (2, 3, 2, 1, 0) | 2 | 1 |
| $S_{4}(8)$ | $2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13$ | $\{65,63,18,14,4\}$ | (2, 2, 1, 2, 1) | 2 | 1 |
| $O_{8}^{+}(3)$ | $2^{12} \cdot 3^{12} \cdot 5^{2} \cdot 7 \cdot 13$ | $\{20,18,15,14,13,12,8\}$ | (3, 2, 2, 1, 0) | 2 | 1 |
| $L_{5}(3)$ | $2^{9} \cdot 3^{10} \cdot 5 \cdot 11^{2} \cdot 13$ | $\{121,104,80,78,24,18\}$ | (3, 2, 1, 0, 2) | 2 | 1 |
| $L_{6}(3)$ | $2^{11} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2}$ | $\{182,121,120,104,80,78,36\}$ | (4,3, 2, 2, 0, 3) | 2 | 1 |
| Suz | $2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ | $\{24,21,20,18,15,14,13,11\}$ | ($3,3,2,2,0,0$) | 3 | 1 |
| $F i_{22}$ | $2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ | $\{30,24,22,21,20,18,16,14,13\}$ | (4,3, 2, 2, 1, 0) | 2 | 1 |
| $L_{2}(17)$ | $2^{4} \cdot 3^{2} \cdot 17$ | \{17, 9, 8\} | ($0,0,0$) | 3 | 1 |
| $L_{2}(16)$ | $2^{4} \cdot 3 \cdot 5 \cdot 17$ | $\{17,15,2\}$ | ($0,1,1,0)$ | 3 | 1 |
| $S_{4}(4)$ | $2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$ | $\{17,15,10,6,4\}$ | (2,2, 2, 0) | 2 | 1 |

Table 2. (Continued)

S	$\|S\|$	$\mu(S)$	$D(S)$	$s(S)$	$h_{\text {OD }}(S)$
$H e$	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$	$\{28,21,17,15,12,10,8\}$	$(3,3,2,2,0)$	2	1
$O_{8}^{-}(2)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$	$\{30,21,17,12,9,8\}$	$(2,3,2,1,0)$	2	1
$L_{4}(4)$	$2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$	$\{85,63,30,12\}$	$(2,3,3,1,1)$	1	1
$S_{8}(2)$	$2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17$	$\{30,24,21,20,18,17,14\}$	$(3,3,2,2,0)$	2	1
$U_{4}(4)$	$2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$	$\{65,51,30,20\}$	$(2,3,3,1,1)$	1	1
$U_{3}(17)$	$2^{6} \cdot 3^{4} \cdot 7 \cdot 13 \cdot 17^{3}$	$\{102,96,91,18\}$	$(2,2,1,1,2)$	2	1
$O_{10}^{-}(2)$	$2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$	$\{35,33,30,24,21,20,18,17,14\}$	$(3,4,3,3,1,0)$	2	1
$L_{2}(169)$	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17$	$\{85,84,13\}$	$(2,2,1,2,0,1)$	3	1
$S_{4}(13)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{4} \cdot 17$	$\{182,156,85,84\}$	$(3,3,1,3,3,1)$	2	1
$L_{3}(16)$	$2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17$	$\{91,85,15,10,4\}$	$(1,1,3,1,1,1)$	2	1
$S_{6}(4)$	$2^{18} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 17$	$\{85,65,63,51,34,30,20,12,8\}$	$(3,4,4,1,1,3)$	1	1
$O_{8}^{+}(4)$	$2^{24} \cdot 3^{5} \cdot 5^{4} \cdot 7 \cdot 13 \cdot 17^{2}$	$\{255,65,63,34,30,20,12,8\}$	$(3,4,4,1,1,3)$	1	1
$F_{4}(2)$	$2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17$	$\{30,28,24,21,20,18,17,16,13\}$	$(3,3,2,2,0,0)$	3	1

Proposition 3. The simple groups $L_{3}(16), L_{5}(3), U_{3}(17), U_{4}(4), S_{4}(8)$, $S_{4}(13), S_{6}(4), G_{2}(4), F_{4}(2), O_{8}^{-}(2), O_{10}^{-}(2), O_{8}^{+}(3)$ and $O_{8}^{+}(4)$, are OD-characterizable.

This completes the problem of OD-characterization for all simple groups in $\mathcal{S}_{\leqslant 17}$. More precisely, we have the following corollary.

Corollary 2. All simple groups in $\mathcal{S}_{\leqslant 17}$, except $U_{4}(2), \mathbb{A}_{10}, S_{6}(3)$ and $O_{7}(3)$, are OD-characterizable.

We conclude the introduction with some further notation. Let $\Gamma=(V, E)$ be a simple graph. A set of vertices $I \subseteq V$ is said to be an independent set of Γ if no two vertices in I are adjacent in Γ. The independence number of Γ, denoted by $\alpha(\Gamma)$, is the maximum cardinality of an independent set among all independent sets of Γ. Given a group G, for convenience, we will denote $\alpha(\Gamma(G))$ as $t(G)$. Moreover, for a vertex $r \in \pi(G)$, let $t(r, G)$ denote the maximal number of vertices in independent sets of $\Gamma(G)$ containing r. Our notation for simple groups is borrowed from [5]. Especially, we denote by \mathbb{A}_{m} and \mathbb{S}_{m}, the alternating and symmetric group of degree m, respectively.

1 Preliminaries

We start with a well-known theorem due to Gruenberg and Kegel.
Theorem 2 (Theorem A, [25]). Let G be a finite group such that $s(G) \geqslant 2$. Then one of the following statements holds:
(1) G is a Frobenius group or a 2-Frobenius group,
(2) G is an extension of a nilpotent normal $\pi_{1}(G)$-group N by a group G_{1}, where $P \leqslant G_{1} \leqslant \operatorname{Aut}(P), P$ is a non-Abelian simple group and G_{1} / P is a $\pi_{1}(G)$-group. Moreover $s(P) \geqslant s(G)$, and for every $i, 2 \leqslant i \leqslant s(G)$, there exists $j, 2 \leqslant j \leqslant s(P)$, such that $\pi_{i}(G)=\pi_{j}(P)$.

Remark 2.1 (a) A group $G=A B C$ is a 2-Frobenius group if $A B$ is a Frobenius group with complement B and $G / A=(B C) / A$ is a Frobenius group with complement C / A. Note that a 2 -Frobenius group is always solvable.
(b) For a finite group G, the connected component $\pi_{i}(G)$ for each $i \geqslant 2$, is a clique.

The following theorem due to Vasilev can be applied to a wide class of finite groups including the groups with connected prime graph.

Theorem 3 (Theorem 1, [22]). Let G be a finite group with $t(G) \geqslant 3$ and $t(2, G) \geqslant 2$, and let K be the maximal normal solvable subgroup of G. Then the quotient group G / K is an almost simple group, i.e., there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$.

We will also need the following lemma which is taken from [14, Table 4].
Lemma 1. Let S be a simple group and $S \in \mathcal{S}_{17}$. Then either $\operatorname{Out}(S)=1$ or $\pi(\operatorname{Out}(S)) \subseteq\{2,3\}$.

2 Main Results

In this section, we will deal with the simple groups $G_{2}(4), S_{4}(8), O_{8}^{+}(3)$, $L_{5}(3), O_{8}^{-}(2), U_{4}(4), U_{3}(17), O_{10}^{-}(2), S_{4}(13), L_{3}(16), S_{6}(4), O_{8}^{+}(4)$ and $F_{4}(2)$. For convenience, the prime graphs associated with these simple groups are depicted in Fig. 1.

$\Gamma\left(O_{8}^{+}(3)\right)$

$\Gamma\left(O_{10}^{-}(2)\right)$

$\Gamma\left(U_{4}(4)\right)$

$\Gamma\left(S_{6}(4)\right)=\Gamma\left(O_{8}^{+}(4)\right)$

Fig. 1. Prime graphs associated with some simple groups.

Proof of Proposition 3. Let H be one of the following simple groups $G_{2}(4), S_{4}(8)$, $O_{8}^{+}(3), L_{5}(3), O_{8}^{-}(2), U_{4}(4), U_{3}(17), O_{10}^{-}(2), S_{4}(13), L_{3}(16), S_{6}(4), O_{8}^{+}(4)$ or $F_{4}(2)$. Suppose that G is a finite group such that $|G|=|H|$ and $D(G)=D(H)$. We have to prove that $G \cong H$. We now consider two cases separately.
Case 1. H is isomorphic to one of the groups: $G_{2}(4), O_{8}^{+}(3), L_{5}(3), O_{8}^{-}(2)$, $O_{10}^{-}(2)$ or $F_{4}(2)$.

In all cases, we conclude that $\Gamma(G)=\Gamma(H)$ which is disconnected, and so $t(G) \geqslant 3$ and $t(2, G) \geqslant 3$. Now, it follows from Theorem 3 that there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. If $S \cong H$, then $K=1$ and G is isomorphic to H, because $|G|=|H|$. Therefore, in what follows, we will prove that $S \cong H$.
(1) $H \cong G_{2}(4), O_{8}^{+}(3), L_{5}(3)$ or $O_{8}^{-}(2)$. Analysis of different possibilities for H proceeds along similar lines, so, we only handle one case. Assume that $H \cong G_{2}(4)$. In this case, we have $|G|=2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13, D(G)=$ $(2,3,2,1,0)$ and $\Gamma(G)=\Gamma\left(G_{2}(4)\right)$. Since the prime graphs of G and $G_{2}(4)$ coincide, $\{5,7,13\}$ is an independent set in $\Gamma(G)$. Now we claim that K is a $\{5,7,13\}^{\prime}$-group. Let $\left\{p_{1}, p_{2}, p_{3}\right\}=\{5,7,13\}$. If $\pi(K) \cap\left\{p_{1}, p_{2}, p_{3}\right\}$ contains at least 2 primes, say p_{i} and p_{j}, then a Hall $\left\{p_{i}, p_{j}\right\}$-subgroup of K is an Abelian group. Hence $p_{i} \sim p_{j}$ in $\Gamma(K)$, and so in $\Gamma(G)$, a contradiction. Assume now that $p_{i} \in \pi(K)$ and $p_{j} \notin \pi(K)$. Let $P_{i} \in \operatorname{Syl}_{p_{i}}(K)$. By Frattini argument $G=K N_{G}\left(P_{i}\right)$. Therefore, the normalizer $N_{G}\left(P_{i}\right)$ contains an element of order p_{j}, say x. Now, $P\langle x\rangle$ is a subgroup of G, which is again an Abelian group, and so it leads to a contradiction as before. Finally, since K and $\operatorname{Out}(S)$ are $\{5,7,13\}^{\prime}$-groups, $|S|$ is divisible by $5^{2} \cdot 7 \cdot 13$. Comparing the orders of simple groups in $\mathcal{S}_{\leqslant 17}$ yields S is isomorphic to $G_{2}(4)$.
(2) $H \cong O_{10}^{-}(2)$. In this case, we have $|G|=2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17, D(G)=$ $(3,4,3,3,1,0)$ and $\Gamma(G)=\Gamma\left(O_{10}^{-}(2)\right)$. Again, using similar arguments as those in part (1), we can show that K is a $\{7,11,17\}^{\prime}$-group. Moreover, since K and $\operatorname{Out}(S)$ is a $\{7,11,17\}^{\prime}$-group, $|S|$ is divisible by $7 \cdot 11 \cdot 17$. Comparing the orders of simple groups in $\mathcal{S}_{\leqslant 17}$ yields S is isomorphic to $O_{10}^{-}(2)$.
(3) $H \cong F_{4}(2)$. In this case, we have $|G|=2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17, D(G)=$ $(3,3,2,2,0,0)$ and $\Gamma(G)=\Gamma\left(F_{4}(2)\right)$. As before, one can show that K is a $\{2,3\}$-group. Moreover, since K and $\operatorname{Out}(S)$ is a $\{2,3\}$-group, $|S|$ is divisible by $5^{2} \cdot 7^{2} \cdot 13 \cdot 17$. Considering the orders of simple groups in $\mathcal{S}_{\leqslant 17}$, we conclude that S is isomorphic to $F_{4}(2)$.

Case 2. H is isomorphic to one of the groups: $L_{3}(16), U_{3}(17), U_{4}(4), S_{4}(8)$, $S_{4}(13), S_{6}(4)$ or $O_{8}^{+}(4)$.
(4) $H \cong U_{3}(17)$ or $S_{4}(8)$. Here, we will illustrate only the proof for $U_{3}(17)$, other case is similar. Assume that $H \cong U_{3}(17)$. In fact, G is a finite group such that $|G|=2^{6} \cdot 3^{4} \cdot 7 \cdot 13 \cdot 17^{3}$ and $D(G)=(2,2,1,1,2)$. Notice that, according to our hypothesis there are several possibilities for the prime graph of G, as shown in Fig. 2:

Fig. 2. All possibilities for the prime graph of G.
We now consider two cases separately.
(4.1) Assume first that $\Gamma(G)$ is connected. In this case $7 \nsim 13$ in $\Gamma(G)$. Since $\left\{7,13, p_{2}\right\}$ is an independent set, $t(G) \geqslant 3$ and so G is a non-solvable group. Moreover, since $\operatorname{deg}_{G}(2)=2$ and $|\pi(G)|=5, t(2, G) \geqslant 2$. Thus by Theorem 3 there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. We claim now that K is a $\{2,3\}$-group. If $\{7,13\} \subseteq \pi(K)$, then a Hall subgroup of K has order $7 \cdot 13$, which is an Abelian subgroup. Hence $7 \sim 13$ in $\Gamma(G)$, a contradiction. Suppose now that $\{p, q\}=\{7,13\}, p \in \pi(K)$ and $q \notin \pi(K)$. Let $P \in \operatorname{Syl}_{p}(K)$. By Frattini argument $G=K N_{G}(P)$. Therefore, the normalizer $N_{G}(P)$ contains an element of order q, say x. Now, $P\langle x\rangle$ is a subgroup of G of order $7 \cdot 13$, which leads again to a contradiction. Therefore, if $17 \in \pi(K)$, then similar arguments as above show that $7 \sim 17 \sim 13$, against our hypothesis on the degree pattern of G. Finally, since K and $\operatorname{Out}(S)$ are $\{2,3\}$-groups, $|S|$ is divisible by $7 \cdot 13 \cdot 17^{3}$. Comparing the orders of simple groups in \mathcal{S}_{17} yields S is isomorphic to $U_{3}(17)$, and so $K=1$ and G is isomorphic to $U_{3}(17)$, because $|G|=\left|U_{3}(17)\right|$. But then $\Gamma(G)=\Gamma\left(U_{3}(17)\right)$ is disconnected, which is impossible.
(4.2) Assume next that $\Gamma(G)$ is disconnected, which immediately implies that $\Gamma(G)=\Gamma\left(U_{3}(17)\right)$. We now apply Theorem 2 to obtain a simple section of G. If G is a Frobenius group with kernel K and complement C, then $|K|=2^{6} \cdot 3^{4} \cdot 17^{3}$ and $|C|=7 \cdot 13$, which is a contradiction because $|C| \nmid|K|-1$. If G is a 2 -Frobenius group, then G is a solvable group (Remark $2.1(a)$) and we may consider a Hall $\{7,17\}$-subgroup L of G of order $7 \cdot 17^{3}$. By Sylow's Theorem it follows that every Sylow subgroup of L is normal in L and so L is a nilpotent group. This forces $7 \sim 17$ in
$\Gamma(G)$, which is a contradiction. Therefore G is an extension of a nilpotent normal $\{2,3,17\}$-group N by a group G_{1}, where $P \leqslant G_{1} \leqslant \operatorname{Aut}(P)$, P is a non-Abelian simple group and G_{1} / P is a $\{2,3,17\}$-group. Hence $|P|=2^{\alpha} \cdot 3^{\beta} \cdot 7 \cdot 13 \cdot 17^{\gamma}$, where $2 \leqslant \alpha \leqslant 6,1 \leqslant \beta \leqslant 4$ and $1 \leqslant \gamma \leqslant 3$, and comparing the order and degree pattern of simple groups in $\mathcal{S}_{\leqslant 17}$ with $|G|$ and $D(G)$, it is easy to see that P can be isomorphic to $U_{3}(17)$. Therefore $N=1$ and so $G=G_{1}$ is isomorphic to H, because $|G|=|H|$.
(5) $H \cong S_{4}(13)$. The proof is quite similar to the proof in part (4), so we avoid here full explanation of all details. Assume that G is a finite group such that $|G|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{4} \cdot 17$ and $D(G)=(3,3,1,3,3,1)$. Then, the prime graph of G is one of the following graphs (as shown in Fig. 3), according to $\Gamma(G)$ is disconnected or connected.

or

$$
\left(p_{1}, p_{2}, p_{3}, p_{4} \in \pi(G) \backslash\{5,17\}\right)
$$

Fig. 3. All possibilities for the prime graph of G.
We will consider two cases separately.
(5.1) Suppose first that $\Gamma(G)$ is connected. In this case $5 \nsim 17$ in $\Gamma(G)$. Since $\left\{5,17, p_{2}\right\}$ is an independent set, $t(G) \geqslant 3$ and so G is a non-solvable group. Moreover, since $\operatorname{deg}_{G}(2)=3$ and $|\pi(G)|=6, t(2, G) \geqslant 2$. Thus by Theorem 3 there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. As before, one can show that K is a $\{2,3,13\}$-group. Since K and Out (S) are $\{2,3,13\}$-groups, $|S|$ is divisible by $5 \cdot 7^{2} \cdot 17$. Comparing the orders of simple groups in $\mathcal{S}_{\leqslant 17}$ yields S is isomorphic to $S_{4}(13)$, and so $K=1$ and G is isomorphic to $S_{4}(13)$, because $|G|=\left|S_{4}(13)\right|$. But then $\Gamma(G)=\Gamma\left(S_{4}(13)\right)$ is disconnected, which is impossible.
(5.2) Suppose next that $\Gamma(G)$ is disconnected, which immediately implies that $\Gamma(G)=\Gamma\left(S_{4}(13)\right)$. We now apply Theorem 2 to obtain a simple section of G. Similar to the previous case, G is neither Frobenius nor 2Frobenius. Therefore G is an extension of a nilpotent normal $\{2,3,7,13\}$ group N by a group G_{1}, where $P \leqslant G_{1} \leqslant \operatorname{Aut}(P), P$ is a non-Abelian simple group and G_{1} / P is a $\{2,3,7,13\}$-group. Hence $|P|=2^{\alpha} \cdot 3^{\beta} \cdot 5 \cdot 7^{\gamma} \cdot 13^{\lambda} \cdot 17$, where $2 \leqslant \alpha \leqslant 6,0 \leqslant \beta \leqslant 2,0 \leqslant \gamma \leqslant 2$ and $0 \leqslant \lambda \leqslant 4$, and comparing the order and degree pattern of simple groups in $\mathcal{S}_{\leqslant 17}$ with the order
and degree pattern of G, it is easy to see that P can be isomorphic to $S_{4}(13)$. Therefore $N=1$ and so $G=G_{1}$ is isomorphic to $S_{4}(13)$, because $|G|=\left|S_{4}(13)\right|$.
(6) $H \cong L_{3}(16)$. In this case, we have $|G|=2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17, D(G)=$ $(1,1,3,1,1,1)$ and it is easy to see that $s(G)=2,5 \in \pi_{1}(G)$ and G has no element of order 6 (Note that $\pi_{2}(G)$ is a clique (Remark 2.1 (b)) and hence $5 \notin \pi_{2}(G)$). Now, it follows from Theorem 3 that there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. We claim now that K is a $\{2,3\}$-group. In fact, if p_{1}, p_{2}, p_{3} are the primes in $\pi(G) \backslash\{2,3,5\}$ and if there exists $p_{j} \in \pi(K)$, then with similar arguments as part (1), we can verify that for each $i \neq j, p_{j} \sim p_{i}$ in $\Gamma(G)$, and this contradicts the fact that $\operatorname{deg}_{G}\left(p_{i}\right)=1$. Moreover, if $5 \in \pi(K)$, then $5 \sim p_{i}$ for each $i=1,2,3$. But since $5 \in \pi_{1}(G)$, we also have $2 \sim 5$, against our hypothesis that $\operatorname{deg}_{G}(5)=3$. Our claim follows. Therefore, since $\operatorname{Out}(S)$ is a $\{2,3\}$-group, $|S|$ is divisible by $5^{2} \cdot 7 \cdot 13 \cdot 17$. Comparing the orders of simple groups in $\mathcal{S}_{\leqslant 17}$ yields S is isomorphic to $L_{3}(16)$.
(7) $H \cong U_{4}(4)$. Here, we have $|G|=2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$ and $D(G)=(2,3,3,1,1)$. We have to show that $G \cong U_{4}(5)$. First of all, from the structure of the degree pattern of G, it is easy to see that $13 \nsim 17$ in $\Gamma(G)$, since otherwise $\operatorname{deg}(3) \leqslant 2$, which is impossible. In fact, there are only two possibilities for the prime graph of G shown in Fig. 4.:

or

Fig. 4. All possibilities for the prime graph of G.
Clearly, in both cases, $t(G) \geqslant 3$ and $t(2, G) \geqslant 2$. Now, from Theorem 3, we conclude that there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. As before, one can show that K is a $\{13,17\}$ '-group, and so $\{13,17\} \subseteq$ $\pi(S)$. Moreover, since $|S|$ divides $|G|$, we obtain $|S|=2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 13 \cdot 17$, where $2 \leqslant \alpha \leqslant 12,0 \leqslant \beta \leqslant 2$ and $0 \leqslant \gamma \leqslant 3$. Comparing the orders of simple groups listed in Table 2, we observe that the only possibility for S is $U_{4}(4)$, and since $|G|=\left|U_{4}(4)\right|$, we obtain $|K|=1$ and G is isomorphic to $U_{4}(4)$.
(8) $H \cong S_{6}(4)$ or $O_{8}^{+}(4)$. We only prove the first case and the second one
goes similarly. Suppose that $H \cong S_{6}(4)$. In this case, we have $|G|=$ $2^{18} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 17$ and $D(G)=(3,4,4,1,1,3)$. From the degree pattern of G, it is easy to see that $13 \nsim 7$ in $\Gamma(G)$. In fact, there are only two possibilities for the prime graph of G shown in Fig. 5.:

or

Fig. 5. All possibilities for the prime graph of G.
Clearly, in both cases, $t(G) \geqslant 3$ and $t(2, G) \geqslant 3$. Now, from Theorem 3 , we conclude that there exists a finite non-Abelian simple group S such that $S \leqslant G / K \leqslant \operatorname{Aut}(S)$, where K is the maximal normal solvable subgroup of G. As before, one can show that K is a $\{7,13,17\}^{\prime}$-group, and so $\{7,13,17\} \subseteq \pi(S)$. Moreover, since $|S|$ divides $|G|$, we obtain $|S|=2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7 \cdot 13 \cdot 17$, where $2 \leqslant \alpha \leqslant 18,0 \leqslant \beta \leqslant 4$ and $0 \leqslant \gamma \leqslant 3$. Comparing the orders of simple groups listed in Table 2, we observe that the only possibilities for S are $L_{3}(16)$ and $S_{6}(4)$. If $S \cong L_{3}(16)$, then $7 \sim 13$ in $\Gamma(S)$ and so in $\Gamma(G)$, which is a contradiction. Therefore S is isomorphic to $S_{6}(4)$, and since $|G|=\left|S_{6}(4)\right|$, we obtain $|K|=1$ and G is isomorphic to $S_{6}(4)$.

The proof is complete.

3 Appendix

As mentioned in the introduction, it was shown that many finite simple groups are OD-characterizable or 2 -fold OD-characterizable. Table 3 lists finite simple groups which are currently known to be k-fold OD-characterizable for $k \in\{1,2\}$. In this table q is a power of a prime number.

Among non-simple groups, there are many groups which are k-fold ODcharacterizable for $k \geq 3$. In connection with such groups, Table 4 lists finite non-solvable groups which are currently known to be OD-characterizable or k-fold OD-characterizable with $k \geq 1$.

Table 3. Some simple groups S with $h_{\mathrm{OD}}(S)=1$ or 2 .

S	Conditions on S	$h_{\text {OD }}$	Refs.
\mathbb{A}_{n}	$n=p, p+1, p+2(p$ a prime $)$	1	[15], [18]
	$5 \leqslant n \leqslant 100, n \neq 10$	1	[6], [9], [14],
			[16], [36]
	$n=106,112$	1	[26]
	$n=10$	2	[17]
$L_{2}(q)$	$q \neq 2,3$	1	[15], [18],
			[34]
$L_{3}(q)$	$\left\|\pi\left(\frac{q^{2}+q+1}{d}\right)\right\|=1, d=(3, q-1)$	1	[18]
$U_{3}(q)$	$\left\|\pi\left(\frac{q^{2}-q+1}{d}\right)\right\|=1, d=(3, q+1), q>5$	1	[18]
$L_{4}(q)$	$q \leqslant 17$	1	[1], [4]
$L_{3}(9)$		1	[35]
$U_{3}(5)$		1	[33]
$U_{4}(5)$		1	[2]
$U_{4}(7)$		1	[4]
$L_{6}(3)$		1	[2]
$L_{n}(2)$	$n=p$ or $p+1,2^{p}-1$ Mersenne prime	1	[4]
$L_{n}(2)$	$n=9,10,11$	1	[7], [13]
$R(q)$	$\|\pi(q \pm \sqrt{3 q}+1)\|=1, q=3^{2 m+1}, m \geq 1$	1	[18]
$\mathrm{Sz}(q)$	$q=2^{2 n+1} \geq 8$	1	[15], [18]
$B_{m}(q), C_{m}(q)$	$m=2^{f} \geq 4,\left\|\pi\left(\left(q^{m}+1\right) / 2\right)\right\|=1$,	2	[3]
$B_{2}(q) \cong C_{2}(q)$	$\left\|\pi\left(\left(q^{2}+1\right) / 2\right)\right\|=1, q \neq 3$	1	[3]
$B_{m}(q) \cong C_{m}(q)$	$\begin{aligned} & m=2^{f} \geq 2,2\left\|q,\left\|\pi\left(q^{m}+1\right)\right\|=1\right. \\ & (m, q) \neq(2,2) \end{aligned}$	1	[3]
$B_{p}(3), C_{p}(3)$	$\left\|\pi\left(\left(3^{p}-1\right) / 2\right)\right\|=1, p$ is an odd prime	2	[3], [18]
$B_{3}(5), C_{3}(5)$		2	[3]
$C_{3}(4)$		1	[12]
S	A sporadic group	1	[18]
S	A group with $\|\pi(S)\|=4, \quad S \neq \mathbb{A}_{10}$	1	[32]
S	A group with $\|S\| \leqslant 10^{8}, S \neq \mathbb{A}_{10}, U_{4}(2)$	1	[30]
S	A simple $C_{2,2^{-}}$group	1	[15]

Table 4. Some non-solvable groups G with certain $h_{\mathrm{OD}}(G)$.

G	Conditions on G	$h_{\mathrm{OD}}(G)$	Refs.
Aut (M)	M is a sporadic group $\neq J_{2}, M^{c} L$	1	$[15]$
\mathbb{S}_{n}	$n=p, p+1(p \geq 5$ is a prime $)$	1	$[15]$
PGL $(2, q)$		1	$[29]$
M	$M \in \mathcal{C}_{1}$	2	$[17]$
M	$M \in \mathcal{C}_{2}$	8	$[17]$
M	$M \in \mathcal{C}_{3}$	3	$[6],[9],[14],[16],[26]$
M	$M \in \mathcal{C}_{4}$	2	$[17]$
M	$M \in \mathcal{C}_{5}$	3	$[17]$
M	$M \in \mathcal{C}_{6}$	6	$[14]$
M	$M \in \mathcal{C}_{7}$	1	$[31]$
M	$M \in \mathcal{C}_{8}$	9	$[31]$
M	$M \in \mathcal{C}_{9}$	1	$[33]$
M	$M \in \mathcal{C}_{10}$	3	$[33]$
M	$M \in \mathcal{C}_{11}$	6	$[33]$
M	$M \in \mathcal{C}_{12}$	1	$[27]$
M	$M \in \mathcal{C}_{13}$	1	$[13]$

$$
\begin{aligned}
\mathcal{C}_{1}= & \left\{\mathbb{A}_{10}, J_{2} \times \mathbb{Z}_{3}\right\} \\
\mathcal{C}_{2}= & \left\{\mathbb{S}_{10}, \mathbb{Z}_{2} \times \mathbb{A}_{10}, \mathbb{Z}_{2} \cdot \mathbb{A}_{10}, \mathbb{Z}_{6} \times J_{2}, \mathbb{S}_{3} \times J_{2}, \mathbb{Z}_{3} \times\left(\mathbb{Z}_{2} \cdot J_{2}\right),\right. \\
& \left.\left(\mathbb{Z}_{3} \times J_{2}\right) \cdot \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \operatorname{Aut}\left(J_{2}\right)\right\} . \\
\mathcal{C}_{3}= & \left\{\mathbb{S}_{n}, \mathbb{Z}_{2} \cdot \mathbb{A}_{n}, \mathbb{Z}_{2} \times \mathbb{A}_{n}\right\}, \text { where } 9 \leqslant n \leqslant 100 \\
& \text { with } n \neq 10,27, p, p+1(p \text { a prime }) \text { or } n=106,112 . \\
\mathcal{C}_{4}= & \left\{\operatorname{Aut}\left(M^{c} L\right), \mathbb{Z}_{2} \times M^{c} L\right\} . \\
\mathcal{C}_{5}= & \left\{\operatorname{Aut}\left(J_{2}\right), \mathbb{Z}_{2} \times J_{2}, \mathbb{Z}_{2} \cdot J_{2}\right\} . \\
\mathcal{C}_{6}= & \left\{\operatorname{Aut}\left(S_{6}(3)\right), \mathbb{Z}_{2} \times S_{6}(3), \mathbb{Z}_{2} \cdot S_{6}(3), \mathbb{Z}_{2} \times O_{7}(3),\right. \\
& \left.\mathbb{Z}_{2} \cdot O_{7}(3), \operatorname{Aut}\left(O_{7}(3)\right)\right\} . \\
\mathcal{C}_{7}= & \left\{L_{2}(49): 2_{1}, L_{2}(49): 2_{2}, L_{2}(49): 2_{3}\right\} . \\
\mathcal{C}_{8}= & \left\{L \cdot 2^{2}, \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right), \mathbb{Z}_{2} \times\left(L \cdot 2_{3}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{1}\right),\right. \\
& \left.\mathbb{Z}_{2} \cdot\left(L: 2_{2}\right), \mathbb{Z}_{2} \cdot\left(L \cdot 2_{3}\right), \mathbb{Z}_{4} \times L,\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L\right\} \\
& \text { where } L=L_{2}(49) . \\
\mathcal{C}_{9}= & \left\{U_{3}(5), U_{3}(5): 2\right\} \\
\mathcal{C}_{10}= & \left\{U_{3}(5): 3, \mathbb{Z}_{3} \times U_{3}(5), \mathbb{Z}_{3} \cdot U_{3}(5)\right\} \\
\mathcal{C}_{11}= & \left\{L: \mathbb{S}_{3}, \mathbb{Z}_{2} \cdot(L: 3), \mathbb{Z}_{3} \times(L: 2), \mathbb{Z}_{3} \cdot(L: 2),\left(\mathbb{Z}_{2} \times L\right) \cdot \mathbb{Z}_{2},\right. \\
& \left.\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}\right\}, \text { where } L=U_{3}(5) . \\
\mathcal{C}_{12}= & \left\{\operatorname { A u t } \left(O_{10}^{+}(2), \operatorname{Aut}\left(O_{10}^{-}(2)\right\},\right.\right. \\
\mathcal{C}_{13}= & \left\{\operatorname{Aut}\left(L_{p}(2)\right), \operatorname{Aut}\left(L_{p+1}(2)\right)\right\}, \text { where } 2^{p}-1 \text { is a prime. } .
\end{aligned}
$$

References

[1] B. Akbari, A. R. Moghaddamfar: Recognizing by order and degree pattern of some projective special linear groups, Internat. J. Algebra Comput., 22 (2012), 22 pages.
[2] B. Akbari, A. R. Moghaddamfar: Recognition by order and degree pattern of finite simple groups, Southeast Asian Bullettin of Mathematics (to appear).
[3] M. Akbari, A. R. Moghaddamfar: Simple groups which are 2-fold OD-characterizable, Bull. Malays. Math. Sci. Soc., 35 (2012), 65-77.
[4] M. Akbari, A. R. Moghaddamfar, S. Rahbariyan: A characterization of some finite simple groups through their orders and degree patterns, Algebra Colloq., 19 (2012), 473482.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson: Atlas of Finite Groups, Clarendon Press, oxford, 1985.
[6] A. A. Hoseini, A. R. Moghaddamfar: Recognizing alternating groups A_{p+3} for certain primes p by their orders and degree patterns, Front. Math. China, 5 (2010), 541-553.
[7] B. Khosravi: Some characterizations of $L_{9}(2)$ related to its prime graph, Publ. Math. Debrecen, Tomus 75, Fasc. 3-4, (2009).
[8] W. Kimmerle, R. Lyons, R. Sandling, D. N. Teague: Composition factors from the group ring and Artin's theorem on orders of simple groups, Proc. London Math. Soc., 60 (1990), 89-122.
[9] R. Kogani-Moghaddam, A. R. Moghaddamfar: Groups with the same order and degree pattern, Sci. China Math., 55 (2012), 701-720.
[10] V. D. Mazurov: Recognition of the finite simple groups $S_{4}(q)$ by their element orders, Algebra Logic, 41 (2002), 93-110.
[11] V. D. Mazurov, G. Y. Chen: Recognizability of the finite simple groups $L_{4}\left(2^{m}\right)$ and $U_{4}\left(2^{m}\right)$ by the spectrum, Algebra Logic, 47 (2008), 49-55.
[12] A. R. Moghaddamfar: Recognizability of finite groups by order and degree pattern, Proceedings of the International Conference on Algebra 2010, 422-433.
[13] A. R. Moghaddamfar, S. Rahbariyan: OD-Characterization of some projective special linear groups over the binary field and their automorphism groups, Communications in Algebra (to appear).
[14] A. R. Moghaddamfar, S. Rahbariyan: More on the OD-characterizability of a finite group, Algebra Colloq., 18 (2011), 663-674.
[15] A. R. Moghaddamfar, A. R. Zokayi: Recognizing finite groups through order and degree pattern, Algebra Colloq., 15 (2008), 449-456.
[16] A. R. Moghaddamfar, A. R. Zokayi: OD-Characterization of alternating and symmetric groups of degrees 16 and 22, Front. Math. China, 4 (2009), 669-680.
[17] A. R. Moghaddampar, A. R. Zokayi: OD-Characterization of certain finite groups having connected prime graphs, Algebra Colloq., 17 (2010), 121-130.
[18] A. R. Moghaddamfar, A. R. Zokayi, M. R. Darafsheh: A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebra Colloq., 12 (2005), 431-442.
[19] W. J. Shi: On the orders of the finite simple groups, Chinese Sci. Bull., 38 (1993), 296298.
[20] W. J. Shi, C. Y. TANG: A characterization of some orthogonal groups, Progr. Natur. Sci. (English Ed.), 7 (1997), 155-162.
[21] A. M. Staroletov: On the recognizability of the simple groups $B_{3}(q), C_{3}(q)$ and $D_{4}(q)$ by the spectrum, Sib. Math. J., 53 (2012), 532-538.
[22] A. V. Vasilev, I. B. Gorshkov: On the recognition of finite simple groups with a connected prime graph, Sib. Math. J., 50 (2009), 233-238.
[23] A. V. Vasilev, E. P. Vdovin: An adjacency criterion in the prime graph of a finite simple group, Algebra Logic, 44 (2005), 381-406.
[24] A. V. Vasilev, E. P. Vdovin: Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logic, 50 (2011), 291-322.
[25] J. S. Williams: Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.
[26] Y. X. Yan, G. Y. Chen: OD-Characterization of alternating and symmetric groups of degree 106 and 112, Proceedings of the International Conference on Algebra 2010, 690696.
[27] Y. X. Yan, G. Y. Chen, L. L. Wang: OD-Characterization of the automorphism groups of $O_{10}^{ \pm}(2)$, Indian J. Pure Appl. Math., 43 (2012), 183-195.
[28] A. V. Zavarnitsine: Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv., 6 (2009), 1-12.
[29] L. C. ZHANG, X. F. LiU: Characterization of the projective general linear groups $\operatorname{PGL}(2, q)$ by their orders and degree patterns, Internat. J. Algebra Comput., 19 (2009), 873-889.
[30] L. C. Zhang, W. J. Shi: OD-Characterization of all simple groups whose orders are less than 10^{8}, Front. Math. China, 3 (2008), 461-474.
[31] L. C. Zhang, W. J. Shi: OD-Characterization of almost simple groups related to $L_{2}(49)$, Arch. Math. (Brno), 44 (2008), 191-199.
[32] L. C. Zhang, W. J. Shi: OD-Characterization of simple K_{4}-groups, Algebra Colloq., 16 (2009) 275-282.
[33] L. C. Zhang, W. J. Shi: OD-Characterization of almost simple groups related to $U_{3}(5)$, Acta Math. Sin. (Engl. Ser.), 26 (2010), 161-168.
[34] L. C. Zhang, W. J. Shi: OD-Characterization of the projective special linear groups $L_{2}(q)$, Algebra Colloq., 19 (2012), 509-524.
[35] L. C. Zhang, W. J. Shi, C. G. Shao, L. L. Wang: OD-Characterization of the simple group $L_{3}(9)$, Journal of Guangxi University (Natural Science Edition), 34 (2009), 120122.
[36] L. C. Zhang, W. J. Shi, L. L. Wang, C. G. Shao: OD-Characterization of A_{16}, Journal of Suzhou University (Natural Science Edition), 24 (2008), 7-10.

