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1 Introduction

Our main aim in this paper is to present some results to help us better
understand some different ways a subgroup can be embedded in a finite group
and their impact on the group structure.

The following definition turns out to be central in our study.

Definition 1.1. A subgroup embedding property is a map f which associates
with each group G (in some fixed universe) a subset f(G) of S(G), the set of all
subgroups of G, and satisfies

a(f(G)) = f(a(@)) (*)
for all group isomorphisms «: G — a(G).

This definition is very general and represents the minimum requirement that
a subgroup embedding property should be an invariant of each isomorphism
class of groups.

Normal, subnormal or pronormal subgroups are typical examples of embed-
ding properties of subgroups which are important in investigations of groups
with a rich subgroup structure.

Most useful embedding properties of subgroups satisfy additional conditions
which are useful in proofs using induction arguments in the universe of all finite
groups. We collect them in the following definition.
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Definition 1.2. Let f be a subgroup embedding property.

e We say that f is quotient-invariant if the equation (*) holds for all epi-
morphisms a: G — a(G).

e We say that f is subgroup-invariant if, for all S < G, f(S) ={SNH |
He f(G)}.

e We say that f is persistent if, for all G and all S < G, we have H € f(S)
whenever H < S and H € f(G).

In the sequel, we analyse three different subgroup embedding properties in
the universe of all finite groups. Therefore the unspoken rule is that all groups
are finite.

2 Supplements of normal subgroups

Our attention in this section is confined to study an embedding property of
subgroups which has a strong influence in the study of the structure of soluble
groups and it is defined as follows:

Let G be a group. We write:

f(G)={H<G|G=HFG)}

Here F(G) is the Fitting subgroup of G, that is, the subgroup generated by
all nilpotent normal subgroups of GG. Clearly f is a subgroup embedding property
which is persistent but it is not quotient-invariant. However, it satisfies

a(f(G)) € f(a(@))

for all group epimorphisms a.

Note that if G is soluble, then ®(G), the Frattini subgroup of G, is a proper
subgroup of F(G) (|7, A, 10.6]). Therefore there exists a maximal subgroup
M of G such that G = M F(G), that is, M € f(G). However, if G is a Frattini
extension of a non-abelian simple group, then ®(G) = F(G) and so f(G) = {G}.

More generally, for a normal nilpotent subgroup @ of a group G, we can
define

fo(G)={H<G|G=HQ}

It is clear that fo(G) C f(G) and it satisfies:

(1) if H € fo(G) and H < S, then H € fsng(S). More generally, if X is a
subgroup of G, then X N fo(G) is contained in fxng(X).
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(2) if N <G, then fo(G)N/N C fon/n(G/N)

In the following we give some significant properties of f.

Recall that a formation is a class of groups § which is closed under taking
epimorphic images and subdirect products. In particular, if § is non-empty, every
group G has a smallest normal subgroup with quotient in § called the §-residual

of G and denoted by G%.

(1) (Bryant, Bryce, and Hartley |7, IV, 1.14]) Every subgroup in f(G) belongs
to the formation generated by G.

(2) (|7, IV, 1.17(b)]) If T is a formation, then US is contained in GS for all
U e f(Q).
As a consequence, every formation composed of nilpotent groups is closed
under taking subgroups, that is, it is a variety.

Recall that a formation § is saturated if it is closed under taking Frattini
extensions.

(3) (|7, IV, 1.17(b)]) If G is soluble and § is a saturated formation such that
G ¢ 3§, there exists a mazimal subgroup M € f(G) such that G/Mg ¢ §.

This property allows Carter and Hawkes to define §-normalisers in every
soluble group as an extension of Hall’s system normalisers (see [7, V, Sec-
tion 3]).

(4) Every subgroup D in f(G) has the cover and avoidance property in G.

Therefore the intersection of D with a chief series of GG is a chief series of D
and the automorphism groups induced on the corresponding chief factors
are isomorphic.

As to whether some subgroups in f(G) are G-conjugate has been an im-
portant theme in group theory. In fact, fundamental results on the theory of
Schunck classes and projectors of soluble groups depend on the conjugacy of
some elements of f(G).

Given a class of groups X, a subgroup H of a group G is X-mazximal in G if

(1) H € X and
(2) it H<L<Gand L€ X, then H = L.

A subgroup H of a group G is said to be an X-projector of G if HN/N is
X-maximal in G/N for all normal subgroups N of G.
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Denote by Projy the subgroup embedding property associating with each
group G the set of all X-projectors of G.

If X = &, with p a prime, Projx(G) = Syl,(G). More generally, if X = &,
with 7 a set of primes, Proj;(G) = Hall;(G) for all m-separable groups G. A
classical result of Carter shows that the nilpotent self-normalising subgroups of
a soluble group are exactly the projectors for the class 91 of all nilpotent groups
([7, 11, 4.6]).

A class of groups $) is a Schunck class if ) is closed under taking epimorphic
images and a group G belongs to $) if and only if every primitive epimorphic
image of G belongs to $.

The following theorem was proved by Gaschiitz and Schunck in the soluble
case, and it is a consequence of Forster’s results in the general case (|7, III,
Section 3]).

Theorem 2.1. Let X be a class of groups. Then Projy(G) # 0 for all groups
G if and only if X is a Schunck class. Moreover, if G is soluble, Projx(G) is a
conjugacy class of subgroups of G In particular, Projy is a persistent Q-invariant
subgroup embedding property in the soluble universe.

The conjugacy of projectors associated to Schunck classes in the soluble

universe depends heavily on the following lemma due to Gaschiitz (see [7, III,
3.14)).

Lemma 2.2 (Gaschiitz, [8]). Let ) be a Schunck class and let Q) be a nilpotent
normal subgroup of G. If H is an $-mazimal subgroup in fo(G), then H €
Projs(G).

More recently, Parker and Rowley [14] proved the following result:

Theorem 2.3. Let G be a soluble group and @ a nilpotent normal subgroup of
G such that no G-chief factor of G/Q is G-isomorphic to a G-chief factor of Q.
IfU, Ve fo(G) andUNQ=VNQ, then U and V are G-conjugate.

The authors claimed that this result arose during investigations into 2-
minimal subgroups of classical groups. In fact, they describe a typical situation
in which the above theorem applies. Let X be the wreath product

3020---028ym(4)120---22
———— ————
a b

of order 22" 13272 0t @ be the base group of this wreath product.

Hence () has order 32" The X-chief factors in Q@ have orders 3, 3, ..., 32b_1,
32b+2b+1, 32b+2, ey 32a+b+1, whereas the X-chief factors in X/@Q are all 2-groups
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except for a single X-chief factor of order 32", Thus X satisfies the hypothesis
of Theorem 2.3. Hence any two subgroups complementing @) are X-conjugate.

Theorem 2.3 can be interpreted in terms of Schunck classes and project-
ors and it can be deduced directly from Gaschiitz’s lemma and conjugacy of
projectors of soluble groups.

Proof of Theorem 2.3. Consider the Schunck class $) of all soluble groups whose
primitive epimorphic images belong to the class of all primitive epimorphic im-
ages of G/Q. If we argue by minimal counterexample, then G = (U, V9), for
allg € G,and UNQ = VNE = 1. Gaschiitz’s lemma implies that U and
V' are contained in $-projectors U* and V* of G respectively. Hence G € 9, a
contradiction proving the result. QED

In the following we shall show that it is possible to go much further in the
conjugacy problem for elements in f(G).

If we turn the situation on its head and look for stuctural conditions on a
normal subgroup of a group having a conjugacy class of supplements composed
of maximal subgroups we have:

Theorem 2.4 (Ballester-Bolinches, Ezquerro, [4]). Suppose that G is a group
and Q is a normal subgroup of G such that any two mazximal subgroups of G
supplementing to Q in G are G-conjugate. Then Q is a soluble group of nilpotent
length at most 2.

The bound of the previous theorem is best possible as the following example
shows:

Example 2.5. Consider the group X = SL(2,3) acting on a 2-dimensional
vector space V over the Galois field GF(3). Construct the semidirect product
G =[V]|X. If Z =7Z(X), the centre of X, then @) = ZV is a supersoluble non-
nilpotent normal subgroup of GG. The set of maximal subgroups supplementing
Q@ in G is the conjugacy class of all core-free maximal subgroups of G comple-
menting V.

We present now some results which can be viewed as partial converses of
the above theorem in the case when ) is a normal nilpotent subgroup of G.
They are, therefore, results providing sufficient conditions to ensure conjugacy
of subgroups in fg(G).

The following example shows that imposing some conditions on the intersec-
tions such as local conjugacy seems quite reasonable.

Example 2.6. Let G = (a,b,2: a®> = > =22 =1=[a,b],a® = a1, = b~ 1).
If @ = (a,b) = C3 x C3, then the subgroups U = (a,z) and V = (b,z) are two
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supplements to () in G which are not G-conjugate. In this case UNQ and VN Q
are two different normal subgroups of G.

Definition 2.7. Two subgroups A and B of a group G are locally G-conjugate
if every Sylow subgroup of A is G-conjugate to a Sylow subgroup of B.

Our next theorem describes a minimal configuration encountered in the study
of conjugacy of supplements of normal nilpotent subgroups of soluble groups,
from which sufficient conditions and counterexamples emerge.

Theorem 2.8 (Ballester-Bolinches, Ezquerro, [4]). Let X be a Q-closed class of
groups, and

§=(G: G/M € X for some nilpotent normal subgroup M of G).

Let G be a soluble group of minimal order in § among the groups satisfying the
following property:

() there exists a milpotent normal subgroup @ of G and non-G-
conjugate elements U and V in fo(G) such that U N Q is locally
G-conjugate to V N Q.

Then G is a p-group for some prime p.

The above theorem allows us to obtain a number of results on conjugacy
of supplements of nilpotent normal subgroups of soluble groups, all of them
proved in [4]. They allows us to confirm that local conjugacy is a good subgroup
embedding property to study the conjugacy problem for subgroups in f(G). The
first one is an extension of Theorem 2.3.

Corollary 2.9. Let G be a soluble group and @ a nilpotent normal subgroup of
G such that no G-chief factor of G/Q is G-isomorphic to a G-chief factor of Q.

IfU, V € fo(G) such that UNQ and V N Q are locally G-conjugate, then
U and V are G-conjugate.

An advantage of Parker and Rowley’s procedure in Theorem 2.3 is that the
condition U N Q =V N @ holds in subgroups containing both U and V. This is
not longer true in the case of local conjugacy.

We shall show now by an example that no statement of similar kind is possible
if we remove the hypothesis on the chief factors.

Example 2.10. Let @ be a group isomorphic to the quaternion group of order
8. Consider a subgroup T' of Aut(Q) isomorphic to S3. Write T = (b, c: b* =
2 =1,b6=b"1). Set B = (b) and C = (c). Construct the semidirect product
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G = [Q|T. Write Z = Z(Q) = (z). Note that G/QB is a complemented central
2-chief factor of G over @ and Z/1 is also a central G-chief factor of G below Q.
Consider the subgroups U = (b,¢) and V = (b, zc). Then U and V are two
non-conjugate supplements to Q) in G suchthat UN@Q =1=V NQ.

Corollary 2.11. Suppose that G is a soluble group and Q is a nilpotent normal
subgroup of G. If U,V € fo(G) such that U and V are locally G-conjugate, then
U and V' are G-conjugate.

Let F be a saturated formation. If G is a group and G ¢ T, then the F-
residual G¥ of G is a non-trivial normal subgroup of G which is supplemented
in G by every F-projector of G.

Corollary 2.12. Let F be a saturated formation and let G be a soluble group
whose F-residual G¥ is nilpotent. Then any two supplements U and V of G¥ in
G are G-conjugate provided U N G¥ and V N GF are locally G-conjugate.

The case when G is abelian is particularly interesting. In this case, GT is
complemented in G and its complements form a conjugacy class of subgroups of
G (|7, IV, 5.18]). In this case, Corollary 2.12 is equivalent to the fact that the
complements of G¥ are conjugate in G.

Corollary 2.13. Let F be a saturated formation and let G be a soluble group
whose F-residual G¥ is abelian. The following conditions are equivalent:

(1) Any two supplements U and V of G¥ in G are G-conjugate provided UNG*
and VN G¥ are locally G-conjugate.

(2) Any two complements U and V of G* in G are G-conjugate.

3 Subgroups of hypercentral type

The focus of this section relates to the influence of minimal subgroups, i.
e. subgroups of prime order, on the structure of a group. It is known that the
embedding of minimal subgroups of a group often gives a good insight into the
group structure: a theorem of Itd about the p-nilpotence of a group in which the
subgroups of order p or order 4 if p = 2 are central is a good example.

A typical situation one can find in this context is the following: Let f be
a persistent subgroup embedding property. Suppose we would like to prove a
result of the following type:

A group G belongs to a class X provided that the minimal subgroups
of G belong to f(G).
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Through the approach of a minimal counterexample, G ¢ X and every proper
subgroup of G belongs to X, that is, G is an X-critical group. Hence if we wanted
to prove a result of the above type, we would need to have a good structural
knowledge of the groups in such minimal classes. Therefore it is convenient to
settle the following definition.

Definition 3.1. Let X be a class of groups. A group G is said to be X-critical
(or critical for X) if G ¢ X, but all proper subgroups of G belong to X.

It is clear that a detailed knowledge of the X-critical groups is likely to give
some insight into just what makes a group to belong to X.

One of the most popular critical groups are the ones associated to the class of
all nilpotent groups. These groups were investigated by Schmidt in 1924 and so
they are usually called Schmidt groups. By a result of 1td, every critical group for
the class of all p-nilpotent groups, p a prime, is a Schmidt group. The structure
of the M-critical groups is very restricted as the following theorem shows.

Theorem 3.2 (Schmidt, [15]). (1) If every proper subgroup of a group G is
nilpotent, then G is soluble.

(2) Assume that every proper subgroup of G is nilpotent, but G is not nilpotent.
Then G satisfies:

a. |G| = p2q® for prime numbers p # q,

the Sylow p-subgroup is normal in G,
e the Sylow q-subgroups are cyclic, and
e for every Sylow q-subgroup Q of G, ®(Q) < Z(G).
b. The nilpotency class of the Sylow p-subgroup P of G is at most two.
Moreover, ®(P) < Z(G).
c. o Forp>2, P has exponent p;
o for p =2, the exponent of P is at most 4.

In the sequel, we shall discuss a couple of recent results in which the above
method of proof could be applied. To this end, we need the following notation.
Let P be a p-group. If k is a natural number we denote
O (P) if pis odd,

Qu(P) = (x € P:a? =1), and Q(P)= {m(za) ifp=2.

We consider the subgroup embedding property f defined by:

(@) ={H <G| H<Zo(G) }-
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Here Zo(G) is the hypercentre of G, that is, the last term of the ascending
central series of the group G.

It follows that f is a persistent subgroup embedding property.

Let p be a prime and let X be the saturated formation of all p-nilpotent
groups. Assume that G is a group such that Q(P) C f(G) for some P € Syl,(G).
Then OP(G) < Centg (Q(P)) and therefore G cannot be an X-critical group by
Theorem 3.2. Therefore G should belong to X. This proves:

Theorem 3.3 (Gonzalez-Sanchez, Weigel, [10, Theorem Al). Let p be an odd
prime and let G be a p-central group of height k > 1. Then G is p-nilpotent.

Here a group G is said to be p‘-central of height k if Q;(P) < Z1(G), where
P € Syl,(G) and Z;(G) is the kth term of the ascending central series of G.
The above theorem does not hold for p = 2.

Example 3.4. Let G be the semidirect group of the quaternion group of order
8 with a cyclic group of order 3 permuting the subgroups of order 4 of the
quaternion group. Then the unique subgroup of G of order 2 is central in G and
G is not 2-nilpotent.

Let ® be a class of p-groups, p a prime. We say that a subgroup H of a group
G controls fusion of ©-groups in G if

(1) any ®-subgroup of G is conjugate to a subgroup of H, and

(2) for any ®-subgroup A of G and for any g € G such that A, A9 < H, there
exists x € H such that for all a € A, a9 = a”.

If p is a prime, let D, denote:
(1) the class of cyclic groups of order p, if p is odd, and

(2) the class of cyclic groups of order 2 or 4, if p = 2.

Let
fp(G) ={H < G| H controls fusion of ®,-subgroups }.

If G is p-nilpotent, it is clear that Syl,(G) is contained in f,(G). Conversely,
assume, arguing by contradiction, that G is not p-nilpotent and Syl,(G) C f,(G).
Then G contains a subgroup C' which is critical for the class of all p-nilpotent
groups. By Theorem 3.2, C = AB, where A is a normal p-subgroup of C and
expA =pif pisodd, orexpA < 4if p =2, and B = (g) is a cyclic Sylow
g-subgroup of C, where ¢ # p. The minimality of C' implies that A = [A4, g].
Moreover the hypothesis on G implies that there exists a Sylow p-subgroup P
of G such that A < P and there exists € P such that a® = a9 for every a € A.
This means that A < Z(P) and the condition on G implies that A = 1. This
contradiction proves:
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Theorem 3.5 (Gonzalez-Sanchez, |9, Main Theorem|). Let p be a prime. A
group G is p-nilpotent if and only if every Sylow p-subgroup of G belongs to
fo(G).

Example 3.4 shows that it is necessary to consider the subgroups of order 4
in the above theorem.

These results belong to a consolidated research project in which subgroups
of hypercentral type are used as descriptors for characterising some structural
properties of the groups. The theory of formations turns out to be a useful tool
and provides a suitable language to analyse these phenomena.

Let me introduce some definition and results before stating our next theorem.
They can be found in |7, IV, Section 4].

A formation F is said to be a Baer-local formation if there exists a function
F which assigns to every simple group J a class of groups F'(J) C F provided
that F'(J) is a formation whenever the simple group J is abelian, such that F
is equal to the class of all groups G such that for every G-chief factor H/K,
G/ Centg(H/K) € F(J) if the composition factors of H/K are isomorphic to
J. In addition, F' can be chosen satisfying &,F(J) = F'(J) if J is isomorphic to
a cyclic group of order p.

In a group G, a G-chief factor H/K whose composition factors are isomorphic
to a simple group J is said to be F-central in G if G/ Centq(H/K) € F(J).
Note that G belongs to F if and only if every chief factor of G is F-central in
G. More generally, a normal subgroup N of G is said to be F-hypercentral in G
if every G-chief factor below N is F-central in G. The product of all normal F-
hypercentral subgroups of G is also F-hypercentral in G. This subgroup is called
the F-hypercentre of G and it is denoted by Zg(G). For the class 9 of nilpotent
groups, we have Zgn(G) = Z(G).

Any saturated formation is a Baer-local formation. The class of all generalised
nilpotent groups is a non-saturated Baer-local formation.

Theorem 3.6 (Ballester-Bolinches, Ezquerro, Skiba [5]). Let F be a Baer-lo-cal
formation. Given a group G and a normal subgroup E of G, let Zp(G) contain a
p-subgroup A of E which is mazimal being abelian and of exponent dividing p*,
where k is some natural number, k # 1 if p =2 and the Sylow 2-subgroups of E
are non-abelian. Then

E[Oy(E) < Zp (G/Op/(E))'

Suppose the result is false and let the group G provide a counterexample of
least order. Among the normal subgroups of G for which the theorem fails we
choose E of minimal order. Then F is a normal subgroup of G, containing a
p-subgroup A which is maximal being abelian and of an exponent dividing p¥,
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where k is some natural number, k # 1 if p = 2 and the Sylow 2-subgroups
of E are non-abelian such that A < Zy(G) but £/ O, (F) is not contained in
Ze(G/ Oy (E)).

Let W = A% be the normal closure of A in G and set C = Cg(W). Let
E, be a Sylow p-subgroup of F containing A. Then C, = E, N C is a Sylow
p-subgroup of C'. The contradiction follows after the following steps.

1) Oy(E) =1.

2 E/C < ZF(G/C)

(1) o
(2)
(3) Cp # 1 and Qi(Cp) < A.
(4) C = E. In particular, Q4(E,) < A < Z(E).
(5) B

5
As an immediate deduction we have:

Corollary 3.7. LetF be a Baer-local formation. Given a group G and a normal
subgroup E of G such that G/E € F, let Zy(G) contain a p-subgroup A of E
which is mazimal being abelian and of exponent dividing p*, where k is some
natural number, k # 1 if p = 2 and the Sylow 2-subgroups of E are non-abelian.
Then G/Oy (E) € F.

Corollary 3.8. Let F be a Baer-local formation. Consider a group G and a
normal subgroup E of G. For each prime divisor p of |E| assume that Zp(G)
contains a p-subgroup A of E which is maximal being abelian of exponent dividing
p*, where k is some positive integer, k # 1 if p = 2 and the Sylow 2-subgroups
of E are non-abelian. Then E < Zp(G).

Since Zp(G) centralises the F-residual of G (|7, IV, 6.10]), and the generalised
Fitting subgroup contains its centraliser ([12, X, 13.12]), we have:

Corollary 3.9. Let IF be a Baer-local formation and E = F*(G) the generalised
Fitting subgroup of G. For each prime divisor p of |E| let Zp(G) contain a p-
subgroup A of E which is mazimal being abelian and of exponent dividing p”,

where n is some natural number, n # 1 if the Sylow 2-subgroups of FE are non-
abelian. Then G € F.

Some earlier results can be also deduced from Theorem 3.6.

Corollary 3.10 (Ballester-Bolinches, Pedraza-Aguilera, |6]). Let K be a normal
subgroup of a group G with G/K contained in the saturated formation F. If every
element of order p or 4 (if p=2) lies in Zp(G), then G/Opy(K) belongs to F.
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Corollary 3.11 (Ballester-Bolinches, Pedraza-Aguilera, |6]). Let F be a sub-
group-closed saturated formation. Suppose that G is a group with a normal sub-
group N such that G/N € F. If every minimal subgroup of N is contained in
Zr(G) and N has abelian Sylow 2-subgroups, then G is an F-group.

Corollary 3.12 (Yokoyama, [17]). Let F be a saturated formation containing
the class of all nilpotent groups. Let N be a normal subgroup of a soluble group
G such that G/N € F. If every subgroup of N of prime order is contained in
Zr(G) and the Sylow 2-subgroups of N are quaternion-free, then G € F.

Corollary 3.13 (Laue, [13]). Let F be a local formation and G a soluble group.
For each prime divisor p of |F(G)| let Zr(G) contain a p-subgroup A of E which
18 maximal being abelian and of exponent dividing p™, where n is some natural
number, n # 1 if p=2. Then G € F.

4 p-length and p-nilpotency

The focus of this section relates to some questions concerning p-length and p-
nilpotency of p-soluble groups. The results we are going to present are motivated
by the papers [10] and [16].

In the sequel, p will denote a prime number.

The p-nilpotency of a group G is a property which can be read off from the
structure of the Sylow p-subgroups of G and the way in which they are embedded
in G. For instance, if a Sylow p-subgroup P of a finite group is abelian, then
G is p-nilpotent if and only if Ng(P) is p-nilpotent. This is a classical result
of Burnside ([11, IV, 2.6]), which was extended to modular Sylow p-subgroups,
i. e. groups with modular subgroup lattice, by Esteban-Romero and the author
of this paper (see [1, 2, 2.2.5]). This result is extremely useful in establishing
relationships between local characterisations of T-, PT- and PST-groups.

Following [16], we say that a class of groups X determines p-nilpotency locally
if a group G with a Sylow p-subgroup P in X is p-nilpotent whenever Ng(P) is
p-nilpotent.

Of course, not every class of p-groups determines p-nilpotency locally. It is
enough to consider a class containing a p-group P which can be embedded in a
non-p-nilpotent group G as a Carter subgroup. On the positive side, the above-
mentioned results show that the class of all abelian p-groups and the class of
all modular p-groups are both examples of subgroup-closed classes of p-groups
determining p-nilpotency locally. Regular p-groups ([11, III, Section 10]) is also
a subgroup-closed class of p-groups which determines p-nilpotency locally by
virtue of a result of Hall and Wielandt ([11, IV, 8.1]). Every finite p-group of
nilpotency class less or equal to p — 1 and every finite p-group of exponent p are



Subgroup embedding properties and the structure of finite groups 47

regular. Therefore the class of all p-groups of nilpotency class at most p — 1 and
the class of all p-groups of exponent p are subgroup-closed classes determining
p-nilpotency locally.

Weigel [16] proved that if p is odd, there exists a subgroup-closed class of
p-groups which determines p-nilpotency locally and contains every subgroup-
closed class of finite p-groups with this property. It is defined as follows.

Definition 4.1. Let £ = (g1,92,...,9p) be an elementary abelian group of
order pP. Let C' = (x) be a cyclic group of order p™ acting on E, where m is a
natural number, in such a way g7 = gi+1 for 1 <i < p—1and g; = g1. Let
Y, (m) = [E]C be the corresponding semidirect product.

Note that Y,(1) is just the regular wreath product Cp, Cp,.

We say that a p-group P is slim if P contains no subgroup isomorphic to
Y, (m) for all m > 1.

By [16, Main Theorem], the class of all slim p-groups, p odd, determines p-
nilpotency locally and it contains every subgroup-closed class finite of p-groups
which determines p-nilpotency locally ([16, 4.3]).

For the proof of his Main Theorem, Weigel considers the semidirect product
S = [V]Sy, where V is a faithful and irreducible Sp-module over GF(p), the
finite field of p-elements and Sy = [Q]C), is the semidirect product of C), with a
faithful and irreducible Cp-module @ over GF(q) for a prime ¢ # p (here C) is
the cyclic group of order p). These groups are called pgp-sandwich groups in |16].
Weigel also deals with groups X with a normal p-subgroup N contained in the
Frattini subgroup ®(X) of X such that X/N = S and N NOP(X) < Z(OP(X)).
The corresponding natural map 7: X — S is called there a p-Schur-Frattini
extension. The main result of [16] follows from the interesting fact that such a
group X always possesses a subgroup isomorphic to Y,(m) provided that p is
odd ([16, Section 3.4 and Proposition 3.5]). This fact is useful in some arguments
by minimal counterexample.

Unfortunately, we have found some delicate points in the proof of the above
statement. For instance, the image of the form defined in Equation (3.14) is not
contained in general in GF(p®) because we cannot assure in general that this
image is fixed by the corresponding Frobenius-type automorphism. Moreover, in
the construction of the subgroup isomorphic to Y,(m) in Case 1.B in the proof
of [16, Proposition 3.5], it is not sufficient to ensure that the chosen element x
is not fixed under the automorphism x — xpf, because x could be taken as an
element of the maximal submodule of the regular module and hence x might
generate a non-regular submodule.

We have been unable to overcome those difficulties just following Weigel’s
proof and so we have tried to solve them by presenting an alternative proof of
Proposition 3.5 of [16]. This is the main result of the paper [2].
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Suppose that k is a natural number and let X; be the class of all p-groups
P such that Q(P) < Zg(P). It is clear that X is a subgroup-closed class of
p-groups.

If p is odd, then every P € X,_; has to be slim. Therefore we have:

Corollary 4.2 (Gonzalez Sanchez, Weigel, [10, Theorem D|). Let p be an odd
prime. Then X,_1 determines p-nilpotency locally.

Our aim in the sequel is to describe a completely different approach based
on the classical theory of Hall and Higman and focusing the attention on the
p-length and moving from here to p-nilpotence. The next result is a structural
theorem about p-soluble groups of minimal order among the groups belonging
to a subgroup-closed class of groups and whose p-length is greater than 1. Such
groups are critical for the subgroup-closed saturated Fitting formation £, of all
p-soluble groups of p-length at most 1.

Theorem 4.3 (Ballester-Bolinches, Esteban-Romero, Ezquerro, [3]). Let P be
a subgroup-closed class of p-groups and let Y(P) denote the class of all p-soluble
groups whose Sylow p-subgroups are in P. Suppose that Y(P) € £,, and let G
be a p-soluble group of minimal order in P(P) \ L. If P is a Sylow p-subgroup
of G, then ®(G), the Frattini subgroup of G, is contained in P and one of the
following holds.

(1) If p is not a Fermat prime or the Hall p’-subgroups of G are abelian, then
the nilpotency class of P/®(G) is greater or equal than p.

(2) If p is a Fermat prime, then the nilpotency class of P/®(G) is greater or
equal than p — 1.

Our group G satisfies the following structural conditions:
(1) Oy (G) = 1. Therefore if F' is the Fitting subgroup of G, then F' = O,(G)
and Centg(F) < F.
(2) G/®(G) is primitive and so F/®(G) = Soc(G/P(G)) is a chief factor of
G/P(G).

(3) If P is a Sylow p-subgroup of G, then Ng(P) is the unique maximal sub-
group of G containing P.

(4) G is a {p,q }-group for some prime g # p. Then there exist a Sylow p-
subgroup P of G and a Sylow ¢-subgroup @ of G such that G = PQ.

(5) Write A = 0, 4(G). If N/ Op(G) = ®(A/ Op(G)), then A/N is the unique
minimal normal subgroup of G/N and Ng(P) = PN. Moreover O?(G) <
A.
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(6)

(7)

Let M be a maximal subgroup of G complementing F'/®(G). Write B =
PN M and let @ be a Sylow g-subgroup of G contained in M. We have:

B is a Sylow p-subgroup of M and M = @QB.

ISR

B/®(G) is a cyclic p-group. Hence P/F is cyclic.
M = Ng(Q) and Z(M/P(G)) is cyclic.

07(G), B(G)] = 1.

e. B < Centg(®(Q)).

f. Z

& o

We focus now our attention on the quotient group G = G/®(G). For
any subgroup X of G we will write X to denote the image of X in G:
X =X®(GQ)/2(G).

Q is either elementary abelian or an extraspecial ¢g-group.

F can be regarded as an irreducible and faithtul M—moﬁdule over K, the
finite field of p-elements. Let F' denote the subgroup F' regarded as B-
module over K by restriction.

If Q is abelian, then FE is a direct sum of copies of the regular K B-module.
Assume that () is extraspecial.

If p is not a Fermat prime, then regular K B-module is a direct summand
of F—.
B

If p is a Fermat prime then two possibilities arise:

e cither the regular K B-module is a direct summand of FE,

e or Fg is a direct sum of copies of the Jacobson radical, J(KB), of
the regular K B-module.

Write W = C,1C),. Note that Z(W) is of order p, W’ is elementary abelian
of order pP~! and the nilpotency class of W is p. Hence the nilpotency class
of W/Z(W)is p— 1.

a. Suppose that p is not a Fermat prime or Q is abelian. Then a, direct
summand of FE is isomorphic to the regular K B-module. In this case
P/®(G) contains a subgroup isomorphic to W. Then the nilpotency
class of P/®(G) is greater or equal than p.
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b. Suppose that p is a Fermat prime. Then it could occur that FE is a
direct sum of indecomposable K B-modules isomorphic to J(K B). In
this case P/®(G) contains a subgroup isomorphic to W/ Z(W) and
so the nilpotency class of P/®(G) is greater or equal than p — 1.

Example 4.4. The group of automorphisms of ) = C1; has a subgroup iso-
morphic to H = C5. Let S = [Q]H be the corresponding semidirect product. Let
V be an irreducible and faithful module for S over the field of 5 elements. The
dimension of V' as a GF(5)-vector space is 5. Let G = [V]S be the corresponding
semidirect product.

The Sylow 5-subgroup of G is isomorphic to [V]H, which is isomorphic to
the wreath product C51Cs. The nilpotency class of P is exactly 5. Moreover, the
maximal subgroups of G are isomorphic to S, to [V]S or to [V]Q, all of them of
5-length one. Since ®(G) = 1, the bound of Theorem 4.3 cannot be improved in
general.

Example 4.5. Let @ be a central product of a quaternion group of order 8
and a dihedral group of order 8 with |Q| = 32. Let ¢g; be an automorphism of
Q@ of order 5 and let R = [Q](g1). The group R can be regarded as a group
of automorphisms of an extraspecial group E of order 5° and exponent 5. The
semidirect product G = [E]R has order |G| = 2°-5% = 500,000. Then G is soluble
of 5-length 2, but every maximal subgroup of G is of 5-length 1. The nilpotency
class of P/®(G) is 4 = 5 — 1. This shows that the bound of Theorem 4.3 cannot
be improved for the Fermat prime p = 5.

Let (X) denote the class of all p-soluble groups whose Sylow p-subgroups
are in Xy, k a natural number. Assume that 2)(Xj) is not contained in £,. If
G is a group of minimal order in YP(X;) \ £, then G is a group described in
Theorem 4.3. We use the same notation.

Consider the normal subgroup A. Suppose that every element of order p of
Ais in ®(G). Then Q(F) < Zoo(G) N A < Zoo(A). Then A is p-nilpotent. This
implies that ) < Centg(F') < F, and this is not true. Therefore there exists an
element of order p, or order 2 or 4 if p = 2, say g, in F' \ ®(G).

Since F//®(G) is a minimal normal subgroup of G/®(G), then the normal
closure of (¢®(Q)) in G/®(G) is F/®(G). Hence (g)¢®(G) = F. In fact, since
g € F, then (9)¢ < F and then (9)¢ < Q(P). Hence F = (9)®(G) <
QP)P(G).

Since Q(P) < Zg(P), then

F/3(G) < UP)B(G)/B(G) < Z4(P)B(G)/2(C) < Zy(P/B(G)).

Since P/F = B is a cyclic group, we have that the nilpotency class of P/®(G)
is lesser or equal to k.
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Consequently, the class )(X) is contained in £, forall k < p—1. If k =p—1
and p is not a Fermat prime, 9)(X,_1) is contained in £, either. Moreover, every
group G in P(X,—1) whose Hall p'-subgroups of G are abelian is of p-length at
most 1.

Therefore we have:

Corollary 4.6. Let p be a prime.

(1) If p is odd, then X,_o determines p-length locally.
(2) If p is not a Fermat prime, then X,_1 determines p-length locally.

(3) If p is odd, then X,_1 determines p-length locally in groups with abelian
Hall p'-subgroups.

Corollary 4.7. Suppose that p is a prime. Let G be a group and P a Sylow
p-subgroup of G. Assume that Ng(P) is p-nilpotent.

(1) If Q(P) < Zp—1(P), then G is p-nilpotent.

(2) If p =2, and either Q(P) < Z(P), or Q1(P) < Z(P) and P is quaternion-
free, then G is 2-nilpotent.

These results improve Theorem E and Theorem D of [10] respectively.
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