Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932
Note Mat. 34 (2014) no. 1, 105-114. do0i:10.1285/i15900932v34n1p105

Centralizers in Hall’s universal and direct
limits of finitary symmetric groups

O. H. Kegel

Mathematisches Institut Albert Ludwigs Universitat Eckerstr 1
79104 Freiburg, Germany.
otto.h.kegel@math.uni-freiburg.de

M. Kuzucuoglu
Department of Mathematics
Middle East Technical University
06531, Ankara, Turkey.
matmah@metu.edu.tr

Abstract. We study the centralizers of finite subgroups in Hall’s universal group.

We describe the structure of the centralizers of arbitrary finite subgroups in the groups S(&)
and FSym(k)(§) where S(£)’s are obtained as direct limits of finite symmetric groups and
FSym(k)(€)’s are obtained as direct limits of finitary symmetric groups on the set of infinite
cardinality k.
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1 Introduction

A locally finite group U satisfying,
(i) Every finite group can be embedded into U,
(ii) Any two isomorphic finite subgroups of U are conjugate in U

is called a universal locally finite group.

Philip Hall in [3] constructed the first example of universal locally finite group
of countably infinite order. A countable group satisfying these two properties is
called Hall’s universal group, as Hall proved that such a countable locally finite
group is unique up to isomorphism. But if we allow that the cardinality of the
group could be of arbitrary, uncountable cardinal x, then A. Macintyre and S.
Shelah proved in [20] that, there are 2" pairwise non-isomorphic universal locally
finite groups of cardinality «.

The structure of Hall’s universal group has been studied in the past from
different points of view. Hall’s universal group is countable and existentially
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closed in the class of locally finite groups such properties are surveyed by Leinen
in [12]. Not only the direct limits of finite groups but also the direct limits of
finite dimensional algebras and lie algebras are discussed in a very clear and
detailed way by A. Zalesskii in [21].

The generalization of the universal locally finite groups was due to K. Hickin
in [7]. Let A be a periodic abelian group. A group G is called a universal locally
finite central extension of A provided that the following conditions are satisfied.

(i) A < Z(G) (the centre of G)

(ii) G is locally finite

(iii) (A-injectivity). Suppose that A < B < D with A < Z(D), that D/A is
finite and that ¢ : B — G is an A-isomorphism (that is ¢(a) = a for all a € A).
Then there exists an extension ¥ : D — G of ¢ to an isomorphism of D into G.

Let ULF(A) denote the class of all groups G satisfying (i)-(iii). The countable
universal locally finite group of Hall is in ULF(1). By [7, Theorem 1] if G €
ULF(A), then A = Z(G) and G/A is simple.

Although U is a direct limit of finite simple groups, if for some prime p, the
group Zy X Zp X Ly, < A, then G/A is not a direct limit of finite simple subgroups.
Therefore one may construct uncountably many pairwise non-isomorphic simple
countably infinite locally finite groups by this method; see |7, Corollary 1]. Uni-
versal locally finite central extensions of A has numerous interesting structural
properties but we will say no more than consulting the paper of Hickin; [7] see
also; [18] and [10].

2 Hall’s universal group

Hall constructed his group as a union of a tower of finite symmetric groups;

Gi <G <

where (71 is a symmetric group of order greater than 2 and if G,, is given, then
G+ is the symmetric group on G, and G, is embedded into G,1 by right
regular representation. One can see easily that in the regular representation
of G; into Gjyt1, actually all the permutations in the image of the elements
of G; in G341 will be an even permutation. Hence we embed G; into Alt(G;).
So in fact, U is a direct limit of finite simple alternating groups. Then the
question of whether Hall’s universal group can be written as a direct limit of
other families of finite simple groups is answered by F. Leinen in [11]. He proved
that Hall’s universal group can be constructed as a direct limit of simple linear
groups {PSL(n;,Fy) }, {PSU(n;,Fy) }, {PSp(2ni,Fy) }, {PQT(2n;, Fy) 1,
{PQ(2n; +1,F,) }, {PQ™(2n; +2,F,) }.
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It is natural to ask whether U can be expressed as a union (direct limit) of
the infinite simple locally finite groups PSL(n;,Fp), where F,, is the algebraic
closure of the field F), with p elements. It is proved in |16, Theorem 1] that the
answer is positive.

Theorem 2.1. (Kuzucuoglu-Zaleskii) Let p be any ﬁa@d prime. The Hall’s uni-

versal group is a direct limit of some groups PSL(n;,Fp), i =1,2,... such that
all the sequent embeddings are rational maps (morphisms of algebraic groups).

Theorem 2.1 shows, among other things, that the characteristic of the ground
field is not an invariant of a direct limit of algebraic groups. In fact, one can
prove a slightly more general result [16, Theorem 2].

Theorem 2.2. (Kuzucuoglu-Zaleskii) Let F be a finite or an infinite locally finite
field of characteristic p and G,, be one of the classical simple groups of rank n
over F. Then any infinite sequence of the groups G, contains a subsequence
Gn;,t = 1,2,... such that the Hall’s universal group U is a union of subgroups
H;, where H; C Hiy1, H; = Gy, and the embeddings G, — Gy, induced by
the inclusions H; C H;t1 extend to rational embeddings (morphisms) of algebraic
groups (over F,) associated with the groups Gy, .

To have Theorem 2.1, one should take F,, for F' and G,, = PSL(n,F,).

One of the main characteristic of the universal locally finite groups which can
be obtained from the properties (i) and (ii) is the following: If A is a subgroup
of the finite group B, then every embedding of A into U can be extended to an
embedding of B into U [13, Theorem 6.1 (b)]. It follows from this property that,
as every countable locally finite group can be written as a union of an increasing
sequence of finite groups, every countable locally finite group has an isomorphic
copy in U. In particular, a copy of every simple countable locally finite group is
contained in U.

Hall’s universal group U satisfies the following properties for which some of
them are quite unusual; for the proofs see [13, Chapter 6].

Proposition 2.3.

(a) Let C,, denote the set of all elements of order m > 1 of U. Then Cy, is
a single class of conjugate elements and U = Cp,Cp,. In particular U is
simple.

The automorphism « of the group G is called locally inner if for every
finite set F' of elements of G there is an element g = gr of G such that
f* = f9 for every element f € F.
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(b) If G is any locally finite universal group, then every automorphism of G
1s locally inner. In particular, the automorphism group of Hall’s universal
group satisfies | Aut(U)| = 280,

(c¢) If G is any universal locally finite group and H is any countably infinite
locally finite group, then there exist at least 280 distinct subgroups of G
isomorphic to H.

(d) Every infinite locally finite group G can be embedded into a universal locally
finite group of cardinality |G|. In particular there exist universal locally
finite groups of arbitrary infinite cardinal.

Perhaps, one of the most striking one, in contrast to Sylow theory for finite
groups was discovered by Hickin who proved in [7, Theorem 4] that, for every
prime p, every countably infinite locally finite p-group can be embedded into
U as a maximal p-subgroup. Therefore there are uncountably many pairwise
non-isomorphic maximal p-subgroups in U.

Could it be possible to have a maximal p-subgroup in U which is a maximal
subgroup of U? M. D. Molle in [17] shows that the answer is positive.

Theorem 2.4. The countable universal locally finite group U contains, for each
prime p, a mazrimal subgroup that is a p-group.

One may ask whether U can be written as a direct limit of infinite simple
finitary alternating groups? The answer is negative; see [16].

Theorem 2.5. The Hall’s universal group is not a direct limit of infinite finitary
alternating groups.

About the centralizers of elements (subgroups) in Hall’s universal group, the
following results were announced by Hartley in |6, Proposition 1.8|.

Proposition 2.6.

(a) If F is a finite subgroup of U with trivial center, then Cy(F) is isomorphic
to U.

(b) If F is a subgroup of U of prime order and M 1is a subgroup of U with
Cy(F) <M < U, then M < Ny(F) is a mazimal subgroup of U.

(c) If A is a finite abelian subgroup of U, then Cy(A)/A is an infinite simple
group.
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For the centralizers of subgroups in algebraically closed groups see; (8] and
[9, Chapter 2].

As Hall’s universal group is a union of increasing sequence of finite symimetric
groups, every finite subgroup F of U is contained in one of the symmetric groups
and the ones containing it. The structure of centralizers of subgroups in finite
symmetric groups is well known; see |1, Chapter 4] and [19, Chapter 6].

Is it possible to find the structure of centralizers of finite subgroups in U by
using basic group theory?

One may use the well known information about the centralizers of finite
subgroups in symmetric groups to answer the above question. For this we spell
out some of the salient facts.

Let F' be a subgroup of the symmetric group Sym(2) where €2 is a finite
set. Then Cgyp, ) (F) acts on the set of orbits X of I on 2. One may define
a relation on X: If Ay and Ay in 3, then Ay ~ As if and only if Ay and A,
are permutationally isomorphic F-sets. i.e. there exists a bijection ¥ : A1 — As
such that, for any 0 € Ay and h € F we have 9(8.h) = 9(9).h

Clearly this defines an equivalence relation on . If ¥ is a bijection on the
isomorphic orbits A; and Ag, then YUY~ : AjUAy — AjUA, and acting trivi-
ally on 2\ (A1 U Agz) defines an element in Cigy () (F'). Therefore Cgyp ) (F)
acts transitively on the isomorphic orbits. If Cy, Co,...,C, are the equivalence
classes of orbits of F' on €2, then

CSym(Q) (F) 22714 CSym(Fi)(F> { Sym(nl)

where I'; is a representative of an orbit of F' in C; and n; is the number of orbits
in the class C;.

Proposition 2.7. Let F be a finite subgroup of the Hall’s universal group U
[o.¢]

and I' be an orbit of F in U. Then Cy(F) =J C; where C; = Cgq,(F) =
i=1

Csymm)(F) 1 Sym(k;), ki = ||T;|‘ and G; = Sym(n;).

Proof. Let F be a finite subgroup of U. Then there exists ¢ € N such that

F < Gi—1 = Sym(n;—1) where G;_; is acting on a set with n;_; elements and

n; = (nj—1)! . Then by assumption F' has an orbit " on the set with n; elements.

Since F' acts by the right regular representation, the orbits of F are all isomorphic

F-sets namely left cosets of F'in G;_1. We may write Cy(F) =J Csym(a,)(F)-
i=1

Then by the above observation for all j > ¢, we have

Csym(G,)(F) = Csymr)(F[r) 1 Sym(k;)

n

e
where k; = -
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QED

Corollary 2.8. Let F' be a finite subgroup of the Hall’s universal group U and
[ be an orbit of ' in U with Cgyp,ry(F) = 1. Then Cy(F) = U.

Proof. By Proposition 2.7 we have Cy(F) = |J;2, C; where C; = Cgypyry (F) 2
Sym(k;). Since each Cgypyry(F) = 1 we have C; = Sym(k;). Moreover, C; is
embedded into C;11 by right regular representation and k;’s is an increasing
sequence of integers. Now it is clear that every finite group can be embedded
into Cy(F') as it is the union of increasing sequence of finite symmetric groups.
Let A and B be two finite isomorphic subgroups of Cy/(F'). Then A and B are
contained in C; for some 4. Since C; is embedded into C;iq by right regular
representation (probably it has more than one orbit), then by [13, Lemma 6.3]
A and B are conjugate in Cjy1. Hence by definition of universal group and
uniqueness of U we have Cy(F) = U. QED

There are infinitely many subgroups satisfying Cgy,,r)(F') = 1. For example
one may take an element a of maximum cycle length n, an odd integer, in
the symmetric group and a permutation S of order 2 which inverts o and let
F = {a, 8). Then CgypryF = 1.

3 Centralizers of finite subgroups in groups of type
S(€)

Recall that direct limit of the groups G1,Go, . ..,G,, ... with the embeddings
vij + G; — G where ¢ < j depends not only the groups G; but also the
embedding ;;’s, see [15, §7.]. Observe that, one can obtain the additive group
of rational numbers as a direct limit of infinite cyclic groups G,, = <%> and also
the dyadic rational numbers as a direct limit of infinite cyclic groups K,, = <2in>
Clearly dyadic rational numbers are not isomorphic to the additive group of
rational numbers. In this sense we may construct non-isomorphic groups by
using different embeddings of finite symmetric groups.

Let a € Sym(n). For a natural number p € N, a permutation dP(a) €
Sym(pn) defined by (kn+3)¥(® =kn+i* 0<k<(p—1) and 1<i<n
is called a homogenous p-spreading of the permutation c.

Let £ be an infinite sequence of not-necessarily distinct primes. By using
homogenous p;-spreadings as embeddings in the following diagram where p; is
the ¥ prime in the sequence ¢ we have the following direct systems

{1} gl Sym(nq) gl Sym(ng) g Sym(ng) o
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and

dr

dr2
{1} = An, = An,

4,5
where n; = n;_1p;, i =1,2,3... and Sym(n;) is the symmetric group on n;
letters, A,, is the alternating group on n; letters and ng = 1. The direct limit
groups obtained from the above direct systems are denoted by S(§) and A(§),
respectively. Observe that S(§) < Sym(N).

Recall that the formal product n = 2™3™5" ... of prime powers with 0 <
ri, < oo for all primes k is called a Steinitz number (supernatural number).

Characterization of the groups S(§) using Steinitz numbers is done by
Kroshko-Sushchansky in [14]. They proved that there are uncountably many
pairwise non-isomorphic simple locally finite groups of type S(§). Now we de-
scribe the structure of the centralizers of arbitrary finite subgroups in S(§).

Let F' be a finite subgroup of S(§) < Sym(N). Then F' acts on N. The
type of F'is defined by t(F) = ((nj,,r1), (njy,72), ..., (1, 7)) where n;, is the
smallest positive integer in which F' has an orbit €2; on the set with n;; elements
and there are r; orbits giving equivalent actions of F' and nj,’s are not necessarily
distinct. We say that the i** representation of F appears and appears as ; times
in Sym(n;,). For the centralizer of an arbitrary finite subgroup F of S(§), we
prove the following.

Theorem 3.1. (Given, Kegel, Kuzucuoglu [2]) Let F be a finite subgroup of
the infinite group S(§) and T'y,..., Ty be the set of orbits of F such that the
action of F' on any two orbits in T'; is equivalent. Let the type of F be t(F) =

((n‘j177ﬂ1>,(n‘j2,7’2),...7(’)’ij”)“’€>)_ Then
k —
Cs(e)(F) = Dr (Csym(a,) (Fla:) (Coymian) (Flo)t S(6)))

where Char(&;) = %’q(@n and ; is a representative of an orbit in the equival-

ence class T'; fori=1,... k.

By Proposition 2.3 (c¢) Hall’s universal group U contains an isomorphic copy
of S(§) and when Char(§) = I1 2°°3°°5% ... the group S(&) contains isomorphic
copy of U; see |6, Proposition 1.17]. But they are non-isomorphic as the structure
of centralizers of elements are non-isomorphic; see |2].

For the direct limits of finite alternating groups, the following proposition is
of interest.

Proposition 3.2. (Hartley [6, Proposition 1.22]) Let G be the union of a tower
of alternating groups, G1 < Ga < G3... and the sequence t; > 2 for infinitely
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many i where t; is the natural representation of G;—1 repeated t; times diagonally
as above. Then the direct limit group G is not isomorphic to Alt(N).

One can see from [14], that if we take the prime decomposition of the sequence
(t1,t2,...,t;,...), then the above group G will be isomorphic to A(§) where & is
the sequence obtained from ¢;.

One may use our results about the structure of the centralizers of elements or
centralizers of subgroups in S(£) to decide easily that, such direct limit groups
cannot be isomorphic to Alt(N), as the structure of the centralizers of elements
are completely different in direct limit group S(&) and Alt(N); see [2].

4  Centralizers of finite subgroups in FSym(x)(¢)

By using similar technique as in [14]|, we may construct uncountably many
simple locally finite groups for any infinite cardinal k. Let F'Sym(x) denote the
finitary symmetric group and Alt(x) denote the alternating group on the set .
Let IT be the set of sequences of prime numbers and £ € II. Then £ is a sequence
of not necessarily distinct primes.

Let a € FSym(k), respectively (Alt(x)). For a natural number p € N, a
permutation dP(a) € FSym(kp) defined by (ks + i)¥ (@) = ks +i% i€ w
and 0 < s < p — 1 is called homogeneous p-spreading of the permutation
a. We divide the ordinal xp into p equal parts and on each part we repeat the
permutation diagonally as in the finite case. So if

o= <zl n) € FSym(k),
1..

n

then the homogeneous p—spreading of the permutation « is

k+1 K+ n

D _ 1 n
(o) = ( fra et

i1 . in

‘ k(p—1)+1 k(p—1)+n )
r(p—1)+ 11 k(p—1)+in

with the obvious meaning that the elements in xkp \ supp(dP(«)) are fixed.

We continue to take the embeddings using homogeneous p-spreadings with
respect to the given sequence of primes in £. From the given sequence of embed-
dings, we have direct systems and hence direct limit groups F.Sym(k)(£) and
Alt(k)(€) respectively. Observe that F'Sym(k)(§) and Alt(k)(§) are subgroups
of Sym(kw) where w is the first infinite ordinal.

Let F' be a finite subgroup of FSym(k)(§) < Sym(kw). Then F acts on kw.
The type of F' is defined by t(F) = ((nj,,71), (njy,72), - - ., (., 7%)) Where ny;
is the smallest positive integer in which F' has an orbit €2; on the set with xnj,
elements and there are r; orbits giving equivalent representations of F' and n;,’s
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are not necessarily distinct. We say that the i*" representation of F appears and
appears as 7; times in F'Sym(kn;,). For the centralizer of an arbitrary finite
subgroup F' of F'Sym(k)(§), we prove the following.

Theorem 4.1. (Given, Kegel, Kuzucuoglu [2]) Let £ be an infinite sequence of
not necessarily distinct primes. Let F' be a finite subgroup of FSym(k)(§) and
I'y,..., g be the set of orbits of F' such that the action of F' on any two orbits
in I'; is equivalent. Let the type of F' be t(F) = ((nj,,71), (Njy,72)5 -5 (M, Tk))-
Then

k

Crsyme)(e)(F) = (1:)17’ Csym(e) (F)(Csyma) (F)L S(&)) x FSym(k)(£')

where Char(é‘l) = C’har({)ri and Char(é-/) = Ch#.r({) and Qz 1S @ representative
1

of an orbit in the equivalence class I'; fori=1,... k.

The following theorem gives the characterization of the groups F.Sym(k)(§)
in terms of the lattice of Steinitz numbers. Therefore for any given infinite car-
dinal k, there exists uncountably many pairwise non-isomorphic locally finite
simple groups.

Theorem 4.2. Let k be a fized infinite cardinal. There is a lattice isomorphism
between the lattice of groups ¥ = {FSym(r)(§) | £ € II } ordered with respect
to being a subgroup and the lattice S of Steinitz numbers ordered with respect to
division in Steinitz numbers.
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