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1 Introduction
Let G denote an arbitrary group. If S is a subset of G, we define its square
S? by
52 = {(l)lxg ’ xr1,T9 € S}

If G is an additive group, we denote by
2S5 = {$1 + 22 | xr1,To € S}

the sumset of S.
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We are concerned with the following general problem: let .S be a finite subset
with k elements of a group G, determine the structure of S if

|S%] < f(k)

for some function f.
Problems of this kind are called inverse problems.

In particular, we shall consider problems of the following type: determine the
structure of S, if |S?| satisfies the following inequality:

5% < alS|+ 8

for some small a > 1 and small |3].
Such problems are called inverse problems of small doubling type.

Inverse problems of small doubling type have been first investigated by G.
A. Freiman in the additive group of the integers.
It is easy to prove that if S is a finite subset of Z with k elements, then

12k — 1] < 28] < k(k +1)/2.

Moreover |2S| = 2k — 1 if and only if S is an arithmetic progression of size
k.

In the paper [4] G.A. Freiman proved the following theorem:

Theorem 1.1. Let S be a finite set of integers with k > 3 elements and suppose
that
25| <2k — 1+,

where 0 < b < k — 3. Then S is contained in an arithmetic progression of size
k+ b and difference q,

P:{a7a+q7a+2q7"' 7a+(k+b_1)q}7

where a, q are integers with g > 0.
In particular, if

2] < 3k — 4,

then S is contained in an arithmetic progression of size 2k — 3,

P={a,a+q,a+2q, - ,a+ (2k — 4)q}.
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This theorem was the beginning of the "Freiman’s structural theory of set
addition”, the foundations for which were led in Freiman’s book "Foundations
of a structural theory of set addition" (see |6] and also |20]).

In [4] and in [5] Freiman studied also the case |2S| < 3|S| — 3 and [25] <
3|S| — 2. If X is a subset of an abelian semigroup G and Y is a subset of an
abelian semigroup G1, a bijection ¢ : X — Y is called a Freiman isomorphism
if for any a,b,c,d € X, a+b = c+d if and only if ¢(a) + ¢(b) = ¢(c) + ¢(d).
X is Freiman isomorphic to Y if there exists a Freiman isomorphism between X
and Y.

Freiman proved the following result:

Theorem 1.2. Let S be a finite set of integers with k > 2 elements and suppose
that
|25| = 3k — 3.

Then one of the following holds:

(i) S is a subset of an arithmetic progression of size at most 2k — 1;
(ii) S is a bi-arithmetic progression;

(ii1) |S| = 6 and S is Freiman isomorphic to the set K¢, where

KG = {(07 0)7 (17 0)7 (2a 0)7 (07 1)7 (Ov 2)? (17 1)}

Here, a set of the integers S = I U J is called a bi-arithmetic progression
of length k, with difference d, if both I and J are arithmetic progressions of
difference d, [I| 4+ |J| =k, and [ + 1,1+ J,J + J are pairwise disjoint.

In [6] Freiman investigated also the exact structure of subsets of the additive
group Z%, for a positive integer d. A complete description of a subset S of the
additive group Z? with |S| > 4 and |25| < 4|S| — 6 is due to Y.V. Stanchescu in
[24]. A best possible result for the group Z? and doubling coefficient d + % has
been recently obtained in [26].

By now, Freiman’s theory had been extended tremendously, in many different
direction, see for example [1], [3], [7], [9], [11], [14], [15], [16], [17], [18], [23], [24],
[25], [26], the recent survey by T. Sanders |22] and the references contained
therein.

In the paper 8], we studied small doubling problems for subsets of an ordered
group. We recall that if GG is a group and < is a total order relation defined on
the set G, we say that (G, <) is an ordered group if for all a,b,z,y € G, the
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inequality a < b implies that zay < xby, and a group G is orderable if there
exists an order < on G such that (G, <) is an ordered group. Obviously the
group of integers with the usual ordering is an ordered group. More generally,
it is possible to prove that an abelian group is orderable if and only if it is
torsion-free (see, for example [2] or [13]).

Extending Freiman’s results, we proved in [8] the following theorems.
Theorem 1.3. Let (G, <) be an ordered group and let S = {x1,x9, - ,x} be
a finite subset of G of size k > 3, with x1 < xg--- < x}. Assume that

t =% <3k —4.

Then (S) is abelian.
Moreover, there exists g € G, g > 1, such that gr1 = x19 and S is a subset of

2 t—k
{96‘1,9619796‘19 ,'r,T1g }-

Theorem 1.4. Let (G, <) be an ordered group and let S = {x1,x2, -+ ,x} be
a finite subset of G of size k > 3, with x1 < xg--- < x}. Assume that

t=|5% <3k —3.
Then (S) is abelian.

Using results of Freiman and Stanchescu, the following theorem can be de-
duced from Theorem 1 of [10].

Theorem 1.5. Let (G, <) be an ordered group and let S = {x1,x2, -+ ,x} be
a finite subset of G of size k > 3, with x1 < xg--- < x}. Assume that
t=18% < 3k - 3.
Then (S) is abelian and one of the following holds:
(i) S is a subset of a geometric progression {a,ac, - - - ,ac%_l};
(ii) S is a bi-geometric progression, i.e. S = {a,ac,---ac~t} U{b,bc, - -- ,bc!1};

(iii) k=6 and S = {1,c,c?,b,b% bc}.
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The aim of this paper is to investigate inverse small doubling problems in
torsion-free nilpotent groups.

By a result of A.I. Mal’cev and B.H. Neumann, any torsion-free nilpotent
group is orderable (see [19] or |21]|). Thus the previous results apply to these
groups.

The remainder of the paper is organized as follows.
First, in Section 2, we report some useful results from [12] and [8].

In Section 3, we investigate the structure of subsets S of order k of a torsion-
free nilpotent group, with |S?| < 3k — 2. We study here the case k = 3, and
we report from [12] results concerning the case k > 4. Notice that, by a result
in [10], if S is a subset of a nilpotent torsion-free group, of order bigger that 3,
with |S?| < 3|S| — 2, then (S) is nilpotent of class at most 2. Thus the problem
reduces to the case when G is nilpotent of class at most 2.

In Section 4 we report results from [12], concerning the structure of subsets
S of size k of torsion-free nilpotent groups of class at most 2, which satisfy k& > 4
and |S%| = 3k — 1. In [12] the case k = 4 was left open. Here we complete the
result of [12| by proving the following theorem.

Theorem 1.6. Let G be an ordered nilpotent group of class 2 and let S be a
subset of G of size k = 4 with (S) non-abelian. Then |S?| = 3k — 1 = 11 if and
only if one of the following statements holds:

(i) There exist s,t € SN Z((S)),s #t;

(ii) S = {a,ac,b,bc, }, with ab = bac? ;

(iii) S = {a,ac?,b,bc}, with ab = bac ;

(iv) S = {a, ac,ac?, b}, with ab = bac?;

(v) S ={a,ac,b,z}, with ab = bac, ax = xa, br = xb;

(vi) S = {a,ac, ac?, z}, with ac = ca and there exists exactly one i € {0,1,2}
such that actz = zacd';

(vii) S = {a,ac,b,x}, with ¢ > 1 and either bx = a?, ab = bac, xb = bxc?
and za = axc, or zb = a2, ba = abe, ax = xac and bx = xbc?.
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2 Some general results.
We start by quoting two useful results.

Proposition 2.1. Let (G, <) be an ordered nilpotent group of class 2 and let S
be a subset of G satisfying:

S:{xh"' 7xk}a T <xo < - < Tk
Write T = {x1,--+ ,xp_1}. If
TET—1 F Tk—1Tk,

then
|T?| < |S?| — 4.

Proof. See [12], Lemma 2.1.

QED

Proposition 2.2. Let (G, <) be an ordered group and let T be a finite subset of
G of sizem. If b€ G~ Cq(T), then

T UTH >m+1.

Proof. See (8], Proposition 2.3.

QED

If G is a torsion-free nilpotent group of class 2, then the following result,
concerning the structure of T', holds.

Proposition 2.3. Let G be a torsion-free nilpotent group of class 2 and let T
be a subset of G of size m. Moreover, let b € G satisfy the following conditions:
bt # tb for allt € T and VT UTb =m +1. Then T = {a,ac,--- ,ac™ 1}, with
ba = abc (in particular ¢ € Z(G) and (T) is abelian).

Proof. See |12], Proposition 2.5.

QED
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3 Subsets S with |S?| < 3|S| — 2.

Let G be a nilpotent torsion-free group. Then, by results of A.I. Mal’cev and
B.H. Neumann (see [19] and [21]) , G is orderable.

Let S be a finite subset of G with k elements, and suppose that |S?| < 3k—2.

If k = 2, then |S?| = 4 = 3k — 2 if and only if (S) is non-abelian. Hence we
may assume that k > 3.

In this paper we deal with the case k£ = 3. In this case the following propos-
ition holds.

Proposition 3.1. Let (G, <) be a nilpotent ordered group, and let S C G with
|S| = 3. Then |S?| < 7 if and only if one of the following holds:

(i) SN Z((S)) #0;

(ii) S ={a,ac,b}, with ¢ > 1,ac = ca and either ab = bac or ba = cab.

Proof. Write S = {x1, 72,23} with 21 < x5 < x3 and suppose that |S?| < 7.
Moreover, let T' = {x1,z2}. It suffices to prove that if SN Z((S)) = 0, then (ii)
holds.

So suppose that SN Z((S)) = 0. If |S?| < 6, then (S) is abelian by Theorem
1.4, a contradiction. Hence ]52] = 7. Moreover, we must have either z1x9 # xox1
Or ToX3 F# XT3T3.

Suppose, first, that xox3 # x3ze. We must consider the cases: z1x9 # xox1
and x1z9 = Tox1.

If

T1T2 #F ToT

then |T?| = 4 and it follows from the ordering in S that zews, v3ze,73 ¢ T.
Since zox3 # x3x2, the elements zox3, T332, x% are also distinct from each other
and it follows that

2 2 2
S% = T*U{woxs, v312, T5}.

Consider z1x3, r3r1, and assume, without loss of generality, that ziz3 <
x3xy. Then z1x3 < 322, T3, x%, implying that 2123 € T2. Hence either z123 =
l‘% Oor r1xr3 = Ir2a1.

If z123 = x371 and 123 = 73, then (23)™ = x3z; = 773 = 23 and
(x2)™* = x9, a contradiction.

If, on the other hand, x123 = 321 and z1x3 = zax1, then (x3)™ = x3 =
9™, again a contradiction. Hence 123 < x371.
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Moreover, either z3x; € T? or x3x1 = xox3 and z123 € T2.
If x3x1 € T?, then the only possibility is that z3z; = x% and x1x3 = X911
In this case

(w1, 9, 23) = (x3,25") = (23) (W1, T2, 3) = (W3) Frat((x1,z2, x3))

since in a nilpotent group the derived subgroup is contained in the Frattini
subgroup. Therefore (1, z2,x3) = (x3) is abelian, a contradiction.

Now suppose that xsz; = zox3 and z1z3 € T2. In this case, we must have
either x1x3 = x% or r1x3 = wox1. If x1x3 = az%, we get as before the contra-
diction (@1, xe,x3) = (w2, x5%) = (x2), while if x123 = xox1, then (w1, x9,23) =
(wg, x5, x5") = (x2), again a contradiction.

So we may assume

1T = X2X1.

In this case x93, 372, 1173, T371, 73 ¢ (T1,72), since otherwise we get the
contradiction z3xy = xoxs3. Therefore the elements .’E%,$1CL‘2,CL‘%,$1IE3,.’E2$3,.€L‘%
are all different. Since |S?| = 7 and wox3 # w379, we must have either xox3 =
x3x1 or x3xre = x1x3. Thus, if we denote x; = a,x9 = ac,z3 = b, then (ii) holds,
as required.

Similarly, if instead of xox3 # x3x9 We assume that xi1xs # xox1, then we
may also assume that xox3 = x3x2 and we get the result by considering the
order opposite to <.

Conversely, if S = {a, b, c}, with ab = ba and ac = ca, then

S% = {a® b2, 2, ab, ac, be, b}

has order at most 7. If S = {a, ac, b}, with ac = ca and, for example, ab = bac,
then
5% = {a?, a’c,a*c?, ab, ach, ba, b*}

and again |S?| < 7.
QED

Now let S be a finite subset with k elements of a nilpotent ordered group,
with k& > 4 and assume that |S?| < 3k — 2. Then, by Theorem 2 of [10], (S) is
nilpotent of class 2 at most.

If (S) is abelian, then by [10], either |S| = 4 and in this case the size of S? is
always at most 10, or S is Freiman isomorphic to a subset of Z and the structure
of S can be described using Freiman’s results in [4] , or S is Freiman isomorphic
to a subset of Z2. In the latter case, the structure of S can be described using
results of Freiman and of Stanchescu (see [4] and [24]).

If (S) is nilpotent of class exactly 2, then the structure of S follows from the
following theorem.
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Theorem 3.2. Let G be a torsion-free nilpotent group of class 2 and let S C G
be non-abelian and of order k > 4. Then |S?| = 3k — 2 if and only if

S ={a,ac,--- ,act b bc,bc? -+, bcl},
with 14+1+ 1+ 5 =k and ab = bac.

Proof. Suppose that S = {a,ac,--- ,act,b,bc,bc?,--- ,bc?}, with 1+i+1+j =k
and ab = bac. Write A = {a,ac,--- ,ac'}, B = {b,bc,--- ,bc’}. Then we have:
S = AUB, S? = A2UB%U(AB U BA), ABU BA = {ba,bac,--- ,bact7+1},
|A%2| = 2(i+1)—1, |B? =2(j+1) -1, |[ABUBA| =i+ j +2 and |S?| =
20+2j+ 241+ 5+ 2 =3k — 2, as required.
For the converse see the proof of Theorem 2 in [12].
QED

4 Subsets S with |S?| < 3|S| — 1.

Let S be a subset of a torsion-free nilpotent group G with |S| = k and
|S2| < 3k — 1. Let < be an order in G such that (G, <) is an ordered group. By
Theorem 3 of [10], if & > 8, then (S) is nilpotent of class at most 2. Therefore,
we first studied the case when G is nilpotent of class 2.

Suppose that S is a subset of a torsion-free nilpotent group G of class 2, with
|S| = k and |S?| < 3k — 1. In [12] we proved the following result.

Theorem 4.1. Let G be an ordered nilpotent group of class 2 and let S be a
subset of G of size k > 5, with (S) non-abelian. Then |S?| = 3k — 1 if and only
if one of the following holds:
(1) . .
S ={a,ac,--- ,ac 1, b, be,--- ,bd 71},
with ab = bac® and i+ j = k;
S ={a,ac? b,bc, - b}, j > 2.
with ab = bac.

If |S| = 3, it is easy to show that |S?| < 8 if and only if S = {x,y, 2}, with
either zy = yx or zy = 22

In this section we prove Theorem 1.6, concerning the structure of a subset
S satisfying |S| = 4 and |S?| < 11. Thus the description of the structure of S,
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if S is a subset of size k > 2 of a torsion-free nilpotent group of class 2 with
|S?| < 3k — 1, is complete.

It is still an open problem to describe S, if S is a subset of any torsion-free
nilpotent group with |S| < 7 and |S?| = 3k — 1.

In order to prove Theorem 1.6, we start with the following Lemmas.

Lemma 4.2. Let G be an ordered nilpotent group of class 2 and let S be a subset
of G of size 4, with (S) non-abelian and |S?| = 11. Suppose that S = T U {b},
with (T') abelian. Then one of the following holds:

(i) There exist s,t € SNZ((S)),s #t;
(ii) S = {a,ac,ac? b}, with ab = bac?;
(iii) S = {a,ac,b,x}, with ab = bac, ax = xa, bx = zb;
(iv) S = {a,ac,ac?, x},
with ac = ca and there exists exactly one i € {0,1,2} such that ac'z = zac.

Proof. Obviously b? ¢ T? and (bT UTb) NT? = (), since b ¢ Ce(T). Therefore
|S?| = |T?| + |bT U Th| + 1. Moreover, since |T| = 3 and b ¢ Cg(T), it follows
by Proposition 2.2 that |bT'U Tb| > 4.

If b UTh| > 5, then |T?| < 5 = 3-3 — 4. Thus, by Theorem 1.3, T =
{a,ac,ac®} with ac = ca. Hence, in this case, we have |T?| =5, [pT UTb| =5
and [bT N Th| = 1.

If ac'b = bac® for some i € {0,1,2}, then this is true for exactly one i since
|bT'NTh| = 1 and (iv) holds.

If ac’b = bac’, with i # j, then [ac’,b] = ¢/=*. Thus ¢~% € Z(G) and
¢ € Z(Q). In this case [a,b] = ¢", for some integer v and ab = bac’. Therefore,
as BT UTb = {ba, bac, bac?, bac’, bac’*!, bac'*?} is of size 5, we get v = 2 and S
has the structure in (ii).

Now suppose [bT U Tb| = 4. Then |T?| = 6 and |bT N Tb| = 2. Moreover,
TNCgq(b) # 0, since otherwise T = {a, ac, ac*} by Proposition 2.3 and |T?| = 5,
which is not the case. Therefore 0 < |T'N Cg(b)] < 2. If there exist s,t €
T NCg(b), s #t, then s, t € Z((S)), and (i) holds. So assume that there exists
exactly one s € T' such that sb = bs. Then there exist z;,z; € T, z; # x; such
that bz; = x;b, since [bT N Tb| = 2. Thus z; = b~ z;b = zjc, where ¢ € Z(G).
Obviously z;,z; # s, so denoting a = z; and = s, we get T' = {a, ac, x}, where
xb = bz, ab = bac, ax = za and (iii) holds. QED
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Lemma 4.3. Let G be an ordered nilpotent group of class 2 and let S be a
subset of G of size 4, with (S) non-abelian and |S?| = 11. Suppose that there
evists z € SN Z((S)). Then G satisfies the hypothesis of Lemma 4.2.

Proof. Write S = TU{z}. Then S? = T? U {22} U 2T. Obviously 22 ¢ 2T.
Suppose that 22 € T2, implying that 2% = x;xj, where x;,x; € T. If x; = x;,
then z = z; since G is torsion-free and z € T, a contradiction. Hence x; # x;,
xjr; = x;xj, {x;,xj, 2} is abelian and we have the result.

So we may assume that {22} NT? = (.

If 2'NT? = (), then |T?| = 11 —1—3 < 7 and by Proposition 3.1 there exist
different elements x;, x; € T such that z;z; = x;x;. Thus {a:i,acj, z} is abelian
and we have the result.

So we may also assume that 27N T2 # (), which implies that

2T; = THTE

for some x;, xp, x € T. If x, = x, then {z;,xp, z} is abelian and we have the
result.
So we may assume that

T ={z;,xp, v}

We claim that we may suppose that zz, ¢ T2.

Indeed, if that is not the case, then one of the following holds: zz), = =
ZTh = x%, Oor Z—rp = XL O ZTp = TT;.

In the first case, {x;, xp, 2} is abelian and the result holds. Similarly in the
second case {z,xp,x} is abelian. If zxy, = 2, then zx; = xpxy implies that
22xp, = zwiT = xhxi. Thus m% =22 and z = z, € T, a contradiction. Finally, if
zxp, = xpx;, then we have zapz, = xprizy. Thus 22z; = xixizl, for a suitable
z1 € Z(G), since G has class 2. Therefore 27 € Z(G) and hence z € Z(G),
which implies the result. The proof of our claim is complete.

Arguing similarly, we may suppose that also zzy ¢ T?. Thus |zT NT? = 1
and |T?| = 8. Then, as remarked above, one of the following two cases must hold:
either there exist two commuting elements s,t € T or there exist x;, T, xp € T
such that xlz = TmTp. In the first case, {s,t,z} is abelian, as required.

Now assume that le = Ty If 7 = z;, then {x,,z,} = {zp, 21} Thus
mod Z({S)) we have z? = zpz) = 72, hence z; € Z(({S)), and we have the
result. If z; # x;, then x; € {xp, 2} and either z,, or z,, is equal to x;. Suppose,
without loss of generality, that x,, = x; and x; = xp. Then z,, = x; and mod
Z({S)) we have 27 = z32? = zizi = x;x}. Thus [z;, 2] = 1 and {x;, g, 2} is

7

abelian, as required.

2

z701‘
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Lemma 4.4. Let G be an ordered nilpotent group of class 2 and let S be a subset
of G with (S) non-abelian of size 4 and |S?| = 11. Suppose that S = TU{s} and
there exists c € TN Z((T)). Then G satisfies the hypothesis of Lemma 4.2.

Proof. 1If [s,c] = 1, then ¢ € Z((S))NS and we are done by Lemma 4.3. So assume
that [s,c] # 1. Then {s,s2}N(T) = () and [s, ¢] # 1, implying that {s?}NT? = ()
and ({s?} UT?)N (sT UTs) = (. Moreover, |sT UTs| > 4 by Proposition 2.2.
Then it follows from S? = T?U(sT U T's)U{s?} that |T?| < 6 = 3-3 — 3. Hence
T is abelian by Theorem 1.4, as required. QED

Lemma 4.5. Let G be an ordered nilpotent group of class 2 and let S be a
subset of G of size 4, with (S) non-abelian and |S?| = 11. Suppose that S =
{a,ac} U{b,bd}, where ab # ba and c¢,d € Z((S)). Then one of the following
holds:

(i) S = {a,ac,b,bc}, with ab = bac?;
(ii) S = {a,ac,b,bc*}, with ab = bac , or S = {a,ad?,b,bd}, with ab = bad.

Proof. Assume, without loss of generality, that ¢ > 1 (otherwise change a with
a1 = ac and a = ayc”') and, similarly, that d > 1. Also suppose, without loss
of generality, that ba < ab.

We have

5% D {a, ac}?U{b, bd}*U{ba, ab, abc, abd, abcd}.
Clearly |{a,ac}?U{b,bd}?| = 6 and since ab # ba, we also have
bac, bac® ¢ {a, acy*U{b, bd}>.

First, suppose that ¢ = d. Then ba < ab < abc < abc? and if bac €
{ba, ab, abc, abc*}, then bac = ab. In this case S = {a,ac,b,bc} and by The-
orem 3.2 S? is of size 10, a contradiction. Hence bac ¢ {ba, ab, abc, abc?} and

S? = {a, ac}*U{b, bc}*U{ba, ab, abc, abc?, bac}.

Then bac? € {ba, ab, abc,abc? bac} and the only possibility is bac? = ab. Hence
(i) holds.

Now suppose that ¢ # d and for example, let ¢ < d. We have ba < ab <
abc < abd < abed, so

S? = {a, acy*U{b, bc}*U{ba, ab, abc, abd, abed}.
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Hence the elements bac, bad are in {ba, ab, abc, abd, abcd}, and from bac < bad
we deduce that the only possibility is that bac = ab and bad = abc. Thus
bad = bac? and d = c?, yielding (ii). Similarly, if ¢ > d, then ¢ = d?, ab = bad
and (ii) holds. QED

Lemma 4.6. Let G be an ordered nilpotent group of class 2 and let S be a subset
of G of size 4, with (S) non-abelian and |S?| = 11. Write S = {x1, 22,73, 74},
where ©1 < 1o < x3 < T4, and suppose that r1xo = xox1 and T3xg4 = T4T3.
Then S satisfies the hypothesis of one of the previous Lemmas.

Proof. Write A = {x1,22}, B = {x3,24}, Y = xo{ws, x4} U {x3,24}20, Z =
Z((S)). The order in S obviously implies that A2N B? = ) = A2NY. We
may also assume B2 NY = (), since otherwise the conditions of Lemma 4.4 are
satisfied, as required. Indeed, if B2NY # (), then one of the following equalities
must hold: xeoxy = 423, ToT4 = x%, TaTo = x% and x429 = x374. In each of
these cases [x3,x2] = 1 and if T' = {x9, 3, 24}, then x5 € TNZ((T), as required
in Lemma 4.4.

Ifx1Z = 297 and x32 = x47, then the conditions of Lemma 4.5 are satisfied,
as required. So we may assume, without loss of generality, that

.%'3Z 7é .734Z.

We claim that we may assume that zo{xs,z4} N {x3,24}xe = 0. In fact, if
ToT3 = T3Ty OF ToTy = T4To, then we are in the conditions of Lemma 4.4, and if
Toxg = T3xo then xy = $2_1:E3.1,‘2 = x3z with z € Z and we get the contradiction
x3Z = x4/. Similarly if zoxs = x422. The proof of our claim is complete. It
follows that |Y| = 4.

Now consider the elements x1x4 and x421. We may suppose that they are
different, since otherwise x1 € Z({x1,x2,24)) and the conditions of Lemma 4.4
are satisfied.

Assume, without loss of generality, that 124 < x427.

We claim that z124 ¢ Y. Indeed, if 2124 = xox3, then x;lxl = xgazf e 7,
yielding x1Z = x9Z and x3Z = x4/, which is not the case. A similar contradic-
tion is reached if x1x4 = x329. Since x1x4 < 1471, We also have r1x4 < T4T2.
Thus 2124 ¢ Y, as claimed.

We may also assume that z1z4 ¢ A? U B2, since if for example z124 = :1:%,
then [z3,21] = 1 and the conditions of Lemma 4.4 are satisfied.

Taking into account that |Y| = 4 and |A2%| = | B?| = 3, we may conclude that

5% = A2UB2UY U{z124).
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Now consider the elements x1x3 and xgxi. As before we may suppose that
r123 # 2371 and z123, w371 ¢ A2UB?. Thus z123, 2371 € Y. Arguing as before,
T1x3 = Tox4 implies that a:Q_lxl = :c4a;gl € Z and x37Z = x47, which is not the
case, and a similar contradiction is reached if z1x3 = w49, since r4x9Z = X014 2.
The only possibility which remains is x1x3 = x322.

But now consider zsxy. Obviously zsx1 < z3xe = T1x3, SO T3T1 F# T1%4,
x9x3, xoxy. Hence x3ry ¢ 52, a final contradiction. QED

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Suppose that |S| = 4 and |S?| = 11.
Write S = {z1, 22, 23,24}, T = {21,292, 23} and 1 < x2 < x3 < 24.
Suppose that z374 # x423. Then by Proposition 2.1 we have |T?| < 11 -4 =

If [T?| < 6, then T is abelian by Theorem 1.4, and S has the required
structure by Lemma 4.2.

So assume that |T2?| = 7 and apply Proposition 3.1. If T N Z((T)) # 0,
then S has the required structure by Lemma 4.4. Therefore, we may assume,
without loss of generality, that 7' = {a,ac, b}, with ¢ > 1 and ab = bac. Write
x4 = x. If ax = za, then {a,ac,z} is abelian since ¢ € Z(G) and again we are
in the situation of Lemma 4.2. Hence, suppose that ax # za. If © = bz with
z € Z(G), then S has the required structure by Lemma 4.5. So assume that
2Z(G) # bZ(G). Notice that then if za, or wac, or ax or acz is in T?, then the
only possibility is that it is equal to b2. Similarly, if bz or xb is in 72, then it
belongs to the set {a?,a’c, aZCQ}. Now, if az,za € T?, then ax = b?> = za, a
contradiction. Therefore one of the elements ax,za is not in T2. Similarly, one
of the elements azc, zac is not in T2.

Assume, without loss of generality, that ax ¢ T?. Assume first that xa € T2.
Then

za = b2,

in which case zb # bz, since otherwise b € Cg(a), a contradiction. Moreover
xb,bx ¢ T?, since otherwise bz Z(G) = a®Z(G), yielding b3Z(G) = braZ(G) =
a®Z(G) and ba = ab, a contradiction. Notice, also, that 2b # ax, since otherwise
2bZ(G) = axZ(G) = xaZ(G) and ab = ba, a contradiction. Thus

S% =12 U {a2? bx,zb,ax},

implying that axc € T2. Hence axrc = b?> = xa and xac ¢ T2 Tt follows that
rac = axc® € {bx,ax}. If axc® = bz, then b = ac?® and [a,b] = 1, a contradiction.
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2 = qzc = za and ¢ = 1, again a

If, on the other hand, zac = az, then zac
contradiction.

Therefore we may assume that z2, ax,ra ¢ T? and, arguing similarly, axc,
rac ¢ T?. Hence ecither ax = zac or xa = axc. Since both these equalities
could not hold together, if follows that S? = T2 U {22, ax, za, axc, vac} and
b, xb € T?. Assume, for example, that bz < xb. Then it is easy to see that the
only possibility is bz = a?, [b,x] = [a, 2], ©b = a®c?, and (vii) holds.

Now assume that x3x4 = z4x3. Acting similarly, while considering the order
opposite to <, we may assume that xixe2 = zox;. Then Lemma 4.6 applies and
S has the required structure.

Conversely, suppose that one of (i), (ii), (iii), (iv), (v), (vi), (vii) holds.

First suppose that (i) holds and write S = {s,t,a, b}, where s,t € Z((S)) and
ab # ba. Then we have S? = {5212, st, sa, sb, ta, tb, a,b*, ab,ba}, and |S?| = 11,
as required.

If either (ii) or (iii) or (iv) holds, then it is easy to verify directly that
|52 = 11.

Suppose that (v) holds, and write T = {a,ac,b}. Then |T?| = 7 and S? =
T?20xTU{x?}. Thus |S?| =7+ 3 + 1 = 11, as required.

Now suppose that (vi) holds and write T = {a,ac,ac®}. Then |T?| = 5,
leTNTx|=1and [TxrUxT|=3+3—1=5. Since S% = T?U(xT UTz){z?},
it follows that |S?| =5+ 5+ 1 = 11 as required.

Finally suppose that (vii) holds and write T' = {a, ac,b}. Suppose, for ex-
ample, that bx = a?, ab = bac, b = brc®> and za = axc. Then |T?| =
7 and Tox U aT = {br = a? ax,axc = za,a*c® = zb,axc®> = wac}. Thus
(TzUxT)NT? = {a? a*c*} and |S?| =7+5—2+1 =11, as required.  [@ED

References

[1] E. BREUILLARD, B. GREEN, T. TA0, The structure of approximate groups, Publ. Math.
Inst. Hautes Etudes Sci. 116 (2012), 115-221.

[2] R. BorTo MURA AND A. RHEMTULLA, Orderable groups, Lecture Notes in Pure and
Applied Mathematics, Marcel Dekker, Inc., New York and Basel, (1977).

[3] J. CiLLERUELO, M. Sitva, C. VINUESA, A sumset problem, J. Comb. Number Theory
2(1) (2010), 79-89.

[4] G.A. FrREIMAN, On the addition of finite sets I, Izv. Vyss. Ucebn. Zaved. Matematika 6
(13) (1959), 202-213.

[6] G.A. FRrREIMAN, Inverse problems of additive number theory. IV: On the addition of finite
sets. II. (Russian) Elabuz. Gos. Ped. Inst. Uten. Zap., 8 (1960), 72-116.

[6] G.A. FrREMAN, Foundations of a structural theory of set addition, Translations of math-
ematical monographs, 37, Amer. Math. Soc., (1973), Providence, Rhode Island.



104 G. A. Freiman, M. Herzog, P. Longobardi, M. Maj and Y.V. Stanchescu

[7] G.A. FrREIMAN, Structure Theory of Set Addition, Astérisque, 258 (1999), 1-33.

[8] G.A. FreEmman, M. HErzoOG, P. LONGOBARDI AND M. MAJ, Small doubling in ordered
groups, J. Austral. Math. Soc., 96 (2014), no.3, 316-325.

[9] G. A. FreimMaN, M. Herzoq, P. LoNGOBARDI, M. MaJ aAND Y.V. STANCHESCU,
Direct and inverse problems in additive number theory and in non-abelian group theory,
European J. Combin., 40 (2014), 42-54.

[10] G.A. FreEmMAN, M. HEerzoG, P. LONGOBARDI, M. MaAJ, A. PLAGNE AND Y.V.
STANCHESCU, Small doubling in ordered groups: generators and structure, in prepara-
tion.

[11] G.A. FreEIMAN, M. HERZOG, P. LONGOBARDI, M. MAJ, AND Y.V. STANCHESCU,
Inverse problems in Additive Number Theory and in Non-Abelian Group Theory,
http://arziv.org/abs/1303.3053, 1-31.

[12] G.A. FrEIMAN, M. HERZOG, P. LONGOBARDI, M. MAJ, AND Y.V. STANCHESCU, Small
doubling in nilpotent groups, in preparation.

[13] A.M.W. GuLass, Partially ordered groups, World Scientific Publishing Co., Series in
Algebra, 7, (1999).

[14] B. GREEN, What is ... an approximate group?, Notices Amer. Math. Soc. 59 (2012), no.
5, 655—656.

[15] N. Gir, H.A. HELFGOTT, Growth of small generating sets in SL,(Z/pZ), Int. Math.
Res. Not. IMRN 18, (2011), 4226-4251.

[16] H.A. HELFGOTT, Growth in SL3(Z/pZ), J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3,
761-851.

[17] R. JiN, Detailed Structure for Freiman’s 3k-3 Theorem, arXiv:1308.0741v1 [math.NT]
8 Aug 2018

[18] V.F. Lev, P.Y. SMELIANSKY, On addition of two distinct sets of integers, Acta Arith.
70 (1995), no. 1, 85-91.

[19] A.I. MALU'CEV, On ordered groups, Izv. Akad. Nauk. SSSR Ser. Mat. 13 (1948), 473-482.

[20] M.B. NatHANSON, Additive Number Theory Inverse Problems and the Geometry of
Sumsets, Springer, (1996).

[21] B.H. NEUMANN, On ordered groups, Amer. J. Math. 71 (1949), 1-18.

[22] T. SANDERS, The structure theory of set addition revisited, Bull. Amer. Math. Soc. 50(1)
(2013), 93-127.

[23] Y.V. StancHEscuU, On addition of two distinct sets of integers, Acta Arith. 75 (1996),
no. 2, 191-194.

[24] Y.V. StancHESCU, On the structure of sets with small doubling property on the plane.l.,
Acta Arith. 83 (1998), no. 2, 127-141.

[25] Y.V. StancHEscU, The structure of d-dimensional sets with small sumset, J. Number
Theory 130 (2010), no. 2, 289-303.

[26] T.C. Tao, Product set estimates for noncommutative groups, Combinatorica 28 (2008),
no. 5, 547-594.



