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1 Introdu
tion

Let G denote an arbitrary group. If S is a subset of G, we de�ne its square

S2
by

S2 = {x1x2 | x1, x2 ∈ S}.

If G is an additive group, we denote by

2S = {x1 + x2 | x1, x2 ∈ S}

the sumset of S.
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We are 
on
erned with the following general problem: let S be a �nite subset

with k elements of a group G, determine the stru
ture of S if

|S2| ≤ f(k)

for some fun
tion f .
Problems of this kind are 
alled inverse problems.

In parti
ular, we shall 
onsider problems of the following type: determine the

stru
ture of S, if |S2| satis�es the following inequality:

|S2| ≤ α|S|+ β

for some small α ≥ 1 and small |β|.
Su
h problems are 
alled inverse problems of small doubling type.

Inverse problems of small doubling type have been �rst investigated by G.

A. Freiman in the additive group of the integers.

It is easy to prove that if S is a �nite subset of Z with k elements, then

|2k − 1| ≤ |2S| ≤ k(k + 1)/2.

Moreover |2S| = 2k − 1 if and only if S is an arithmeti
 progression of size

k.

In the paper [4℄ G.A. Freiman proved the following theorem:

Theorem 1.1. Let S be a �nite set of integers with k ≥ 3 elements and suppose

that

|2S| ≤ 2k − 1 + b,

where 0 ≤ b ≤ k − 3. Then S is 
ontained in an arithmeti
 progression of size

k + b and di�eren
e q,

P = {a, a+ q, a+ 2q, · · · , a+ (k + b− 1)q},

where a, q are integers with q > 0.
In parti
ular, if

|2S| ≤ 3k − 4,

then S is 
ontained in an arithmeti
 progression of size 2k − 3,

P = {a, a+ q, a+ 2q, · · · , a+ (2k − 4)q}.
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This theorem was the beginning of the "Freiman's stru
tural theory of set

addition", the foundations for whi
h were led in Freiman's book "Foundations

of a stru
tural theory of set addition" (see [6℄ and also [20℄).

In [4℄ and in [5℄ Freiman studied also the 
ase |2S| ≤ 3|S| − 3 and |2S| ≤
3|S| − 2. If X is a subset of an abelian semigroup G and Y is a subset of an

abelian semigroup G1, a bije
tion ϕ : X −→ Y is 
alled a Freiman isomorphism

if for any a, b, c, d ∈ X, a + b = c + d if and only if ϕ(a) + ϕ(b) = ϕ(c) + ϕ(d).
X is Freiman isomorphi
 to Y if there exists a Freiman isomorphism between X
and Y .

Freiman proved the following result:

Theorem 1.2. Let S be a �nite set of integers with k ≥ 2 elements and suppose

that

|2S| = 3k − 3.

Then one of the following holds:

(i) S is a subset of an arithmeti
 progression of size at most 2k − 1;
(ii) S is a bi-arithmeti
 progression;

(iii) |S| = 6 and S is Freiman isomorphi
 to the set K6, where

K6 = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

Here, a set of the integers S = I ∪ J is 
alled a bi-arithmeti
 progression

of length k, with di�eren
e d, if both I and J are arithmeti
 progressions of

di�eren
e d, |I|+ |J | = k, and I + I, I + J, J + J are pairwise disjoint.

In [6℄ Freiman investigated also the exa
t stru
ture of subsets of the additive

group Z
d
, for a positive integer d. A 
omplete des
ription of a subset S of the

additive group Z2
with |S| ≥ 4 and |2S| < 4|S| − 6 is due to Y.V. Stan
hes
u in

[24℄. A best possible result for the group Z
d
and doubling 
oe�
ient d + 4

3 has

been re
ently obtained in [26℄.

By now, Freiman's theory had been extended tremendously, in many di�erent

dire
tion, see for example [1℄, [3℄, [7℄, [9℄, [11℄, [14℄, [15℄, [16℄, [17℄, [18℄, [23℄, [24℄,

[25℄, [26℄, the re
ent survey by T. Sanders [22℄ and the referen
es 
ontained

therein.

In the paper [8℄, we studied small doubling problems for subsets of an ordered

group. We re
all that if G is a group and ≤ is a total order relation de�ned on

the set G, we say that (G,≤) is an ordered group if for all a, b, x, y ∈ G, the
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inequality a ≤ b implies that xay ≤ xby, and a group G is orderable if there

exists an order ≤ on G su
h that (G,≤) is an ordered group. Obviously the

group of integers with the usual ordering is an ordered group. More generally,

it is possible to prove that an abelian group is orderable if and only if it is

torsion-free (see, for example [2℄ or [13℄).

Extending Freiman's results, we proved in [8℄ the following theorems.

Theorem 1.3. Let (G,≤) be an ordered group and let S = {x1, x2, · · · , xk} be

a �nite subset of G of size k ≥ 3, with x1 < x2 · · · < xk. Assume that

t = |S2| ≤ 3k − 4.

Then 〈S〉 is abelian.

Moreover, there exists g ∈ G, g > 1, su
h that gx1 = x1g and S is a subset of

{x1, x1g, x1g2, · · · , x1gt−k}.

Theorem 1.4. Let (G,≤) be an ordered group and let S = {x1, x2, · · · , xk} be

a �nite subset of G of size k ≥ 3, with x1 < x2 · · · < xk. Assume that

t = |S2| ≤ 3k − 3.

Then 〈S〉 is abelian.

Using results of Freiman and Stan
hes
u, the following theorem 
an be de-

du
ed from Theorem 1 of [10℄.

Theorem 1.5. Let (G,≤) be an ordered group and let S = {x1, x2, · · · , xk} be

a �nite subset of G of size k ≥ 3, with x1 < x2 · · · < xk. Assume that

t = |S2| ≤ 3k − 3.

Then 〈S〉 is abelian and one of the following holds:

(i) S is a subset of a geometri
 progression {a, ac, · · · , ac2k−1};

(ii) S is a bi-geometri
 progression, i.e. S = {a, ac, · · · aci−1} ∪{b, bc, · · · , bcj−1};

(iii) k = 6 and S = {1, c, c2, b, b2, bc}.
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The aim of this paper is to investigate inverse small doubling problems in

torsion-free nilpotent groups.

By a result of A.I. Mal'
ev and B.H. Neumann, any torsion-free nilpotent

group is orderable (see [19℄ or [21℄). Thus the previous results apply to these

groups.

The remainder of the paper is organized as follows.

First, in Se
tion 2, we report some useful results from [12℄ and [8℄.

In Se
tion 3, we investigate the stru
ture of subsets S of order k of a torsion-

free nilpotent group, with |S2| ≤ 3k − 2. We study here the 
ase k = 3, and
we report from [12℄ results 
on
erning the 
ase k ≥ 4. Noti
e that, by a result

in [10℄, if S is a subset of a nilpotent torsion-free group, of order bigger that 3,

with |S2| ≤ 3|S| − 2, then 〈S〉 is nilpotent of 
lass at most 2. Thus the problem

redu
es to the 
ase when G is nilpotent of 
lass at most 2.

In Se
tion 4 we report results from [12℄, 
on
erning the stru
ture of subsets

S of size k of torsion-free nilpotent groups of 
lass at most 2, whi
h satisfy k > 4
and |S2| = 3k − 1. In [12℄ the 
ase k = 4 was left open. Here we 
omplete the

result of [12℄ by proving the following theorem.

Theorem 1.6. Let G be an ordered nilpotent group of 
lass 2 and let S be a

subset of G of size k = 4 with 〈S〉 non-abelian. Then |S2| = 3k − 1 = 11 if and

only if one of the following statements holds:

(i) There exist s, t ∈ S ∩ Z(〈S〉), s 6= t;

(ii) S = {a, ac, b, bc, }, with ab = bac2 ;

(iii) S = {a, ac2, b, bc}, with ab = bac ;

(iv) S = {a, ac, ac2, b}, with ab = bac2;

(v) S = {a, ac, b, x}, with ab = bac, ax = xa, bx = xb;

(vi) S = {a, ac, ac2, x}, with ac = ca and there exists exa
tly one i ∈ {0, 1, 2}
su
h that acix = xaci;

(vii) S = {a, ac, b, x}, with c > 1 and either bx = a2, ab = bac, xb = bxc2

and xa = axc, or xb = a2, ba = abc, ax = xac and bx = xbc2.
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2 Some general results.

We start by quoting two useful results.

Proposition 2.1. Let (G,≤) be an ordered nilpotent group of 
lass 2 and let S
be a subset of G satisfying:

S = {x1, · · · , xk}, x1 < x2 < · · · < xk.

Write T = {x1, · · · , xk−1}. If

xkxk−1 6= xk−1xk,

then

|T 2| ≤ |S2| − 4.

Proof. See [12℄, Lemma 2.1.

QED

Proposition 2.2. Let (G,≤) be an ordered group and let T be a �nite subset of

G of size m. If b ∈ Gr CG(T ), then

|bT ∪ Tb| ≥ m+ 1 .

Proof. See [8℄, Proposition 2.3.

QED

If G is a torsion-free nilpotent group of 
lass 2, then the following result,


on
erning the stru
ture of T , holds.

Proposition 2.3. Let G be a torsion-free nilpotent group of 
lass 2 and let T
be a subset of G of size m. Moreover, let b ∈ G satisfy the following 
onditions:

bt 6= tb for all t ∈ T and |bT ∪ Tb| = m+ 1. Then T = {a, ac, · · · , acm−1}, with
ba = abc (in parti
ular c ∈ Z(G) and 〈T 〉 is abelian).

Proof. See [12℄, Proposition 2.5.

QED
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3 Subsets S with |S2| ≤ 3|S| − 2.

Let G be a nilpotent torsion-free group. Then, by results of A.I. Mal'
ev and

B.H. Neumann (see [19℄ and [21℄) , G is orderable.

Let S be a �nite subset of G with k elements, and suppose that |S2| ≤ 3k−2.
If k = 2, then |S2| = 4 = 3k − 2 if and only if 〈S〉 is non-abelian. Hen
e we

may assume that k ≥ 3.
In this paper we deal with the 
ase k = 3. In this 
ase the following propos-

ition holds.

Proposition 3.1. Let (G,≤) be a nilpotent ordered group, and let S ⊆ G with

|S| = 3. Then |S2| ≤ 7 if and only if one of the following holds:

(i) S ∩ Z(〈S〉) 6= ∅;

(ii) S = {a, ac, b}, with c > 1, ac = ca and either ab = bac or ba = cab.

Proof. Write S = {x1, x2, x3} with x1 < x2 < x3 and suppose that |S2| ≤ 7.
Moreover, let T = {x1, x2}. It su�
es to prove that if S ∩ Z(〈S〉) = ∅, then (ii)

holds.

So suppose that S ∩Z(〈S〉) = ∅. If |S2| ≤ 6, then 〈S〉 is abelian by Theorem

1.4, a 
ontradi
tion. Hen
e |S2| = 7. Moreover, we must have either x1x2 6= x2x1
or x2x3 6= x3x2.

Suppose, �rst, that x2x3 6= x3x2. We must 
onsider the 
ases: x1x2 6= x2x1
and x1x2 = x2x1.

If

x1x2 6= x2x1

then |T 2| = 4 and it follows from the ordering in S that x2x3, x3x2, x
2
3 /∈ T .

Sin
e x2x3 6= x3x2, the elements x2x3, x3x2, x
2
3 are also distin
t from ea
h other

and it follows that

S2 = T 2∪̇{x2x3, x3x2, x23}.
Consider x1x3, x3x1, and assume, without loss of generality, that x1x3 ≤

x3x1. Then x1x3 < x3x2, x2x3, x
2
3, implying that x1x3 ∈ T 2

. Hen
e either x1x3 =
x22 or x1x3 = x2x1.

If x1x3 = x3x1 and x1x3 = x22, then (x22)
x1 = x3x1 = x1x3 = x22 and

(x2)
x1 = x2, a 
ontradi
tion.

If, on the other hand, x1x3 = x3x1 and x1x3 = x2x1, then (x3)
x1 = x3 =

x2
x1
, again a 
ontradi
tion. Hen
e x1x3 < x3x1.
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Moreover, either x3x1 ∈ T 2
or x3x1 = x2x3 and x1x3 ∈ T 2

.

If x3x1 ∈ T 2
, then the only possibility is that x3x1 = x22 and x1x3 = x2x1.

In this 
ase

〈x1, x2, x3〉 = 〈x3, xx1
3 〉 = 〈x3〉〈x1, x2, x3〉′ = 〈x3〉Frat(〈x1, x2, x3〉)

sin
e in a nilpotent group the derived subgroup is 
ontained in the Frattini

subgroup. Therefore 〈x1, x2, x3〉 = 〈x3〉 is abelian, a 
ontradi
tion.

Now suppose that x3x1 = x2x3 and x1x3 ∈ T 2
. In this 
ase, we must have

either x1x3 = x22 or x1x3 = x2x1. If x1x3 = x22, we get as before the 
ontra-

di
tion 〈x1, x2, x3〉 = 〈x2, xx3
2 〉 = 〈x2〉, while if x1x3 = x2x1, then 〈x1, x2, x3〉 =

〈x2, xx3
2 , x

x1
2 〉 = 〈x2〉, again a 
ontradi
tion.

So we may assume

x1x2 = x2x1.

In this 
ase x2x3, x3x2, x1x3, x3x1, x
2
3 /∈ 〈x1, x2〉, sin
e otherwise we get the


ontradi
tion x3x2 = x2x3. Therefore the elements x21, x1x2, x
2
2, x1x3, x2x3, x

2
3

are all di�erent. Sin
e |S2| = 7 and x2x3 6= x3x2, we must have either x2x3 =
x3x1 or x3x2 = x1x3. Thus, if we denote x1 = a, x2 = ac, x3 = b , then (ii) holds,

as required.

Similarly, if instead of x2x3 6= x3x2 we assume that x1x2 6= x2x1, then we

may also assume that x2x3 = x3x2 and we get the result by 
onsidering the

order opposite to ≤.

Conversely, if S = {a, b, c}, with ab = ba and ac = ca, then

S2 = {a2, b2, c2, ab, ac, bc, cb}
has order at most 7. If S = {a, ac, b}, with ac = ca and, for example, ab = bac,
then

S2 = {a2, a2c, a2c2, ab, acb, ba, b2}
and again |S2| ≤ 7.

QED

Now let S be a �nite subset with k elements of a nilpotent ordered group,

with k ≥ 4 and assume that |S2| ≤ 3k − 2. Then, by Theorem 2 of [10℄, 〈S〉 is

nilpotent of 
lass 2 at most.

If 〈S〉 is abelian, then by [10℄, either |S| = 4 and in this 
ase the size of S2
is

always at most 10, or S is Freiman isomorphi
 to a subset of Z and the stru
ture

of S 
an be des
ribed using Freiman's results in [4℄ , or S is Freiman isomorphi


to a subset of Z
2
. In the latter 
ase, the stru
ture of S 
an be des
ribed using

results of Freiman and of Stan
hes
u (see [4℄ and [24℄).

If 〈S〉 is nilpotent of 
lass exa
tly 2, then the stru
ture of S follows from the

following theorem.
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Theorem 3.2. Let G be a torsion-free nilpotent group of 
lass 2 and let S ⊆ G
be non-abelian and of order k ≥ 4. Then |S2| = 3k − 2 if and only if

S = {a, ac, · · · , aci, b, bc, bc2, · · · , bcj},

with 1 + i+ 1 + j = k and ab = bac.

Proof. Suppose that S = {a, ac, · · · , aci, b, bc, bc2, · · · , bcj}, with 1+i+1+j = k
and ab = bac. Write A = {a, ac, · · · , aci}, B = {b, bc, · · · , bcj}. Then we have:

S = A∪̇B, S2 = A2∪̇B2∪̇(AB ∪ BA), AB ∪ BA = {ba, bac, · · · , baci+j+1},
|A2| = 2(i + 1) − 1, |B2| = 2(j + 1) − 1, |AB ∪ BA| = i + j + 2 and |S2| =
2i+ 2j + 2 + i+ j + 2 = 3k − 2, as required.

For the 
onverse see the proof of Theorem 2 in [12℄.

QED

4 Subsets S with |S2| ≤ 3|S| − 1.

Let S be a subset of a torsion-free nilpotent group G with |S| = k and

|S2| ≤ 3k− 1. Let ≤ be an order in G su
h that (G,≤) is an ordered group. By

Theorem 3 of [10℄, if k ≥ 8, then 〈S〉 is nilpotent of 
lass at most 2. Therefore,
we �rst studied the 
ase when G is nilpotent of 
lass 2.

Suppose that S is a subset of a torsion-free nilpotent group G of 
lass 2, with
|S| = k and |S2| ≤ 3k − 1. In [12℄ we proved the following result.

Theorem 4.1. Let G be an ordered nilpotent group of 
lass 2 and let S be a

subset of G of size k ≥ 5, with 〈S〉 non-abelian. Then |S2| = 3k − 1 if and only

if one of the following holds:

(i)

S = {a, ac, · · · , aci−1, b, bc, · · · , bcj−1},
with ab = bac2 and i+ j = k;

(ii)

S = {a, ac2, b, bc, · · · , bcj}, j ≥ 2.

with ab = bac.

If |S| = 3, it is easy to show that |S2| ≤ 8 if and only if S = {x, y, z}, with
either xy = yx or xy = z2.

In this se
tion we prove Theorem 1.6, 
on
erning the stru
ture of a subset

S satisfying |S| = 4 and |S2| ≤ 11. Thus the des
ription of the stru
ture of S,
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if S is a subset of size k ≥ 2 of a torsion-free nilpotent group of 
lass 2 with

|S2| ≤ 3k − 1, is 
omplete.

It is still an open problem to des
ribe S, if S is a subset of any torsion-free

nilpotent group with |S| ≤ 7 and |S2| = 3k − 1.

In order to prove Theorem 1.6, we start with the following Lemmas.

Lemma 4.2. Let G be an ordered nilpotent group of 
lass 2 and let S be a subset

of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Suppose that S = T ∪ {b},
with 〈T 〉 abelian. Then one of the following holds:

(i) There exist s, t ∈ S ∩ Z(〈S〉), s 6= t;

(ii) S = {a, ac, ac2, b}, with ab = bac2;

(iii) S = {a, ac, b, x}, with ab = bac, ax = xa, bx = xb;

(iv) S = {a, ac, ac2, x},

with ac = ca and there exists exa
tly one i ∈ {0, 1, 2} su
h that acix = xaci.

Proof. Obviously b2 /∈ T 2
and (bT ∪ Tb) ∩ T 2 = ∅, sin
e b /∈ CG(T ). Therefore

|S2| = |T 2| + |bT ∪ Tb| + 1. Moreover, sin
e |T | = 3 and b /∈ CG(T ), it follows
by Proposition 2.2 that |bT ∪ Tb| ≥ 4.

If |bT ∪ Tb| ≥ 5, then |T 2| ≤ 5 = 3 · 3 − 4. Thus, by Theorem 1.3, T =
{a, ac, ac2} with ac = ca. Hen
e, in this 
ase, we have |T 2| = 5, |bT ∪ Tb| = 5
and |bT ∩ Tb| = 1.

If acib = baci for some i ∈ {0, 1, 2}, then this is true for exa
tly one i sin
e
|bT ∩ Tb| = 1 and (iv) holds.

If acib = bacj , with i 6= j, then [aci, b] = cj−i
. Thus cj−i ∈ Z(G) and

c ∈ Z(G). In this 
ase [a, b] = cv, for some integer v and ab = bacv. Therefore,
as bT ∪ Tb = {ba, bac, bac2, bacv, bacv+1, bacv+2} is of size 5, we get v = 2 and S
has the stru
ture in (ii).

Now suppose |bT ∪ Tb| = 4. Then |T 2| = 6 and |bT ∩ Tb| = 2. Moreover,

T ∩CG(b) 6= ∅, sin
e otherwise T = {a, ac, ac2} by Proposition 2.3 and |T 2| = 5,
whi
h is not the 
ase. Therefore 0 < |T ∩ CG(b)| ≤ 2. If there exist s, t ∈
T ∩ CG(b), s 6= t, then s, t ∈ Z(〈S〉), and (i) holds. So assume that there exists

exa
tly one s ∈ T su
h that sb = bs. Then there exist xi, xj ∈ T , xi 6= xj su
h

that bxi = xjb, sin
e |bT ∩ Tb| = 2. Thus xi = b−1xjb = xjc, where c ∈ Z(G).
Obviously xi, xj 6= s, so denoting a = xj and x = s, we get T = {a, ac, x}, where
xb = bx, ab = bac, ax = xa and (iii) holds.

QED
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Lemma 4.3. Let G be an ordered nilpotent group of 
lass 2 and let S be a

subset of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Suppose that there

exists z ∈ S ∩ Z(〈S〉). Then G satis�es the hypothesis of Lemma 4.2.

Proof. Write S = T ∪̇{z}. Then S2 = T 2 ∪ {z2} ∪ zT . Obviously z2 /∈ zT .
Suppose that z2 ∈ T 2

, implying that z2 = xixj , where xi, xj ∈ T . If xi = xj ,
then z = xi sin
e G is torsion-free and z ∈ T , a 
ontradi
tion. Hen
e xi 6= xj ,
xjxi = xixj , {xi, xj , z} is abelian and we have the result.

So we may assume that {z2} ∩ T 2 = ∅.
If zT ∩T 2 = ∅, then |T 2| = 11−1−3 ≤ 7 and by Proposition 3.1 there exist

di�erent elements xi, xj ∈ T su
h that xixj = xjxi. Thus {xi, xj , z} is abelian

and we have the result.

So we may also assume that zT ∩ T 2 6= ∅, whi
h implies that

zxi = xhxk

for some xi, xh, xk ∈ T . If xh = xk, then {xi, xh, z} is abelian and we have the

result.

So we may assume that

T = {xi, xh, xk}.

We 
laim that we may suppose that zxh /∈ T 2
.

Indeed, if that is not the 
ase, then one of the following holds: zxh = x2i , or
zxh = x2k, or zxh = xixk or zxh = xkxi.

In the �rst 
ase, {xi, xh, z} is abelian and the result holds. Similarly in the

se
ond 
ase {z, xh, xk} is abelian. If zxh = xixk, then zxi = xhxk implies that

z2xh = zxixk = xhx
2
k. Thus x

2
k = z2 and z = xk ∈ T , a 
ontradi
tion. Finally, if

zxh = xkxi, then we have zxhxk = xkxixk. Thus z2xi = x2kxiz1, for a suitable

z1 ∈ Z(G), sin
e G has 
lass 2. Therefore x2k ∈ Z(G) and hen
e xk ∈ Z(G),
whi
h implies the result. The proof of our 
laim is 
omplete.

Arguing similarly, we may suppose that also zxk /∈ T 2
. Thus |zT ∩ T 2| = 1

and |T 2| = 8. Then, as remarked above, one of the following two 
ases must hold:

either there exist two 
ommuting elements s, t ∈ T or there exist xl, xm, xn ∈ T
su
h that x2l = xmxn. In the �rst 
ase, {s, t, z} is abelian, as required.

Now assume that x2l = xmxn. If xl = xi, then {xm, xn} = {xh, xk}. Thus
mod Z(〈S〉) we have x2i = xhxk = xiz, hen
e xi ∈ Z(〈S〉), and we have the

result. If xl 6= xi, then xl ∈ {xh, xk} and either xm or xn is equal to xi. Suppose,
without loss of generality, that xm = xi and xl = xh. Then xn = xk and mod

Z(〈S〉) we have x2i = x2hx
2
k = x2l x

2
k = xix

3
k. Thus [xi, xk] = 1 and {xi, xk, z} is

abelian, as required.

QED
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Lemma 4.4. Let G be an ordered nilpotent group of 
lass 2 and let S be a subset

of G with 〈S〉 non-abelian of size 4 and |S2| = 11. Suppose that S = T ∪̇{s} and

there exists c ∈ T ∩ Z(〈T 〉). Then G satis�es the hypothesis of Lemma 4.2.

Proof. If [s, c] = 1, then c ∈ Z(〈S〉)∩S and we are done by Lemma 4.3. So assume

that [s, c] 6= 1. Then {s, s2}∩〈T 〉 = ∅ and [s, c] 6= 1, implying that {s2}∩T 2 = ∅
and ({s2} ∪ T 2) ∩ (sT ∪ Ts) = ∅. Moreover, |sT ∪ Ts| ≥ 4 by Proposition 2.2.

Then it follows from S2 = T 2∪̇(sT ∪ Ts)∪̇{s2} that |T 2| ≤ 6 = 3 · 3− 3. Hen
e
T is abelian by Theorem 1.4, as required.

QED

Lemma 4.5. Let G be an ordered nilpotent group of 
lass 2 and let S be a

subset of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Suppose that S =
{a, ac} ∪ {b, bd}, where ab 6= ba and c, d ∈ Z(〈S〉). Then one of the following

holds:

(i) S = {a, ac, b, bc}, with ab = bac2;

(ii) S = {a, ac, b, bc2}, with ab = bac , or S = {a, ad2, b, bd}, with ab = bad.

Proof. Assume, without loss of generality, that c > 1 (otherwise 
hange a with

a1 = ac and a = a1c
−1
) and, similarly, that d > 1. Also suppose, without loss

of generality, that ba < ab.
We have

S2 ⊇ {a, ac}2∪̇{b, bd}2∪̇{ba, ab, abc, abd, abcd}.

Clearly |{a, ac}2∪̇{b, bd}2| = 6 and sin
e ab 6= ba, we also have

bac, bac2 /∈ {a, ac}2∪̇{b, bd}2.

First, suppose that c = d. Then ba < ab < abc < abc2 and if bac ∈
{ba, ab, abc, abc2}, then bac = ab. In this 
ase S = {a, ac, b, bc} and by The-

orem 3.2 S2
is of size 10, a 
ontradi
tion. Hen
e bac /∈ {ba, ab, abc, abc2} and

S2 = {a, ac}2∪̇{b, bc}2∪̇{ba, ab, abc, abc2, bac}.

Then bac2 ∈ {ba, ab, abc, abc2, bac} and the only possibility is bac2 = ab. Hen
e
(i) holds.

Now suppose that c 6= d and for example, let c < d. We have ba < ab <
abc < abd < abcd, so

S2 = {a, ac}2∪̇{b, bc}2∪̇{ba, ab, abc, abd, abcd}.
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Hen
e the elements bac, bad are in {ba, ab, abc, abd, abcd}, and from bac < bad
we dedu
e that the only possibility is that bac = ab and bad = abc. Thus

bad = bac2 and d = c2, yielding (ii). Similarly, if c > d, then c = d2, ab = bad
and (ii) holds.

QED

Lemma 4.6. Let G be an ordered nilpotent group of 
lass 2 and let S be a subset

of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Write S = {x1, x2, x3, x4},
where x1 < x2 < x3 < x4, and suppose that x1x2 = x2x1 and x3x4 = x4x3.
Then S satis�es the hypothesis of one of the previous Lemmas.

Proof. Write A = {x1, x2}, B = {x3, x4}, Y = x2{x3, x4} ∪ {x3, x4}x2, Z =
Z(〈S〉). The order in S obviously implies that A2 ∩ B2 = ∅ = A2 ∩ Y . We

may also assume B2 ∩ Y = ∅, sin
e otherwise the 
onditions of Lemma 4.4 are

satis�ed, as required. Indeed, if B2 ∩ Y 6= ∅, then one of the following equalities

must hold: x2x4 = x4x3, x2x4 = x23, x4x2 = x23 and x4x2 = x3x4. In ea
h of

these 
ases [x3, x2] = 1 and if T = {x2, x3, x4}, then x3 ∈ T ∩Z(〈T 〉, as required
in Lemma 4.4.

If x1Z = x2Z and x3Z = x4Z, then the 
onditions of Lemma 4.5 are satis�ed,

as required. So we may assume, without loss of generality, that

x3Z 6= x4Z.

We 
laim that we may assume that x2{x3, x4} ∩ {x3, x4}x2 = ∅. In fa
t, if

x2x3 = x3x2 or x2x4 = x4x2, then we are in the 
onditions of Lemma 4.4, and if

x2x4 = x3x2 then x4 = x−1
2 x3x2 = x3z with z ∈ Z and we get the 
ontradi
tion

x3Z = x4Z. Similarly if x2x3 = x4x2. The proof of our 
laim is 
omplete. It

follows that |Y | = 4.

Now 
onsider the elements x1x4 and x4x1. We may suppose that they are

di�erent, sin
e otherwise x1 ∈ Z(〈x1, x2, x4〉) and the 
onditions of Lemma 4.4

are satis�ed.

Assume, without loss of generality, that x1x4 < x4x1.

We 
laim that x1x4 /∈ Y . Indeed, if x1x4 = x2x3, then x−1
2 x1 = x3x

−1
4 ∈ Z,

yielding x1Z = x2Z and x3Z = x4Z, whi
h is not the 
ase. A similar 
ontradi
-

tion is rea
hed if x1x4 = x3x2. Sin
e x1x4 < x4x1, we also have x1x4 < x4x2.
Thus x1x4 /∈ Y , as 
laimed.

We may also assume that x1x4 /∈ A2 ∪ B2
, sin
e if for example x1x4 = x23,

then [x3, x1] = 1 and the 
onditions of Lemma 4.4 are satis�ed.

Taking into a

ount that |Y | = 4 and |A2| = |B2| = 3, we may 
on
lude that

S2 = A2∪̇B2∪̇Y ∪̇{x1x4}.
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Now 
onsider the elements x1x3 and x3x1. As before we may suppose that

x1x3 6= x3x1 and x1x3, x3x1 /∈ A2∪B2
. Thus x1x3, x3x1 ∈ Y . Arguing as before,

x1x3 = x2x4 implies that x−1
2 x1 = x4x

−1
3 ∈ Z and x3Z = x4Z, whi
h is not the


ase, and a similar 
ontradi
tion is rea
hed if x1x3 = x4x2, sin
e x4x2Z = x2x4Z.
The only possibility whi
h remains is x1x3 = x3x2.

But now 
onsider x3x1. Obviously x3x1 < x3x2 = x1x3, so x3x1 6= x1x4,
x2x3, x2x4. Hen
e x3x1 /∈ S2

, a �nal 
ontradi
tion.

QED

Now we 
an prove Theorem 1.6.

Proof of Theorem 1.6. Suppose that |S| = 4 and |S2| = 11.

Write S = {x1, x2, x3, x4}, T = {x1, x2, x3} and x1 < x2 < x3 < x4.

Suppose that x3x4 6= x4x3. Then by Proposition 2.1 we have |T 2| ≤ 11−4 =
7.

If |T 2| ≤ 6, then T is abelian by Theorem 1.4, and S has the required

stru
ture by Lemma 4.2.

So assume that |T 2| = 7 and apply Proposition 3.1. If T ∩ Z(〈T 〉) 6= ∅,
then S has the required stru
ture by Lemma 4.4. Therefore, we may assume,

without loss of generality, that T = {a, ac, b}, with c > 1 and ab = bac. Write

x4 = x. If ax = xa, then {a, ac, x} is abelian sin
e c ∈ Z(G) and again we are

in the situation of Lemma 4.2. Hen
e, suppose that ax 6= xa. If x = bz with

z ∈ Z(G), then S has the required stru
ture by Lemma 4.5. So assume that

xZ(G) 6= bZ(G). Noti
e that then if xa, or xac, or ax or acx is in T 2
, then the

only possibility is that it is equal to b2. Similarly, if bx or xb is in T 2
, then it

belongs to the set {a2, a2c, a2c2}. Now, if ax, xa ∈ T 2
, then ax = b2 = xa, a


ontradi
tion. Therefore one of the elements ax, xa is not in T 2
. Similarly, one

of the elements axc, xac is not in T 2
.

Assume, without loss of generality, that ax /∈ T 2
. Assume �rst that xa ∈ T 2

.

Then

xa = b2,

in whi
h 
ase xb 6= bx, sin
e otherwise b ∈ CG(a), a 
ontradi
tion. Moreover

xb, bx /∈ T 2
, sin
e otherwise bxZ(G) = a2Z(G), yielding b3Z(G) = bxaZ(G) =

a3Z(G) and ba = ab, a 
ontradi
tion. Noti
e, also, that xb 6= ax, sin
e otherwise
xbZ(G) = axZ(G) = xaZ(G) and ab = ba, a 
ontradi
tion. Thus

S2 = T 2 ∪ {x2, bx, xb, ax},

implying that axc ∈ T 2
. Hen
e axc = b2 = xa and xac /∈ T 2

. It follows that

xac = axc2 ∈ {bx, ax}. If axc2 = bx, then b = ac2 and [a, b] = 1, a 
ontradi
tion.
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If, on the other hand, xac = ax, then xac2 = axc = xa and c2 = 1, again a


ontradi
tion.

Therefore we may assume that x2, ax, xa /∈ T 2
and, arguing similarly, axc,

xac /∈ T 2
. Hen
e either ax = xac or xa = axc. Sin
e both these equalities


ould not hold together, if follows that S2 = T 2 ∪ {x2, ax, xa, axc, xac} and

bx, xb ∈ T 2
. Assume, for example, that bx ≤ xb. Then it is easy to see that the

only possibility is bx = a2, [b, x] = [a, x]2, xb = a2c2, and (vii) holds.

Now assume that x3x4 = x4x3. A
ting similarly, while 
onsidering the order

opposite to <, we may assume that x1x2 = x2x1. Then Lemma 4.6 applies and

S has the required stru
ture.

Conversely, suppose that one of (i), (ii), (iii), (iv), (v), (vi), (vii) holds.

First suppose that (i) holds and write S = {s, t, a, b}, where s, t ∈ Z(〈S〉) and
ab 6= ba. Then we have S2 = {s2, t2, st, sa, sb, ta, tb, a2, b2, ab, ba}, and |S2| = 11,
as required.

If either (ii) or (iii) or (iv) holds, then it is easy to verify dire
tly that

|S2| = 11.
Suppose that (v) holds, and write T = {a, ac, b}. Then |T 2| = 7 and S2 =

T 2∪̇xT ∪̇{x2}. Thus |S2| = 7 + 3 + 1 = 11, as required.
Now suppose that (vi) holds and write T = {a, ac, ac2}. Then |T 2| = 5,

|xT ∩ Tx| = 1 and |Tx ∪ xT | = 3+ 3− 1 = 5. Sin
e S2 = T 2∪̇(xT ∪ Tx)∪̇{x2},
it follows that |S2| = 5 + 5 + 1 = 11 as required.

Finally suppose that (vii) holds and write T = {a, ac, b}. Suppose, for ex-

ample, that bx = a2, ab = bac, xb = bxc2 and xa = axc. Then |T 2| =
7 and Tx ∪ xT = {bx = a2, ax, axc = xa, a2c2 = xb, axc2 = xac}. Thus

(Tx∪ xT )∩ T 2 = {a2, a2c2} and |S2| = 7+ 5− 2 + 1 = 11, as required. QED
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