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Abstra
t. We study the 
entralizers of �nite subgroups in Hall's universal group.

We des
ribe the stru
ture of the 
entralizers of arbitrary �nite subgroups in the groups S(ξ)
and FSym(κ)(ξ) where S(ξ)'s are obtained as dire
t limits of �nite symmetri
 groups and

FSym(κ)(ξ)'s are obtained as dire
t limits of �nitary symmetri
 groups on the set of in�nite


ardinality κ.
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1 Introdu
tion

A lo
ally �nite group U satisfying,

(i) Every �nite group 
an be embedded into U,

(ii) Any two isomorphi
 �nite subgroups of U are 
onjugate in U

is 
alled a universal lo
ally �nite group.

Philip Hall in [3℄ 
onstru
ted the �rst example of universal lo
ally �nite group

of 
ountably in�nite order. A 
ountable group satisfying these two properties is


alled Hall's universal group, as Hall proved that su
h a 
ountable lo
ally �nite

group is unique up to isomorphism. But if we allow that the 
ardinality of the

group 
ould be of arbitrary, un
ountable 
ardinal κ, then A. Ma
intyre and S.

Shelah proved in [20℄ that, there are 2κ pairwise non-isomorphi
 universal lo
ally

�nite groups of 
ardinality κ.

The stru
ture of Hall's universal group has been studied in the past from

di�erent points of view. Hall's universal group is 
ountable and existentially
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losed in the 
lass of lo
ally �nite groups su
h properties are surveyed by Leinen

in [12℄. Not only the dire
t limits of �nite groups but also the dire
t limits of

�nite dimensional algebras and lie algebras are dis
ussed in a very 
lear and

detailed way by A. Zalesskii in [21℄.

The generalization of the universal lo
ally �nite groups was due to K. Hi
kin

in [7℄. Let A be a periodi
 abelian group. A group G is 
alled a universal lo
ally

�nite 
entral extension of A provided that the following 
onditions are satis�ed.

(i) A ≤ Z(G) (the 
entre of G)

(ii) G is lo
ally �nite

(iii) (A-inje
tivity). Suppose that A ≤ B ≤ D with A ≤ Z(D), that D/A is

�nite and that ψ : B → G is an A-isomorphism (that is ψ(a) = a for all a ∈ A).
Then there exists an extension ψ : D → G of ψ to an isomorphism of D into G.

Let ULF (A) denote the 
lass of all groupsG satisfying (i)-(iii). The 
ountable

universal lo
ally �nite group of Hall is in ULF (1). By [7, Theorem 1℄ if G ∈
ULF (A), then A = Z(G) and G/A is simple.

Although U is a dire
t limit of �nite simple groups, if for some prime p, the
group Zp×Zp×Zp ≤ A, then G/A is not a dire
t limit of �nite simple subgroups.

Therefore one may 
onstru
t un
ountably many pairwise non-isomorphi
 simple


ountably in�nite lo
ally �nite groups by this method; see [7, Corollary 1℄. Uni-

versal lo
ally �nite 
entral extensions of A has numerous interesting stru
tural

properties but we will say no more than 
onsulting the paper of Hi
kin; [7℄ see

also; [18℄ and [10℄.

2 Hall's universal group

Hall 
onstru
ted his group as a union of a tower of �nite symmetri
 groups;

G1 ≤ G2 ≤ . . .

where G1 is a symmetri
 group of order greater than 2 and if Gn is given, then

Gn+1 is the symmetri
 group on Gn and Gn is embedded into Gn+1 by right

regular representation. One 
an see easily that in the regular representation

of Gi into Gi+1, a
tually all the permutations in the image of the elements

of Gi in Gi+1 will be an even permutation. Hen
e we embed Gi into Alt(Gi).
So in fa
t, U is a dire
t limit of �nite simple alternating groups. Then the

question of whether Hall's universal group 
an be written as a dire
t limit of

other families of �nite simple groups is answered by F. Leinen in [11℄. He proved

that Hall's universal group 
an be 
onstru
ted as a dire
t limit of simple linear

groups {PSL(ni,Fq) }, {PSU(ni,Fq) }, {PSp(2ni,Fq) }, {PΩ+(2ni,Fq) },
{PΩ(2ni + 1,Fq) }, {PΩ−(2ni + 2,Fq) }.
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It is natural to ask whether U 
an be expressed as a union (dire
t limit) of

the in�nite simple lo
ally �nite groups PSL(ni,Fp), where Fp is the algebrai



losure of the �eld Fp with p elements. It is proved in [16, Theorem 1℄ that the

answer is positive.

Theorem 2.1. (Kuzu
uo§lu-Zaleskii) Let p be any �xed prime. The Hall's uni-

versal group is a dire
t limit of some groups PSL(ni,Fp), i = 1, 2, . . . su
h that

all the sequent embeddings are rational maps (morphisms of algebrai
 groups).

Theorem 2.1 shows, among other things, that the 
hara
teristi
 of the ground

�eld is not an invariant of a dire
t limit of algebrai
 groups. In fa
t, one 
an

prove a slightly more general result [16, Theorem 2℄.

Theorem 2.2. (Kuzu
uo§lu-Zaleskii) Let F be a �nite or an in�nite lo
ally �nite

�eld of 
hara
teristi
 p and Gn be one of the 
lassi
al simple groups of rank n
over F . Then any in�nite sequen
e of the groups Gn 
ontains a subsequen
e

Gni
, i = 1, 2, . . . su
h that the Hall's universal group U is a union of subgroups

Hi, where Hi ⊂ Hi+1, Hi
∼= Gni

and the embeddings Gni
→ Gni+1 indu
ed by

the in
lusions Hi ⊂ Hi+1 extend to rational embeddings (morphisms) of algebrai


groups (over Fp) asso
iated with the groups Gni
.

To have Theorem 2.1, one should take Fp for F and Gn = PSL(n,Fp).

One of the main 
hara
teristi
 of the universal lo
ally �nite groups whi
h 
an

be obtained from the properties (i) and (ii) is the following: If A is a subgroup

of the �nite group B, then every embedding of A into U 
an be extended to an

embedding of B into U [13, Theorem 6.1 (b)℄. It follows from this property that,

as every 
ountable lo
ally �nite group 
an be written as a union of an in
reasing

sequen
e of �nite groups, every 
ountable lo
ally �nite group has an isomorphi



opy in U . In parti
ular, a 
opy of every simple 
ountable lo
ally �nite group is


ontained in U .

Hall's universal group U satis�es the following properties for whi
h some of

them are quite unusual; for the proofs see [13, Chapter 6℄.

Proposition 2.3.

(a) Let Cm denote the set of all elements of order m > 1 of U . Then Cm is

a single 
lass of 
onjugate elements and U = CmCm. In parti
ular U is

simple.

The automorphism α of the group G is 
alled lo
ally inner if for every

�nite set F of elements of G there is an element g = gF of G su
h that

fα = fg
for every element f ∈ F .
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(b) If G is any lo
ally �nite universal group, then every automorphism of G
is lo
ally inner. In parti
ular, the automorphism group of Hall's universal

group satis�es |Aut(U)| = 2ℵ0
.

(
) If G is any universal lo
ally �nite group and H is any 
ountably in�nite

lo
ally �nite group, then there exist at least 2ℵ0
distin
t subgroups of G

isomorphi
 to H.

(d) Every in�nite lo
ally �nite group G 
an be embedded into a universal lo
ally

�nite group of 
ardinality |G|. In parti
ular there exist universal lo
ally

�nite groups of arbitrary in�nite 
ardinal.

Perhaps, one of the most striking one, in 
ontrast to Sylow theory for �nite

groups was dis
overed by Hi
kin who proved in [7, Theorem 4℄ that, for every

prime p, every 
ountably in�nite lo
ally �nite p-group 
an be embedded into

U as a maximal p-subgroup. Therefore there are un
ountably many pairwise

non-isomorphi
 maximal p-subgroups in U .

Could it be possible to have a maximal p-subgroup in U whi
h is a maximal

subgroup of U? M. D. Molle in [17℄ shows that the answer is positive.

Theorem 2.4. The 
ountable universal lo
ally �nite group U 
ontains, for ea
h

prime p, a maximal subgroup that is a p-group.

One may ask whether U 
an be written as a dire
t limit of in�nite simple

�nitary alternating groups? The answer is negative; see [16℄.

Theorem 2.5. The Hall's universal group is not a dire
t limit of in�nite �nitary

alternating groups.

About the 
entralizers of elements (subgroups) in Hall's universal group, the

following results were announ
ed by Hartley in [6, Proposition 1.8℄.

Proposition 2.6.

(a) If F is a �nite subgroup of U with trivial 
enter, then CU (F ) is isomorphi


to U .

(b) If F is a subgroup of U of prime order and M is a subgroup of U with

CU (F ) ≤ M < U, then M ≤ NU (F ) is a maximal subgroup of U .

(
) If A is a �nite abelian subgroup of U , then CU (A)/A is an in�nite simple

group.
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For the 
entralizers of subgroups in algebrai
ally 
losed groups see; [8℄ and

[9, Chapter 2℄.

As Hall's universal group is a union of in
reasing sequen
e of �nite symmetri


groups, every �nite subgroup F of U is 
ontained in one of the symmetri
 groups

and the ones 
ontaining it. The stru
ture of 
entralizers of subgroups in �nite

symmetri
 groups is well known; see [1, Chapter 4℄ and [19, Chapter 6℄.

Is it possible to �nd the stru
ture of 
entralizers of �nite subgroups in U by

using basi
 group theory?

One may use the well known information about the 
entralizers of �nite

subgroups in symmetri
 groups to answer the above question. For this we spell

out some of the salient fa
ts.

Let F be a subgroup of the symmetri
 group Sym(Ω) where Ω is a �nite

set. Then CSym(Ω)(F ) a
ts on the set of orbits Σ of F on Ω. One may de�ne

a relation on Σ: If ∆1 and ∆2 in Σ, then ∆1 ∼ ∆2 if and only if ∆1 and ∆2

are permutationally isomorphi
 F -sets. i.e. there exists a bije
tion ϑ : ∆1 → ∆2

su
h that, for any δ ∈ ∆1 and h ∈ F we have ϑ(δ.h) = ϑ(δ).h
Clearly this de�nes an equivalen
e relation on Σ. If ϑ is a bije
tion on the

isomorphi
 orbits∆1 and∆2, then ϑ∪ϑ−1 : ∆1∪∆2 → ∆1∪∆2, and a
ting trivi-

ally on Ωr (∆1 ∪∆2) de�nes an element in CSym(Ω)(F ). Therefore CSym(Ω)(F )
a
ts transitively on the isomorphi
 orbits. If C1, C2, . . . , Cr are the equivalen
e


lasses of orbits of F on Ω, then

CSym(Ω)(F ) ∼=
r
Dr
i=1

CSym(Γi)(F ) ≀ Sym(ni)

where Γi is a representative of an orbit of F in Ci and ni is the number of orbits

in the 
lass Ci.
Proposition 2.7. Let F be a �nite subgroup of the Hall's universal group U

and Γ be an orbit of F in U . Then CU (F ) =
∞⋃

i=1
Ci where Ci = CGi

(F ) ∼=

CSym(Γ)(F ) ≀ Sym(ki), ki =
|ni|
|F | and Gi

∼= Sym(ni).

Proof. Let F be a �nite subgroup of U . Then there exists i ∈ N su
h that

F ≤ Gi−1
∼= Sym(ni−1) where Gi−1 is a
ting on a set with ni−1 elements and

ni = (ni−1)! . Then by assumption F has an orbit Γ on the set with ni elements.

Sin
e F a
ts by the right regular representation, the orbits of F are all isomorphi


F -sets namely left 
osets of F in Gi−1. We may write CU (F ) =
∞⋃

i=1
CSym(Gi)(F ).

Then by the above observation for all j ≥ i, we have

CSym(Gj)(F ) ∼= CSym(Γ)(F |Γ) ≀ Sym(kj)

where kj =
nj

|F | .



110 O. H. Kegel and M. Kuzu
uo§lu

QED

Corollary 2.8. Let F be a �nite subgroup of the Hall's universal group U and

Γ be an orbit of F in U with CSym(Γ)(F ) = 1. Then CU (F ) ∼= U .

Proof. By Proposition 2.7 we have CU (F ) =
⋃∞

i=1Ci where Ci
∼= CSym(Γ)(F ) ≀

Sym(ki). Sin
e ea
h CSym(Γ)(F ) = 1 we have Ci
∼= Sym(ki). Moreover, Ci is

embedded into Ci+1 by right regular representation and ki's is an in
reasing

sequen
e of integers. Now it is 
lear that every �nite group 
an be embedded

into CU (F ) as it is the union of in
reasing sequen
e of �nite symmetri
 groups.

Let A and B be two �nite isomorphi
 subgroups of CU (F ). Then A and B are


ontained in Ci for some i. Sin
e Ci is embedded into Ci+1 by right regular

representation (probably it has more than one orbit), then by [13, Lemma 6.3℄

A and B are 
onjugate in Ci+1. Hen
e by de�nition of universal group and

uniqueness of U we have CU (F ) ∼= U .

QED

There are in�nitely many subgroups satisfying CSym(Γ)(F ) = 1. For example

one may take an element α of maximum 
y
le length n, an odd integer, in

the symmetri
 group and a permutation β of order 2 whi
h inverts α and let

F = 〈α, β〉. Then CSym(Γ)F = 1.

3 Centralizers of �nite subgroups in groups of type

S(ξ)

Re
all that dire
t limit of the groups G1, G2, . . . , Gn, . . . with the embeddings

ϕij : Gi → Gj where i ≤ j depends not only the groups Gi but also the

embedding ϕij 's, see [15, �7.℄. Observe that, one 
an obtain the additive group

of rational numbers as a dire
t limit of in�nite 
y
li
 groups Gn = 〈 1
n!〉 and also

the dyadi
 rational numbers as a dire
t limit of in�nite 
y
li
 groups Kn = 〈 1
2n 〉.

Clearly dyadi
 rational numbers are not isomorphi
 to the additive group of

rational numbers. In this sense we may 
onstru
t non-isomorphi
 groups by

using di�erent embeddings of �nite symmetri
 groups.

Let α ∈ Sym(n). For a natural number p ∈ N, a permutation dp(α) ∈
Sym(pn) de�ned by (kn + i)d

p(α) = kn + iα, 0 ≤ k ≤ (p− 1) and 1 ≤ i ≤ n
is 
alled a homogenous p-spreading of the permutation α.

Let ξ be an in�nite sequen
e of not-ne
essarily distin
t primes. By using

homogenous pi-spreadings as embeddings in the following diagram where pi is
the ith prime in the sequen
e ξ we have the following dire
t systems

{1} dp1→ Sym(n1)
dp2→ Sym(n2)

dp3→ Sym(n3)
dp4→ . . .
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and

{1} dp1→ An1

dp2→ An2

dp3→ An3

dp4→ . . .

where ni = ni−1pi, i = 1, 2, 3 . . . and Sym(ni) is the symmetri
 group on ni

letters, Ani
is the alternating group on ni letters and n0 = 1. The dire
t limit

groups obtained from the above dire
t systems are denoted by S(ξ) and A(ξ),
respe
tively. Observe that S(ξ) ≤ Sym(N).

Re
all that the formal produ
t n = 2r23r35r5 . . . of prime powers with 0 ≤
rk ≤ ∞ for all primes k is 
alled a Steinitz number (supernatural number).

Chara
terization of the groups S(ξ) using Steinitz numbers is done by

Kroshko-Sush
hansky in [14℄. They proved that there are un
ountably many

pairwise non-isomorphi
 simple lo
ally �nite groups of type S(ξ). Now we de-

s
ribe the stru
ture of the 
entralizers of arbitrary �nite subgroups in S(ξ).
Let F be a �nite subgroup of S(ξ) ≤ Sym(N). Then F a
ts on N. The

type of F is de�ned by t(F ) = ((nj1 , r1), (nj2 , r2), . . . , (njk , rk)) where nji is the

smallest positive integer in whi
h F has an orbit Ωi on the set with nji elements

and there are ri orbits giving equivalent a
tions of F and nji 's are not ne
essarily

distin
t. We say that the ith representation of F appears and appears as ri times

in Sym(nji). For the 
entralizer of an arbitrary �nite subgroup F of S(ξ), we
prove the following.

Theorem 3.1. (Güven, Kegel, Kuzu
uo§lu [2℄) Let F be a �nite subgroup of

the in�nite group S(ξ) and Γ1, . . . ,Γk be the set of orbits of F su
h that the

a
tion of F on any two orbits in Γi is equivalent. Let the type of F be t(F ) =
((nj1 , r1), (nj2 , r2), . . . , (njk , rk)). Then

CS(ξ)(F ) ∼=
k
Dr
i=1

(CSym(Ωi)(F |Ωi
)(CSym(Ωi)(F |Ωi

)̄≀ S(ξi)))

where Char(ξi) =
Char(ξ)

nji

ri and Ωi is a representative of an orbit in the equival-

en
e 
lass Γi for i = 1, . . . , k.

By Proposition 2.3 (
) Hall's universal group U 
ontains an isomorphi
 
opy

of S(ξ) and when Char(ξ) = Π 2∞3∞5∞ . . . the group S(ξ) 
ontains isomorphi



opy of U ; see [6, Proposition 1.17℄. But they are non-isomorphi
 as the stru
ture

of 
entralizers of elements are non-isomorphi
; see [2℄.

For the dire
t limits of �nite alternating groups, the following proposition is

of interest.

Proposition 3.2. (Hartley [6, Proposition 1.22℄) Let G be the union of a tower

of alternating groups, G1 ≤ G2 ≤ G3 . . . and the sequen
e ti ≥ 2 for in�nitely
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many i where ti is the natural representation of Gi−1 repeated ti times diagonally

as above. Then the dire
t limit group G is not isomorphi
 to Alt(N).

One 
an see from [14℄, that if we take the prime de
omposition of the sequen
e

(t1, t2, . . . , ti, . . .), then the above group G will be isomorphi
 to A(ξ) where ξ is

the sequen
e obtained from ti.
One may use our results about the stru
ture of the 
entralizers of elements or


entralizers of subgroups in S(ξ) to de
ide easily that, su
h dire
t limit groups


annot be isomorphi
 to Alt(N), as the stru
ture of the 
entralizers of elements

are 
ompletely di�erent in dire
t limit group S(ξ) and Alt(N); see [2℄.

4 Centralizers of �nite subgroups in FSym(κ)(ξ)

By using similar te
hnique as in [14℄, we may 
onstru
t un
ountably many

simple lo
ally �nite groups for any in�nite 
ardinal κ. Let FSym(κ) denote the

�nitary symmetri
 group and Alt(κ) denote the alternating group on the set κ.
Let Π be the set of sequen
es of prime numbers and ξ ∈ Π. Then ξ is a sequen
e

of not ne
essarily distin
t primes.

Let α ∈ FSym(κ), respe
tively (Alt(κ)). For a natural number p ∈ N, a
permutation dp(α) ∈ FSym(κp) de�ned by (κs + i)d

p(α) = κs + iα, i ∈ κ
and 0 ≤ s ≤ p − 1 is 
alled homogeneous p-spreading of the permutation

α. We divide the ordinal κp into p equal parts and on ea
h part we repeat the

permutation diagonally as in the �nite 
ase. So if

α =

(
1 . . . n

i1 . . . in

)

∈ FSym(κ),

then the homogeneous p−spreading of the permutation α is

d
p
(α) =

(

1 . . . n κ + 1 . . . κ + n . . . κ(p − 1) + 1 . . . κ(p − 1) + n

i1 . . . in κ + i1 . . . κ + in . . . κ(p − 1) + i1 . . . κ(p − 1) + in

)

with the obvious meaning that the elements in κpr supp(dp(α)) are �xed.

We 
ontinue to take the embeddings using homogeneous p-spreadings with

respe
t to the given sequen
e of primes in ξ. From the given sequen
e of embed-

dings, we have dire
t systems and hen
e dire
t limit groups FSym(κ)(ξ) and

Alt(κ)(ξ) respe
tively. Observe that FSym(κ)(ξ) and Alt(κ)(ξ) are subgroups

of Sym(κω) where ω is the �rst in�nite ordinal.

Let F be a �nite subgroup of FSym(κ)(ξ) ≤ Sym(κω). Then F a
ts on κω.
The type of F is de�ned by t(F ) = ((nj1 , r1), (nj2 , r2), . . . , (njk , rk)) where nji

is the smallest positive integer in whi
h F has an orbit Ωi on the set with κnji

elements and there are ri orbits giving equivalent representations of F and nji 's
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are not ne
essarily distin
t. We say that the ith representation of F appears and

appears as ri times in FSym(κnji). For the 
entralizer of an arbitrary �nite

subgroup F of FSym(κ)(ξ), we prove the following.

Theorem 4.1. (Güven, Kegel, Kuzu
uo§lu [2℄) Let ξ be an in�nite sequen
e of

not ne
essarily distin
t primes. Let F be a �nite subgroup of FSym(κ)(ξ) and

Γ1, . . . ,Γk be the set of orbits of F su
h that the a
tion of F on any two orbits

in Γi is equivalent. Let the type of F be t(F ) = ((nj1 , r1), (nj2 , r2), . . . , (njk , rk)).
Then

CFSym(κ)(ξ)(F ) ∼=
k

(Dr
i=1

CSym(Ωi)(F )(CSym(Ωi)(F )̄≀ S(ξi))× FSym(κ)(ξ′)

where Char(ξi) =
Char(ξ)

nji

ri and Char(ξ′) = Char(ξ)
nj1

and Ωi is a representative

of an orbit in the equivalen
e 
lass Γi for i = 1, . . . , k.

The following theorem gives the 
hara
terization of the groups FSym(κ)(ξ)
in terms of the latti
e of Steinitz numbers. Therefore for any given in�nite 
ar-

dinal κ, there exists un
ountably many pairwise non-isomorphi
 lo
ally �nite

simple groups.

Theorem 4.2. Let κ be a �xed in�nite 
ardinal. There is a latti
e isomorphism

between the latti
e of groups Σ = {FSym(κ)(ξ) | ξ ∈ Π } ordered with respe
t

to being a subgroup and the latti
e S of Steinitz numbers ordered with respe
t to

division in Steinitz numbers.
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