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0. INTRODUCTION

The present contribution to  this volume is concemed with certain problems in non-linear func-
tional analysis which are motivated by classica1 physics, specifically by elasticity theory: we
are given a «body», i.e. a compact smooth manifold M’ which moves and may be deformed
in some Rn (equipped  with a fixed inner product);  we assume that the motion  and deforma-
tion are such that the diffeomorphism type of M’ does not change. Hence, M’ is the image
under a smooth embedding of some compact smooth manifold M (possibly  with boundary
8M)  and the appropriate configuration space for the problem is the set E( M, R “) of smooth
embeddings M + R n ; this set is a smooth Frechet manifold when endowed with its natura1
C”-topo1ogy  .

The deformable medium is to be characterized by a «smooth  one-form»  on E(  M, R “) ,
i.e. by a smooth real-valued  function F which to each configuration J E E( M, R “)  and
distortion L E CJ”( M, R “)  assigns a number F( J)(L) , depending linearly on L,  which
is interpreted as the work caused by L at J, cf. section 4. An approach to elasticity along
these lines is described e.g. in [E,S] and [Bi 41;  cf. also section 6 for more details where we
also relate  our treatment to the usual one  such as given in [L,L].

If the deformations mentioned above  are subject to smooth constraints or if the motion  no
longer takes piace in R n, we will still assume that the ambient space is a smooth Riemannian
manifold N and this forces us to introduce as a configuration space the manifold E( M, N)
of smcoth  embeddings M --f  N . Since the tangent bundle TE(  M, N) no longer is trivial,  in
general, the treatment of one-forms  on E( M, N) becomes somewhat more complicated.  In
order to obtain  «integrai  representations» of certain one-forms,  we assume that both M and N
are oriented.  With this assumption, sections 2 and 3 introduce the basic geometrie  ingredients
needed for integra1 rcpresentations of those one-forms  which at each ,7 E E( M, N) only
depend on the one-jets  of the vector fields L «along  J ».

We introduce the metrics @I and p a on E( M, N) and E( i3M,  N) , respectively, which
are continuous, symmetric and positive-definite bilinear forms on the respective tangent spa-
ces. Both p and p s are invariant under the group Diff’M  of orientation preserving
diffcomorphisms of M and any group g of orientation preserving isometries of N. Sec-
tion 3 furthermore introduces  the bundle p E( M, TN) of «smooth  TN-valued one-forms
on M » which cover embeddings M t N, fibred over E( M, N) by the Fréchet spaces
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$3  :(  M, TN) %  A’ ( M, J’TN)  . On these  fibres, a «dot  metric» 0 is defincd by

s(J)(a Pb)  =
/

8 .bPL(J),
M

for LI , b E JR i( M, TN) . Here a . b is a smooth real-valued  function on M which is
symmetric and bilinear in B , b and whose construction is based on the classical «trace inner
product»  for bundle endomorphisms of the RiemaMian bundle TN. If 9 is restricted to the
subspace ‘p;  E( M, TN) introduced  in section 3, one  obtains  a generalization of the classica1
Dirichlet integral (cf. [Bi 21).

Section 4 deals with g -representable one-forms  F on E( M, N) , by which we mean the
following:
There  exists a smooth map B : E( M, N) -t  $  E(  M, TN) such that for J E E( M, N)
and L E Ci”< M,TN),

(0.1) F(J)(L) = / n(J) .VL/-dJ)  = s(J)(n(J),VL),M

where VL is the covariant derivative of L along J induced by thelevi-Civita  connection
of N.  In particular,  this yields a more precise notion  of the «dependence  on the one-jets»  of
F( J) (L) mentioned above.

A crucial  step is the following result of section 4: for any 0 -representable  one-form  F,
there exists a smooth vector field lt on E( M, N) such that

(0 3 F(J)(L) = / Vt(J)  -V-%4.0  =e(J)W4(J),VL)M

holds for J E E( M, N) and L E CJ”(  M, TN). The existence of such a field 4 follows
from the fact that B in (0.1) defines an elliptic boundary problem value  (of the Neumann type)
whose solvability is guaranted by [Ho 21. The right-hand side of (0.2) may be rewritten in the
form

/
(Al.04 (J),L)/dJ) + / 07,4(J),L)clP(J),M ahf

with n the positively oriented m(J) -unit  normal of i3M. Here A(J) is the Laplacian of
V and m(J) on M. In physical terms, if F describes the deformable medium in N, then
A (J)4 (J)  and V,4 (J)  are the force densities acting on M, aM,  respectively.

Section 5 deals with the special case N = IR” (with a fixed inner product  <, >) and
shows, e.g., that the «one-jet  depcndence» of F as formulated above  is equivalent  with the
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independence of F of the center of mass for each configuration J . Finally, section 6 indicates
the reason for the description of the medium in Rn by means of a one-form on E( M, R “)  :
Classically, elasticity theory as described in [L,L] deals with the set of al1 those Riemannian
structures  on M which are pull-backs of <, > under the elements  of E( M, R “) and this
set is in general not a manifold in its C”-topology;  lifting the description to E( M, Rn)
provides  a configuration space which is a manifold. Moreover, one  of the reasons why we
describe  the deformable medium by a one-form F is that N generically does not admit non-
trivial orientation preserving isometries and hence, one cannot simply work with a symmetric
stress tensor. However, as a theorem in [SI  shows, F can be replaced by a smooth symmetric
tensor field provided that it is SC(n) -invariant and that infinitesimal rigid motions do not
cause any work. Note lastly that it is shown in [Bi 41  that the description of elasticity of [L,L,]
is included  in our current framework.

1. GEOMETRIC PRELIMINARIES AND THE FRECHET MANIFOLD E( M, N)

Let M be a compact, oriented, connected smooth manifold with (oriented) boundary 8M
and N be a connected, smootb  and oriented manifold with a Riemannian metric  < , > . The
Levi-Civita connection of <, > on N is denoted by V and by d in the euclidean case, i.e. if
N = Rn and < , > is assumed to be a fixed scalar product.  For J E E( M, R “) we define
a Riemannian metric  on M by setting

( 1 .l) m(J)(X,Y)  := (TJX,TJY), VX,Y  E l-(TM)

and one  on 8 M via the formula

( 1.2) m(j)(X,Y)  := (TjX,TjY), VX,Y E r(T(aM))

(here j := JlaAf).  More customary are the notations J* <, > and j* <, > for m(J) and
m(j) respectively.

We use r (TQ) to denote  the collection of al1 smooth vector fields of any smooth man-
ifold Q (with or without boundary). Moreover  by 7rQ  : TQ --+  Q we mean the canonica1
projection.

LetL:M-+TMbeasmoothmap.Thenf=~N~L E Coo( M, N) and L is a «vector
field along  f>>. For a fixed f, the set of al1 such «vector  fields along  f>> is precisely the
tangent  space at f to Cw(  M, N) (cf. [Bi,Sn,Fi]  and also below at the end of this section).

Next, let V be a (linear) connection on N, i.e. in TN. There is the associated splitting
of T2 N = T( TN) into the canonically detined vertical bundle V( TN) and the horizon-
tal bundle H(TN)  defined by V (cf. [G,H,V]).  Since V(TN) = /cer(TnrN)  , the fibre
V,( TN) at the point u E TN is TV<  T,N) with q = 7rNu  and hence, there  is a natural iso-
morphism <, : V,(TN)  --+ TnNu N for every u E TN. These isomorphisms yield a bundle
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map ( : V( TN) -+ TN covering  the projection zN. Lastly, let P : T2N  +  V( TN) be
the projection with kemel H(  TN) .

The covariant  derivative VL of L is now defined as follows: for X E r (TM) , TL . X

isamap M +T2N andweset

V,L := (P(TL .X).

In our applications, V will be the Levi-Civita connection of the Riemannian manifold
(N, <, >) and in this situation, the Levi-Civita connections of (M, m(J)) , (aM,  m(j))
respectively are obtained as follows:
TNIJ(  M) splits  into TJ(TM)  and its orthogonal complement  (TJ(Tn/r))’  (the Rie-
mannian noi-mal bundle of J ) and hence any 2 E I ( J( M) , TN) has an orthogonal de-
composition 2 = ZT + Zl, where the tangential component  ZT is a section of TJ(TM)
and SO is of the form ZT = T J . U for a unique U E r (TM) .

If now Y E r (TM) , then TJY is a smooth map M + TN and therefore, the above
covariant derivative V( TJY) is well-defined. We use this to define  the vector field V( J)xY
on M by the equation

( 1.3) TJ (V( J),Y) = V,(TJY) - (V,(TJX))’  ,

for al1 x, Y E r (TM) . Moreover, if now X, Y E r(TaM), thcn

t 1.4) Ti (VWxY) = TJ (W  J),Y) - di)(WìW,Y)  . N(j)

defines a vcctor field V( j)xY on 8M.  Here W(j), the Weingarten map, is defìned as
follows: by assumption, M is oriented and hence the normal bundle (TMlt3M)/T(  ahf)
has a nowhere vanishing section s which is uscd to dehne  the induccd orientation of aM.
Under the Riemannian strutture  m( J) , the normal bundle of aM is isomorphic to T( i3M)  I

and as a consequence, this bundle now has a section n of unit length which corresponds to a
multiple of s by a non-vanishing positive function. This n is the positive unit normal vector
field along  8M.  With this, let N(j) = TJ . n and now set

t 1.5) TJ . W(  j)Z  = (V,N(  j))T, vz  E r(TaM).

As mentioned  earlier, this determines W(j) uniquely. Note here that N = Rn,  we may
replace TJ and Tj by their «principal  par@,»  d J and d j respcctively. In this particular
case, we moreover  define  the second  fundamenfal  far  f ( J) of J under the additional as-
sumptions that aM = 0 and dim(  M) = P- 1, where now N(j) is replaced by the positive
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unit normal field along  J and W(j) is dehned as in (1.5). The two-tensor f then is given

‘v
f wtx,y> = ~(J>(Wi>X,Y),

for J E E(  M, R “)  and X, Y E r( TaM)  . Note finally that now H(j) := trW(j) and
e(j) = det( W(  j)) are respectively the (unnormalized) mean  curvature and the Gaussian
curvatureof j(aM) c R”. References for this section are e.g. [A,M,R],  [Be,Gol  and
W-LVI.

It is well-known that the set Cw(  M, N) of smooth maps from M into N endowed
with Withney’s Coo-topology  is a Fkhet manifold (cf. e.g. [Bi,Sn,Fil).  For a given K E
Cw(  M, N) , the tangent space TKCm(  M, N) is the Fréchet  space CT< M, TN) = {L E
c”tM,Jol~N . L = K} g r (K*TN)  and the tangent bundle rP( M, N) is identified
with Coo( M, TN), the topology again being the C”-topology  . In al1 this, M is assumed
to be compact.

The set E( M, N) of Coo-embeddings  M --+  N is open in Cm(  M, N) and thus is
a Fnkhet manifold whose tangent bundle we denote  by C;( M, TN); it is an open sub-
manifold of Cm(  M, TN), fibred over E( M, N) by «composition with rN  ». Moreover,
if 8 M = 0, E( M, N) is a principal  Diff M-bundle under the obvious right Diff M-action
and the quotient U( M, N) = E( M, N) /Diff (M) is the manifold of «submanifolds  of type
M » of N (cf. the above  referente,  ch. 5, and further literature quoted there).

Lastly, the set @l (M) of al1 Riemannian structures on M is a Fréchet manifold since
it is an open convex cone in the Fréchet space of smooth, symmetric bilinear forms on M.
Moreover, the maps

m: E(M,N)  -@l(M)

and
va:  E(BM,N)  +$K(aM)

are smooth (cf. [Bi,Sn,Fi]).
By an E-valued one-form  B on M, where E is a vector bundle over N, we mean a

smooth map
n :TM--+E

for which a IT,M  is linear for al1 p E M . We denote  the set of such one-forms  by ,$I ’ ( M, E)
and now obtain the following description of its strutture:
The requirement that H E Jki ’ ( M, E) should be linear along  the fibres of TM means that
there  is a (smooth) map f : M -f N such that n IT,M  is a linear map imo EfCp)  for p E M,

in other words, that B is a bundle map T M -+  E over f .
There  is f E Cw(  M, N) such that nE . H = f . Tu  (where nE, rM are the respective

bundle projections).  The set of such one-forms  is naturally identified with the Fnkhet space



26 E. Bk.  KR.  Fischer

A’( M, f*E)  . This shows that

P’(M,E) = U/{A’ (M,f*E) If  E C”(M,N)}

It is clear from the construction that there  is a natural surjection

/3: JN’(M,E)  -t C”(M,N)

whose fibres are the Fréchet  spaces A’  ( M, ftE) .
The map p is (set-theoretically!) locally trivial: f E P( M, N) has an open neighbour-

hood U, such that there exists a fibre-preserving, fibrewise linear bijection

Pf : P-l (Uf) --+uf~A1 (M,~‘E),

which also is topological on each fibre; thus, for each g E Uf, the restriction of ‘pf  to ,P’  (g)

is a linear and topological isomorphis onto A’  (M, f’E) .
The assertion of loca1 triviahty  can be established along the following lines (cf. [Al):

One chooses a neighbourhood Uf of f in Coo( M, N) which is diffeomorphic to some open,
convex neighbourhood of 0 E Tf Coo( M, N) = r ( f’TN)  . By the very construction of the
usual Frkchet manifold strutture  of Coo( M, N), this  is always possible (cf. e.g. [Bi,Sn,Fi],
ch. 5 and its references). Accordingly, there now exists  a smooth contraction of Uf orno
{f}, i.e. a smooth map c : R x Uf --+  Coo( M, N), such that c(  1, .) is the identity of Uf,
c(  t, Uf) c  Uf for 0 5 t 5 1, and c( 0, g) = f for every g E Uf . In particular,  every
g E Uf is smoothly homotopic to f by a homotopy induced by c. Accordingly, the choice
of a liinear connection V in E induces an isomorphism g*E g f*E as in [G,H,V];  the cor-
responding isomorphisms A’( M, g*E)  2 A’( M, f*E)  now yield the desired trivialization

‘pf.
Suppose next that U, , U, are neighbourhoods of fl,z chosen as  above  and that U, ,2 :=

U, rl U, # 0 ; let lo, be the corresponding trivializations. Firstly, then, U,  ,2 x A’  ( M, f ‘E) ,

i = 1,2,  will be open submanifolds of U, x A’( M, f*E) and secondly, the compositions

wd , P,PZ’ are diffeomorphisms of these two submanifolds. As a conscqucnce, there

exist a unique topology and diffcrcntiable strutture  on @ ’ (M, E) with the following prop-
erties:
The sets /3-l  ( Uf) obtained as above  are open submanifolds,  diffeomorphic to Uf x A’

(M, f*E)  under the maps ‘pf  . Thus, the mode1 space for /3-‘(  Uf) is the Frechet space

TfC”(  M, N) x A’( M, f’E)  . Lastly, the construction shows that with this diffcrentiablc

strutture,  $l ’ ( M, E) bccomes a smooth Fréchet vecforbundleover  Coo( M, N) with bundle
projection /3.



One-forms  on spaces  of embeddings: a frame  work  for constitutive laws in elasticity 27

2. THE METRIC F ON E( M, N)

The Riemannian strutture  <, > of N induces a «RiemaMian structure~~  jlil on E( M, N) as
follows: for J E E( M, N) , let p( J) be the Riemannian volume defined on M by the given
orientation and the strutture  m(J) . For any two tangent vectors 15,  , L, E Cr”<  M, TN),
we set

(2.1) P(J) (LA) := y(L,,L,)p(J)./

It is clear, that p (J)  is a continuous, symmetric, positive-definite bilinear form on CT

(M, TN). In the same manner, one obtains the metric <- a on E( 8M, N) .
The metrics F and p a possess some invariance properties which will become impor-

tant later: let Diff+ M be the group of orientation-preserving diffeomorphisms of M . As a
subgroup of DiffM, it operates (freely) on the tight on E( M, N) as well as on E( 3M,  N)
by

(2.2)
E(M,N) x Diff+MAE(M,N)

(J,P)  -tJ.P

forafixed ‘p, wealsowrite RVJ for J.p.
Similarly, if 3 is any group of orientation-preserving isometries of N, then it operates

on the left on E( M, N) as well as E( I~M,  N) by

3 x E(M,W  +  E(M,W
(2.3)

for fixed g, we also write  L, J for g . J .
The geometry  of mese actions will be dealt with elsewhere, but we need the following -

rather obvious! - result for some basic invariance properties of one-forms  on E( M, N) :

Proposition 2.1. Both j$  und p ’ are invarinat under DijjjM  and y .

Proof The Diff+M-invariance  is usuaI invariance of integration over M:

RG;-  (J) (L,, Lz) = P (J . ‘PI  (LI + P,  L, . P)  =

(2.4)



28 E. Binz.  KR.  Fischer

Next, if g E 3 , then p( g . J) = p(J)  and hence

L;P(J) (L,,L,)  = P(9.J) (WL,,Tg.L,)  =

(2.5) = / (Ts~L,,Tg~L,)/-4g~J)  =
Lu

= L?(J) (L,J,).

Similar arguments establish  the claim for F a.

3. THE FIBRED  SPACE ‘p;  E( M,  TN) AND ITS DOT METRIC

TO begin with,  denote  by $I k( M,TN)  the subset of ;Ut b( M, TN) consisting of al1 TN-

valued one-forms  covering  embeddings M + N. This is the inverse image of E( M, N)

under the projection p : $I ’ (M, TN) + C”( M, N) , hence is an open submanifold and,
in fact,  is itself a (Frtkhet)  vector bundle  whose fibre at J we denote  by p i( M, TN) .

By construction of m(J) , TJ is fibrewise isometric  and accordingly, the linear algebra
outlined in appendix 3.1 (cf. below) may be used to write B E $I :( M,TN) in the form

(3.1) a  =c(n,TJ).TJ+TJ.A(a,TJ)

forsuitablebundleendomorphisms c(n,TJ)  ofTNIJ(M)  andA(n,TJ) ofTM;these
endomorphisms are smooth and continuous linear functions of n . The second summand on

the right can also be written as  A(  B  , TJ)TJ (cf. appendix 3.2), and SO n = c(  H , TJ)+

+A(  x’, TJ) . The usual «trace inner product»  for endomorphisms of TN then yields the dot
product

(3.2) a  .b  :=++,TJ).~(~,TJ)+~~A(~,TJ).A*(~,TJ),

A’ the adjoint of A formed fibre-wise witb respect to m(J) , and we detine

(3.3) g(TJ)(x  ,b) :=
/

a .bp(J).
M

This yields a smooth and continuous, symmetric and positive-definite bilinear form on the
Fkchet space ,@ :( M, TN), the «dot  metric».

We shall also need a subfibration of $I k( M, TN), defined by

(3.4) p;  E(M,TN)  := {VLIL E C;(M,TN)},
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whose fibres we denote  by p J( M, TAJ’) (= P; & M, TN) njll:( M, TN)); evidently these

are subspaces of the Fr6chet spaces ;itr : ( M, TN) ; for more information, cf. appendix 3.2.
Next, we introduce the Laplacean A(J) which will depend on J via m(J) ; cf. [Ma]

and sew remarks in appendix 3.2:
For K E Cy(  M, TN), we define  the covariant divergente  by

(3.5) V’(J)K := 0,

as usual, while following [Ma], V*( J)ZI  for n E jll:( M, TN) is given locally by

(3.6) V’(J)n := - CV& ) (4) !
r=l

(Er)  a locai orthonormal frame with respect to m(J)  ; V,a = V( 5),x is defined in the
standard manner by

(V(J),&)  (Y) = V,(nY) -a (V(J),Y)  , VX,Y E r(TM).

TO see that this definition does not depend on the moving frarnes chosen we write zs as a
finite sum

(3.7) a= c -yi c3 si,

with 7’ E A’ (M, R) and si E T,E(  M, N) . Moreover, let a(7’, J) be the smooth strong
bundle endomorphism of TM such that

(3.8) V(J),  (79  (V = m(J)  (a (ri,J)  X,Y)  ,

holds for al1 pairs X, Y E r (TM)  and for each i . In addition  let Y i E r (TM) for each i
be such that

(3.9) 7’(X)  = m(J) (Y’,X)  , vx E 1-(2-M).

With these data it is a matter of routine to show that

(3.10) V’(J>a  = -c (tr a (7’,  J) . s,  + VY<S,)  ,

an expression independent of any moving frame.
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provided that

d *r = - div jY,

7(X)  = m(J)(Y,X), VX,Y E 1-(TM).

A ( J) is then defined by

(3.11) A(J) := VV*(J)  + V*(J)V.

The Laplacean A(J) is elliptic for any J E E( M, N) (cf. Pa]). As we will see below
it is self-adjoint with respect to F (J)  if aM = 0. For each K E T,E(  M, N) equation
(3.6) yields

(3.12) A(J)K = V*(J)VK = -kVE,(VK) (Er).
r=l

Remark  3.1. Suppose that 7 E A’ (M, R) and V = d . Define the vector field Y on M by
q(X) = m(J)(Y,X)  (VX E T(Z’M)).  Thenitisclearthatd*~=  -div,Y, divJ the
classical  divergente operator  with respect to p(J)  .

The following theorem will be a basic tool in OUT  studies of one  forms on E( M, N) :

Theorem 3.2. For any J E E( M, N), any cx E $?  k( M,TN) and two L, , L E Cw( M,
TN) the following two relations hold

(3.13) e(J)(a,VL) =P(J)  (V*(J)a,L)+~-(j)(,(,),1),

(3.14) s(J)  (VL,,VL)  = F(J) (KW,J) + Faa (V, L,J),

where j := JlaM and 1 := L 1 a M . Here V denotes  the Levi-Civita connection of the metric
<,>onN.L.etp,:= {L E CJ”(  M,TN)IVL = 0) for any J E E( M, N), then

(3.15) LC&w(A(J)L=O a n d  V,L=O).

In fact dim p J < oa. Equation (3.14) implies in turn a Green’s  equation

(3.16)
j-/AtJ)WtJ)  -/jWJ)L)p(J) =

=
/

P, L, Q, P(J) -
I

(V,  K, L)& Pt 4.
ald aM
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Here i, p(J) is the volume element  on 6’M dejìned  by p(J) . Moreover, if aM = 0 then

B is g -orthogonal  10  al1 of $i  k( M, TN), iff V*( J)a = 0 . ?

F!roo~  Writing any L E C?( M, TN) relative to a given J E E( M, N) in the form

(3.17) L = TJX( L, J) + LI,

with aunique X( L, J) E r (TM) (and L’ being such that Ll( p) is the component norma1
to TJT,M for al1 p E M), we have the following formula at hand:

(3.18) V,L = TJV,X(L, J) + (V,L)‘, VX E 1-(TM).

From this equation we tead off the coefticients in the decomposition (3.1):

(3.19)

as well as

c(VL,T)TJ  = (VL)‘,

(3.20)
A(VL,TJ)  = VX(L,  J) + W(J,L), V L E C”(M,TN)

and VJEE(M,N).

Here W( J, L) is given by TJW( J, L) X = (VL’X) T, where, once again,  I denotes
the component in TN 1 J( A-f) orthogonal  to TJ( TM) , while T is the component tangential
to j(M), i.e. the component in TJ( TM) .

For each a E jkI ’ ( M, TN) and for each J E E( M, N) , we write on the other hand

(3.21) n = z(Va ,TJ>TJ,

with A(a ,TJ) : TNIJ(M) + TN 1 J( M) the smooth  bundle endomorphism introduced
above. Then for any moving frame (Er) on M, orthonormal with respect to m(J), we
deduce

H . VL = C<A*(a ,TJ) . A(VL,TJ)TJE,; TJE,) =
r=l

= -&A*(a  ,TJ) . VE,L,TJEr),
r=l
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A*(a ,TJ)  being the adjoint of A(n ,TJ)  formed with respect to <, >.  Hence

B * VL = cp, (A’(i3 ,TJ)L) ,TJE,)+
r=l

yields

a .VL  = &, @*(a  ,TJ)L) ,TJE,)+
i=l

+ (V*<  J)a  , L) + -&ib,  TJ)VE,(TJ)&,  L)
i=l

Since ( A*( 8 , TJ) L)’  = TJZ( 8 , L, J) for some welldefined Z( n , L, J) and since
VE, (T J) E, is pointwise norma1 to T JTM the following series of equations are immediate:

B -VL= -~(V,(c(n,TJ)L),TJE,)+ div,Z(H,L,J)+
i=l

+ (V*<  J>a ,L)  + ~(4.  ,TJ)WE,(TJ>E,,  LT) =

= -&, (c(a ,TJ)L’) ,TJE,)+
>=1

(3.22) - c(&,  (4, ,TJUT)  ,TJE,)+
i=l

+ div,Z(a  , L, J) + (V*( J)x , L)+

+ c<cb  ,TJP~7(TJ)E,,  LT)  =
i=l

m

= - c(Vs (c(a ,TJ) LI) , TJE,)+

+ divJZ(a,  L, J) + (V*( J>a  , L),

where div J is the divergente  operator  associatcd with m(J) . Writing c(  n , TJ) L’ = TJ
U( a , L, J) , for some well defincd U( a , L, J) E r (TM) , we obtain

(3.23) x . VL = - div,U(n  , L, J) + div,Z(a  , L, J) + (V*( J)n , L).
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In case a = VK, then (3.23) turns imo

(3.24) VL . VL = - divJU( K, L, J) + div,Z(  K, L, J) + (A(J) K, L).

Integrating (3.23) and (3.24) and applying the theorem of Gauss yields the desired equa-
tions (3.13) and (3.14). Since A(J) is elliptic (cf. appendix 3.2) dim F J < 00 as shown,
e.g. in [Pa] and [Ho 21. The rest of the routine arguments in this proof are left to the reader.

We close this section by showing that the metric 5 on the fibres of ‘p;  E( M, TN) also
possesses the invariance  under Diff+M and any group orientation-preserving isometries on
N :
For any choice ‘p  E Diff’ M, J E E( M, N) and L E Cm( M, TN) we form

(3.25) V(L.9) = VL-$7

and represent V( L . v>)  with respect to T( J . y3)  yielding

(3.26) V(L.cp)  =c(V(L.cp),T(J.cp)).T(J.cp)A(V(L.cp),T(J.cp)).

Mdtiplying V( L . cp)  with (TP)-’  and comparing  the resulting coefhcients  of (3.26)
with those of (3.1) shows

c(VL,TJ)  “p=  C(V(L.cp),T(J.rp))T(J.cp))

and
A(VL,TJ).cp=T~A(V(L.cp),T(J.~)).(T~)-’.

Now we verify

e(J.‘P)(V(L,.cp),V(L,.cp))=

(3.27)

1=--
/2 M

trc(vL1,TJ)  .c(VLz,TJ)  .cpp(J  *cp)+

+
/

trA (VL,, TJ) . A’ (VL,, TJ) . PP(  J . ,,,) =
M

= 5 (J) (w , VL,) ,

proving the Diff+ M-invariance of 5 at TJ. TO show the ;31  -invariance  we let g E 2 and
only need to  remark that

( 3.28) V(Tg.L)  =Tg.VL

holds. The rest is obvious. Therefore we have:

Proposition  3.3. The metric 5 on jS!i  E( M, TN) is invariant under Diff M and any group
3 of orientation-preserving isometries on N .
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APPENDIX 3.1.

As indicated  earlier, we present here some of the linear algebra used in the construction of the
dot product used in this  section. The arguments may be interpreted as fibrewise considerations
for bundle maps or, with some obvious changes in the formulation, as considerations at the
leve1 of section modules.

The aim is to show that the dot product «essentially»  is induced by the classica1 trace inner
product in endomorphism rings of euclidean spaces and to this end, we now consider  euclidean
spaces E, F with irmer products <, > and a fixed isomefry  (Y of E onto the subspace E, c

c F. For the sake of conveniente,  we write the elements of F as columns (z;) with respect

to the direct sum decomposition F = E, @ E,l; here, ei E E, and e2 E Ei;  let also

P,  : F + E, , ~2 : F -+ Ei be the respective orthogonal projections.
Any endomorphism D of F now is represented by a 2 x 2-matrix

D =

where  D,, E U E,),  D, E L(  Ef), Dl2 E L(  Ef, E,) and D,,  E UE,,  Ei) ; the

matrix acts on a column (ei) by the usual rules of matrix algebra.

Next, let ‘p  E L( E, F) . We are going to write ‘p  in the form

(3.29) cp=ccu+aA=~cx+~c~

for suitable choices of c E L(F) and A E L(E) (or 2 E L(F) ),  both of them linear
functions of ‘p:
For e E E, write ape  = (c;:) ; thus, ‘pl  = p, 1p and ‘p2  = p2 1p.  Firstly, since E, = im( a) ,

the expression < ‘pe,  CY~ > (with e, f E E) reduces to < ‘pi e,  cuf  > and this bilinear form
on E now can be written in the form < Ae,  f > fora unique A E L(E) ; in fact, since CY is
an isometry,

A = CY-“P~  = a-‘pl~.

There  is a corresponding endomorphism A, of E, , namely A, = pl ‘pa-’  and the endo-

morphism 2 of F now is the extension by 0 of this map; in other words:

(3.30) A= 4 0
( )0 0 .
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Secondly, we wish to write ‘pL = pz (p  in the forrn CCY  for some c E L( 8’)  and it is clear
that c is not automatically uniquely deterrnined by this condition (unless E, = F), SO that
in the course of the construction, certain choices will have to bc made. In a first step, let
c,  : E, + Ei be defined by c1  = P2pa-’  . Any extension of c1  to an endomorphism of F
then is of the form,

P 7( 1Cl 6

and its action on ae is the map tye + (tze) ; this forces the choice p = 0, but leaves 7,6

undetermined. The obvious choice for S is 0 and with this, mere now are three options for
7:7=0,7=c;  or7= -c; (where «*» is the euclidean adjoint) and in al1 three cases, c
will remain a linear function of 1p. At this point, we make the  choice 7 = -CT, SO that we
obtain

(3.31)
0 -c;

c =
( )Cl 0 ’

a skew-symmetric endomorphism of F : C* + -c. In part, this choice is motivated by the
usual splitting so( F) = so( E,) $ so( Ei) $ L( E, , Ei), cf. section 5.

Let now $ : E -t F be a second linear map, written in the forrn $ = (D + B) cy  under
the construction just outlined. A simple calculation shows that

(c+A)(D+B)*=-cD+,%?*+(c?-A’D),

where the terrn in parentheses is kace  free.  Moreover, the trace of AB* (in F) is easily seen
to coincide with  trE(  AB’) since CU is an isometty.  Accordingly, the «trace inner product»
in L(F) now reduces to - trF( CD) + trE(  AB’).  Thus, we see that the dot product  ‘ps + in
L( E, F) essentially is the inner product  induced by the classical trace inner product  under the

construction ‘p  + c+ A - up to  the factor i in the first summand. We shall add some remarks
on this  point below, but firstly now indicate the application of the linear algebra outlined here
to the actual constructions used in this section:
Pointwisse, the role  of Q is played by TJ, that of ‘p  by H E $4  :( M, TN) ; accordingly
c(a,TJ)  =candA(a,TJ) = a . Note that this also shows that the bundle endomorphisms
used above  depend linearly on a .

Let us turn to  the factor i in equation (3.2); it appears because of the following reason.
The endomorphism

(3.32) -da  ,TJ) .c(b  ,TJ)(Jb))  : &>N  --t  TJcpjN
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of T,(P)  N splits  for each p E M into a direct sum of the two linear maps

-c(a ,TJ) .c(b  ,TJ)I(J(p))  : T,T,M

and
-c(a ,TJ) .c(b  ,TJ)I(TJT,M)‘,

both endomorphisms of TJT,M and (TJT,M)I  respectively.  Their traces are identical.

Thus the factor i allows us to take only the pointwise formed trace of

(3.33) -c( B , TJ) . c( b , TJ) ITJT,M

into account. The endomorphism (3.33) can be pulled back to TM in the obvious manner.
Hence in the dot product  (3.2) contribute  traces of endomorphisms of TM only.

APPENDIX 3.2.

It is pointed out earlier that the fibres CCp(  M, TN) of Coo( M, TN) = TCF’( M, N) are

naturally isomorphic to the section spaces r (J*TN)  ; similarly, A:( M, TN) is isomorphic
to A’( M, J’TN)  . On the other hand, if V denotes  e.g. the Levi-Civita connection of
N, men there  is the induced «pull-back  connection»  J’V in J’TN,  obtained in the usual
manner. It now is routine to verify that the following diagram commutes:

CJ(M,TN)  2 1-( J*TN)

Vl 1 J’V

A;(M,TM)  2 A;(M,TM)

V simply «is» the induced connection in J’TN.
In addition, J’TN  carries a natural Riemannian strutture  given by <, > in TN ; the

connection J’V is compatible  with this metric. The Riemannian strutture  of J’TN  together
with p(J) now is used to obtain a pre-Hilbert space strutture  in r( J’TN)  as well as in
A’  (M, J’TN)  , etc., and hence under the isomorphisms in the above  diagram, one  obtains a
forma1 adjoint V(J) ?? of V. This operator  coincides with the operator  V*( J) of this  section
and this shows that V*(J)  again is a tirst-order  operator. Accordingly, the Laplacean A (J)
as defined in the text now is seen to be a second-order elliptic operator. This will be true «at
al1 levels»,  i.e. on the spaces A]( M, TN), p 2 1, detined in the obvious manner. We omit
the details here, but point out that the ellipticity of A (J) will be crucial later on.

At «leve1 O»,  the symbol of V is injective and one concludes now that the range ‘p;  J( M,

TN) of this V is closed in p i( M, TN), hence itsself a Fréchet space. In fact, one can argue
that it is a split subspace and that ‘p; E( M, TN) is aFréchet  subbundle of p k( M, TN) . The
technical details of these claims will be dealt with elscwhere.
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4. ONE FORMS ON E( M, N)

Recali that the tangent bundle of E( M, N) is identified with  Cg(  M, TN) ; accordingly, we
define  1-forms on E( M, N) as follows:
A (scalar) Z-form on E( M, N) is a smooth function

F: C;(M,TN) -) R

with the property that for each J E E( M, N), the restriction F(J) = FICy(  M, TN) is
linear in L E CJ( M, TN) . In particular, F(J) is a continuous linear form on this fibre,
i.e. an element of the topologica1 dual CJ”( M,TN)’ P r( J*TN)‘. Lcosely  speaking,
then, F is a smooth section of the «cotangent  bundle» UJC,(  N, TN)’ of E( M, N) , but
this point-of-view will not be pursued any further here; cf. however below.

For our purposes, it will be suftìcient  to limit attention to a smaller class of such one-forms;
in particular, their values will depend only on the one-jets  of the elements of Cg(  M, TN) .
More precisely:

Definition 4.1. The one-form F on E( M, N) is said to be 0 vepresentable  if there  exists a

smoothsection H : E( M, N) + $l  E( M, TN) of the bundfe (3 k( M, TN), p, E( M, N))
such that

(4.1) F(J)(L) =
/

n(J) .Vk-4J) = iI(J (J),VL)
M

for J E E( M, N) and L E CJ”(  M, TN) . The section a is called  the (g -)kernel  of F.

For instante,  suppose that Ir is a smooth section of C;( M, TN) over E( M, N) , i.e.
a smooth vector field. Then x (J) = Vtt (J) will provide  a 0 -kemel and the right-hand
side of (4.1) then will detine a representable one-form. In fact, this example can be shown to
characterize the representable one-forms, cf. below. Let us denote  by A’ 8 (E( M, N) , R)

the collection of al1 smooth 0 -representable one-forms on E( M, N) .

Remark 4.2. Clearly, the existence of non-trivial 1-forms, in particular that of 0 -represen-
table ones depends on the existence of not identically vanishing smootb  sections of the bundles
in question. Both $? k( M, TN) and Cg(  M, TN) = TE( M, N) admit locai sections since
they are locally trivial over E( M, N) . Moreover, the mode1 spaces r (J’TN)  of E( M, N)
are nuclear  Fr6chet spaces obtained as countable inverse limits  of Hilbert spaces, namely e.g.
the H8-completions  of r( J’TN) for s E N . This implies that E( M, N) admits enough
«bump functions».  Given the open ncighbourhoods U, V of J with 7 c U, there  exist
an open neighbourhcod W of J and a smooth function f on E( M, N) such that w c V,
together with 0 < f < 1, flw = 1 and f = 0 on the complement  of V . With this existence
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of non-zero sections of the above  bundles is clear. The paracompactness of E( M, N) (as
subspace of the paracompact and locally metrizable, hence metrizable space Cw(  M, N) !)
can be used to obtain smooth partitions of unity, but we omit the details here and retum  to al1
these matters elsewhere.

We now show that any 0 -kemel H of a smooth one-form  F can be presentcd by Vtr ,
where

lj : E(M,N)  + CgyM,TN)

is a smooth vector field. This means that for any ,7 E E( M, N)

(4.2)
/

H(J)  .VLp(J) =
/

Vh t J) * v‘Q4  J>
M M

or equivalently

(4.3) kl(J)(n(J),VL) =5(J)(Vtr(J),VL)

has to hold for al1 L E CT< M, TN) . TO do SO we are required to solve

(4.4) A(J)tt(.J)  = V*a

and

(4.5) V,k(J) =n(n).

This is for each J E E( M, N) an elliptic boundary value  problem (cf. [Pa] or [Ho 21
as well as appendix 3.2) and admits according  to [Ho 21  a smooth solution  tt (J)  for each
J E E( M, N) . Since the solutions  are smooth with respect CO  small perturbations  of the
system (cf. [Ho 2]), we may state:

Theorem 43. Any F E Ak (E( M, N) , pi) aafmits  a smooth vectorjìeld

g :  E ( M , N )  -+ Cg(M,TN)

for which

(4 .o)

holds for al1 variables of F.

F(J)(L)  =
/

v4 t J) . VJM J)
M

The following corollary  is an easy consequence of proposition 2.1:
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Corollary 4.4. Let G and K be a groups  acting on M and on N for a given J E E( M, N)
via the homomorphism

@:G+Diff’M  a n d  Y:K+;31

respectively. where 3 is an isometry group of N preserving the orientation. If F E A’ (E
(M, N) , R ) is g -representable and invariant at J, under 4 and Y respectively, then there
is a smooth vectorjìeld b : E( M, N) + Cg( M, TN) such that

F(J)(L)  = / Q(J) -VLAJ)M

and

(4.7) tr(J-Q(f)) =h(JPf’(d, Vg E G

as well as

(4 -8) 4(y(k).  J) = TV(k) .4(J), Vk E K

hold for al1  variables of F .

5. THE SPECIAL SITUATION N = R”

In this section we will show that in case of N = R” (with a fixed inner product <, >),
the spaces ‘fc  E( M, TR”) allow a considembly simpler and more detailed description; in
particular,  formula (4.1) takes on a more concrete form of importance in the applications.
The simplifications are due to the triviality of TR” = R” x Rn and to the fact that the
natural operation of Rn as the group of translations of the vector space Rn together yield a
«splitting»  of p E( M, TR “)  . Firstly,  since TR n is trivial,  SO is the pull-back  J*TR n for
each J, Le. J’TR” Z M x Rn and hence the fibre ‘p; J( M, TR “)  may be identified with
the space {dL/L E Coo( M, R”)}  := A, of exact R”-valued one-forms  on M;  thus,

(5.1) pE(M,TRn) = E(M,R”) x {dLIL E C”(M,R”)},

and this is easily seen to be a Frechet  manifold:  under the differentiation operator  d , Coo( M,

R “)  maps onto A, with kemel the subspace R R of constant maps (since M is connected).
Accordingly,  for each J E E( M, R “) , jli J( M, TR “) Z Cm(  M, R “) /tia  is a Fréchet
space. ‘p;  E( M, TR “) now inherits the product strutture  of the right-hand side of (5.1); this
also shows that ‘p;  E( M, TR “) is a trivial Frechet bundle over E( M, TR “) .
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Secondly, the operation of Rn as the group of translations of R n provides an action
E(M,TR”)  x  R” + E(M,TR”)  b y  (J,u) -B J + u,  where u is interpretcd  as the
constant  map M + {IL},  cf. below. We next wish to determine the orbit  space of this action
and to this end, we introduce

E, (M,R”) := J, E E(M,R”)  1
/ J,P (J,) = 0

M >

E, ( M, R “)  meets every equivalente class mod translations in exactly one point and thus
determines a section of the equivalente relation.

Observe that p( J + u) = p(J)  since translations are (orientation-preserving) isometries.
Hence,if J,,  .T/, E E,(M,R”) and &, + u,  then

whence (L  = 0 becauseof volJ,(M)  = AMO > 0.

Next, let J E E( M, R”) be arbitrary  and detine

UJ := Cl/ VOlJof)) /
Jp(J) E IR”;

M

uj is the barycenter of J(M) for the uniform massdistribution p = 1 . Then

L (J - u,) /.J  (J - UJ)  = L (J - u.r> CL(J)  = 0

and SO J - UJ E E, ( M, R “)  : every equivalente class meets E, ( M, IR  “)  . We conclude
thatthemap(J,,u)jJ,+uisabijectionofE,(M,R”)xR”ontoE(M,R”)

E(M,R”)  = E,,  (M,R”)  x R”,

cf. also below.
Next, it is clear that the image of E( M, R “)  under d coincides with the one of E, ( M,

R “)  and it can be argued that this image is an open subset of Coo( M, R “) /km, see below,
and under the bijection d of Eo( M, R”) onto this image, E,(  M, R”) inherits a Fréchet
manifold strutture.  Formula (5.2) then holds for the differentiable structures  as well.

As a consequence,

(5.3) TE(M,R”)=TE,(M,W”)$TR”
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and we now have to determine the first summand more explicitly.
Let again A, denote  the vector space of exact R “-valued one-forms  on M . The differ-

emiation  operator  d is a continuous linear surjection inducing the continuous isomorphism
C”(M,R”)/lii”  - A, mentioned above; in the sequel, we use the Fréchet  topology of
the quotient on A, . Then d remains a continuous linear surjection and hence is an open
map. Accordingly, C = d( E( M, R “)) c  A, is open in A, und thus is a Fr&het  manifold.
Moreover, d IE,,( M, R “) is a diffeomotphism by the earlier definition of the differentiable
strutture  of E, ( M, R “)  .

Since d is linear, the (principal  part of the) tangent map Td is d once more and, in
particular,  d yields an isomorphism of TJo  E, ( M, R “) orno the tangent space A, ; iden-

tifying the former with Cw(  M, R”),  the kemel of this map is, of course,  the subspace
8” c C”(M,R”). We now split C”(M,R”) at Je E E,(M,R”) c E(M,R”)
as follows:
For L E C”(M,R”), set

UL := (l/ vobo / JG Po)
M

and interpret  uL as an element of R” =ker(d) . Then JJL - u~)P(  JO)  = 0 and the
construction yields a continuous splitting

TJOE(M,R”)  := L, E c”(M,R”)  1J L,p (J,) = 0 @IR”.M
Under d , the split subspace {Le E P( M, R”) 1 JM L,p(  J,)  = 0) is mapped isomor-

phically onto A, and we conclude that

TJoEo  (M,R”) := L, E C’=(M,R”)  1J LOP  00)  = cl .M >
Note that the right-hand side  is isomorphic to P’( M, R “) /R n . Lastly, there  is a «split-

ting» of E( M, R “)  in Coo( M, R “)  , analogous to (5.2),  namely

(5.4) E(M,R”)  = E,(M,R”)  + it”  c C”(M,R”);

we also conclude that

(5.5) TE(M,R”)  = (Eo(M,Wn)  xCOO(M,R”)/R”)~(R”XW”).
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Consequently, any smooth one-form  F on E( M, R “)  can be written in the form

(5.6) F(J)(L) = F (4, + u) (Lo)  + F (J, + u) (21,

with L = L, + z,  L, E Z’,OE,( M,R”) % C”( M,R”)/lk”,  z E R”, u E R”. Formula
(4.1) now shows that for representable forms F,

(5.7) F(J)(L) = F (Jo)  (4,).

Remark  5.1. In the applications to continuum mechanics, (5.7) means that F only depends
on those embeddings whose center of mass is fixed at 0 E Rn.

The following theorem (cf. [Bi 41)  describes in full generality the strutture  of 0 -represen-
table one-forms  for N E Rn and <, > a fixed scalar product.

Theorem 5.2. Every F E Ab (E( M, R “)  , R) admits a smooth constitutive map

(5.8) b : E(M,R”)  --+C”(M,R”),

such that F can be expressed as

(5.9) F(J)(L) =
/

(A(J)t (J),Lb(J)  +
/

(WJ)(~),L)~,i4J)
M ah4

foreach J E E(M,R”) andeach L E Cm(M,R”).  Fora11  J E E(M,R”),  themap b
dejines  Q  E P( E( M, R “)  , Cm( aM, IR”)) respectively by

(5.10) (D(J) := A(J)b(J)

and

(5.11) PO(J)  := db (J)(n  ),

which satisfy, due to thejirst  jet dependence  of F, the equation

(5.12) o=
i Q(J)P(J) +M iaM ‘p(J)&  P(J).

Conversely, given two smooth maps @  E Cw( E( M, R “) , Cm( aM, R “)) and ‘p  E Coo( E
(M, R “), CY(  aM, R “))  , for which (5.12) holds as an integrability condition there  exists
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a smooth  map 4 E P( E( M, R”), C*( aM, R “)) satisfying (5.10) and (5.11) which is
uniquely  determined up to  a constant for each  J E E( M, R “)  . 8

Remark5.3. a) If @’  E C”(E(M,R”),P(aM,R”)) and ‘p’  E P(E(M,R”),
Cw(  aM,  R “)) are given arbitrarily, we may split off a constant and components  <P and ‘p
satisfying (5.12). Then @ and ‘p  can be expressed as in (5.10) and (5.11).
b) As a brief comment  on the interplay between linearity and non-linearity,  we point out the
following:
Even if 4 is of the form

4(J+ K) = b(J) + Db(J)(K),

for any K E Coo( M, R”) such that J + K still lies in E( M, R”), the two maps in (5.10)
respectively  (5.11) do not vary in a similary simple manner since the Laplacian on J is con-
siderably more subtle (cf. (3.11)).
c) Introducing the A-product  and the Hodge-star operator  as done  in [A,M,R]  we may write

(5.13)
/

dL,  +dL,p(J)  = dL,  A*dLz
M

for any pair L, , L, E C”( M, R”) . This is easily seen by converting the right-hand side
of (5.13) imo the right hand side of (5.9). In fact, equality  already holds at the leve1 of the
integrands (cf. [Al).
d) A theorem analogous to theorem 5.2 holds in the general case as well, cf. [Ho 21.

APPENDIX 5.1.

Let us motivate (3.1) in the context of the present section: given two 1, J E E( M, Rn)

which lie in the same connected component,  we may write

dJ=Q(J).dl

with Q(J) E CW( M, L( R”,  R “)) . Using the classical polardecomposition (cf. [Bi,Sn,Fi])
the map Q(J) can be expressed in the form

Q(J) = s(J)  -f(J),

where g(J) E C”( M, SO(n)) and T(J)  E C“‘(  M, L,( R n, R “)), the index s meaning
«self-adjoint»  with respect to <, > . Moreover,  for al1 X, Y E r (TM)

(5.14)
m(J)(X,Y) = (f(J)dIX,f(J)dlY)  =

= dO(f(J)X,f(J)Y),
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where f(J) is the (positive self-adjoint) square root of the strong bundle isomorphism
A’(J) E L( TM,  TM), detined by

mtJ)(X,Y)  = mtOtA’(J)X,Y), VX,Y E 1-(TAJ).

kfining f’(J) E C”(M,L,(R”,R”)) by

f’(J) *dl= dl. f(J),

with f’(J) I(T( JTM))’  = 0, we conclude by (5.14)

d(J) = g.dl.f.

Letting J depend on a smootb real parameter t with J( 0) = 1, we find

(5.15) dj(0) = i(O)dl+ dlf(0).

Thus there  is a unique C E Coo( M, L,( R”, R”)) , the index a meaning skew-adjoint,
such that

Q(O)dl=  cdI+  dl.C,

with c as in (3.1). Collecting C and f( 0) imo A( d J,  d 1) , yields

(5.16) dj(0) = c.dl+ dl.A(dJ,dl)

the decomposition (3.1) in case of a = d j( 0). Equation  (5.16) men motivates the gen-
eral decomposition (3.1). The meaning of the coefticients c, C and f is discussed e.g. in
[Bi,Sc,So].

6. 5 -REPRESENTABLE ONE-FORMS  ON E( M, R”) AS CONSTITUTIVE LAWS

In this part of the paper we link the formalism developed earlier to classica1 elasticity  as pre-
sented e.g. in L,L]. In doing SO, we work in a C”-setting.  First of al1 we introduce the work
caused by deforming a body, the body being identitied with the manifold M with bound-
ary enjoying the properties of the previous sections. TO this end we consider  the derivative
of the map M : E(M,R”) --+  @l(M),  atany J E E(M,R”) inthedirectionofany
L E P’( M, R “)  . It is determined by

(6 .l> Dm(J)(L)(X,Y)  = (dJX,dLY)  + (dLX,dJY), VX,Y E l?(TM).

Writing Dm(J)(L) with respect to  m(J) yields the strong smooth bundle endomorphism

(6.2) B(dL,dJ) :TM +TM.
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Hence, B( d L, d J) is the symmetric part of A( d L, d J) a coefticient appearing in (3.1).
This is easily seen by using (3.1) and (6.1); the tensor

mtJ)tB(dL,dJ) . . . , . . .)  = +h(  J)(  L)

is called the linearized defmnation  tensof.
Let us assume that some smooth map

3 : m(E(M;R”))  4’2(M)

is prescribed, where the range is the collection of al1 symmetric two tensors on M endowed
with the C”-topology  . Jl (m( J)) is called the stress temor at m(J) . 2 (m(J)) deter-
mines a uniquely defined smooth strong bundle map of TiU,  such that

(6.3) &‘JtmtJ))(X,J’)  = ~tJ)@tWW’L VX,Y E l-(TM).

We define

(6.4) F,(m(J))  $lm(l)(L)
( ) /

: = ~~~$h4J))  ~NdL)d.J)/4J),
M

foranym(J)  cm(E(M,R”)) andanyDm(J)(L)EDm(E(M,R”))(COO(M,R”)).
It is not clear as to whether m( E( M, R “)) is a manifold or not. It is one if the codi-

mension  of M in R” is high enough (cf.[St]). Hence the usual techniques in analysis and
differential geometry cannot by applied without camion. However, E( M, R “) is a Fréchet
manifold and it makes sense to  lift (6.4) to E( M, R “)  by introducing the one-form

F :  E(M,R”)  x  C”(M,R”)  +  R

given by

F(J)(L) = F,mtJ)
(
+W(L)

)
,

for any of the variables of F. It makes also sense to require that F
smoothness is not detined for Fm. As shown in [Bi 41  there is a map

b : E(M,R”)  -+C”(M,R”),

for which

is smooth even though

(6.5) F(J)(L)  =
/

db tdJ)  .dL/.dJ)
M
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holds for al1 variables of F. Hence, prescribing the stress tensor  at each conliguration in
m( E( M, R “)) yields a 0 -representable one-form F. Since 2 is a constitutive entity in
elasticity, we cali F a constitutive lw (cf.[E,S]).  Equation (6.5) is the motivation for calling
any F E Ah  (E( M, R “)  , R) a constitutive law.

As shown in [SI,  given any g representable one-form F invariant under the natura1 action
of the euclidean group of R” on E( M, R “) , satisfying an additional condition, there  is a
map Jl such that (6.4) holds. The additional  condition amounts to say that no rigid motion
in R” causes any work.

The force densities associated with any constitutive law F with 0 -kemel d lt are given
ateach .I E E(M,R”) by

(6.6) A(J)b(J)  on M

and

(6.7) dtr(J)h)  on  aM,

(cf.[Bi 417.  Thus, the formalism presented in these nots refines the usual treatment of elasticity
and carries over to any ambient manifold N (cf. Remark 5.3 d) in the previous section). If
N c  Rn, then it may reflect constraints a deformation of a body in R n has to satisfy.

If N has no non-trivial isometry group, then there is in general no natura1 symmetric
stress-tensor available at each configuration.  Hence the generality of the mechanism pre-
sented here, which describes al1 the deformable media admitting smooth force densities at
each contiguration acting upon M and aM respectively seems to be necessary.
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