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1 Introdu
tion

Our main aim in this paper is to present some results to help us better

understand some di�erent ways a subgroup 
an be embedded in a �nite group

and their impa
t on the group stru
ture.

The following de�nition turns out to be 
entral in our study.

De�nition 1.1. A subgroup embedding property is a map f whi
h asso
iates

with ea
h group G (in some �xed universe) a subset f(G) of S(G), the set of all
subgroups of G, and satis�es

α
(
f(G)

)
= f

(
α(G)

)
(*)

for all group isomorphisms α : G −→ α(G).

This de�nition is very general and represents the minimum requirement that

a subgroup embedding property should be an invariant of ea
h isomorphism


lass of groups.

Normal, subnormal or pronormal subgroups are typi
al examples of embed-

ding properties of subgroups whi
h are important in investigations of groups

with a ri
h subgroup stru
ture.

Most useful embedding properties of subgroups satisfy additional 
onditions

whi
h are useful in proofs using indu
tion arguments in the universe of all �nite

groups. We 
olle
t them in the following de�nition.
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De�nition 1.2. Let f be a subgroup embedding property.

• We say that f is quotient-invariant if the equation (*) holds for all epi-

morphisms α : G −→ α(G).

• We say that f is subgroup-invariant if, for all S 6 G, f(S) = {S ∩ H |
H ∈ f(G) }.

• We say that f is persistent if, for all G and all S 6 G, we have H ∈ f(S)
whenever H 6 S and H ∈ f(G).

In the sequel, we analyse three di�erent subgroup embedding properties in

the universe of all �nite groups. Therefore the unspoken rule is that all groups

are �nite.

2 Supplements of normal subgroups

Our attention in this se
tion is 
on�ned to study an embedding property of

subgroups whi
h has a strong in�uen
e in the study of the stru
ture of soluble

groups and it is de�ned as follows:

Let G be a group. We write:

f(G) = {H 6 G | G = HF(G) }.

Here F(G) is the Fitting subgroup of G, that is, the subgroup generated by

all nilpotent normal subgroups of G. Clearly f is a subgroup embedding property

whi
h is persistent but it is not quotient-invariant. However, it satis�es

α
(
f(G)

)
⊆ f

(
α(G)

)

for all group epimorphisms α.

Note that if G is soluble, then Φ(G), the Frattini subgroup of G, is a proper

subgroup of F(G) ([7, A, 10.6℄). Therefore there exists a maximal subgroup

M of G su
h that G = M F(G), that is, M ∈ f(G). However, if G is a Frattini

extension of a non-abelian simple group, then Φ(G) = F(G) and so f(G) = {G}.
More generally, for a normal nilpotent subgroup Q of a group G, we 
an

de�ne

fQ(G) = {H 6 G | G = HQ }
It is 
lear that fQ(G) ⊆ f(G) and it satis�es:

(1) if H ∈ fQ(G) and H 6 S, then H ∈ fS∩Q(S). More generally, if X is a

subgroup of G, then X ∩ fQ(G) is 
ontained in fX∩Q(X).
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(2) if N E G, then fQ(G)N/N ⊆ fQN/N (G/N)

In the following we give some signi�
ant properties of f .

Re
all that a formation is a 
lass of groups F whi
h is 
losed under taking

epimorphi
 images and subdire
t produ
ts. In parti
ular, if F is non-empty, every

group G has a smallest normal subgroup with quotient in F 
alled the F-residual

of G and denoted by GF
.

(1) (Bryant, Bry
e, and Hartley [7, IV, 1.14℄) Every subgroup in f(G) belongs

to the formation generated by G.

(2) ([7, IV, 1.17(b)℄) If F is a formation, then UF
is 
ontained in GF

for all

U ∈ f(G).

As a 
onsequen
e, every formation 
omposed of nilpotent groups is 
losed

under taking subgroups, that is, it is a variety.

Re
all that a formation F is saturated if it is 
losed under taking Frattini

extensions.

(3) ([7, IV, 1.17(b)℄) If G is soluble and F is a saturated formation su
h that

G /∈ F, there exists a maximal subgroup M ∈ f(G) su
h that G/MG /∈ F.

This property allows Carter and Hawkes to de�ne F-normalisers in every

soluble group as an extension of Hall's system normalisers (see [7, V, Se
-

tion 3℄).

(4) Every subgroup D in f(G) has the 
over and avoidan
e property in G.

Therefore the interse
tion of D with a 
hief series of G is a 
hief series of D
and the automorphism groups indu
ed on the 
orresponding 
hief fa
tors

are isomorphi
.

As to whether some subgroups in f(G) are G-
onjugate has been an im-

portant theme in group theory. In fa
t, fundamental results on the theory of

S
hun
k 
lasses and proje
tors of soluble groups depend on the 
onjuga
y of

some elements of f(G).

Given a 
lass of groups X, a subgroup H of a group G is X-maximal in G if

(1) H ∈ X and

(2) if H 6 L 6 G and L ∈ X, then H = L.

A subgroup H of a group G is said to be an X-proje
tor of G if HN/N is

X-maximal in G/N for all normal subgroups N of G.
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Denote by ProjX the subgroup embedding property asso
iating with ea
h

group G the set of all X-proje
tors of G.

If X = Sp, with p a prime, ProjX(G) = Sylp(G). More generally, if X = Eπ,

with π a set of primes, ProjX(G) = Hallπ(G) for all π-separable groups G. A


lassi
al result of Carter shows that the nilpotent self-normalising subgroups of

a soluble group are exa
tly the proje
tors for the 
lass N of all nilpotent groups

([7, III, 4.6℄).

A 
lass of groups H is a S
hun
k 
lass if H is 
losed under taking epimorphi


images and a group G belongs to H if and only if every primitive epimorphi


image of G belongs to H.

The following theorem was proved by Gas
hütz and S
hun
k in the soluble


ase, and it is a 
onsequen
e of Förster's results in the general 
ase ([7, III,

Se
tion 3℄).

Theorem 2.1. Let X be a 
lass of groups. Then ProjX(G) 6= ∅ for all groups

G if and only if X is a S
hun
k 
lass. Moreover, if G is soluble, ProjX(G) is a


onjuga
y 
lass of subgroups of G. In parti
ular, ProjX is a persistent q-invariant

subgroup embedding property in the soluble universe.

The 
onjuga
y of proje
tors asso
iated to S
hun
k 
lasses in the soluble

universe depends heavily on the following lemma due to Gas
hütz (see [7, III,

3.14℄).

Lemma 2.2 (Gas
hütz, [8℄). Let H be a S
hun
k 
lass and let Q be a nilpotent

normal subgroup of G. If H is an H-maximal subgroup in fQ(G), then H ∈
ProjH(G).

More re
ently, Parker and Rowley [14℄ proved the following result:

Theorem 2.3. Let G be a soluble group and Q a nilpotent normal subgroup of

G su
h that no G-
hief fa
tor of G/Q is G-isomorphi
 to a G-
hief fa
tor of Q.

If U , V ∈ fQ(G) and U ∩Q = V ∩Q, then U and V are G-
onjugate.

The authors 
laimed that this result arose during investigations into 2-
minimal subgroups of 
lassi
al groups. In fa
t, they des
ribe a typi
al situation

in whi
h the above theorem applies. Let X be the wreath produ
t

3 ≀ 2 ≀ · · · ≀ 2︸ ︷︷ ︸
a

≀Sym(4) ≀ 2 ≀ · · · ≀ 2︸ ︷︷ ︸
b

of order 22
a+b−2−132

a+b+2+2b
. Let Q be the base group of this wreath produ
t.

Hen
e Q has order 32
a+b+2

. The X-
hief fa
tors in Q have orders 3, 3, . . . , 32
b−1

,

32
b+2b+1

, 32
b+2

, . . . , 32
a+b+1

, whereas the X-
hief fa
tors in X/Q are all 2-groups
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ex
ept for a single X-
hief fa
tor of order 32
b
. Thus X satis�es the hypothesis

of Theorem 2.3. Hen
e any two subgroups 
omplementing Q are X-
onjugate.

Theorem 2.3 
an be interpreted in terms of S
hun
k 
lasses and proje
t-

ors and it 
an be dedu
ed dire
tly from Gas
hütz's lemma and 
onjuga
y of

proje
tors of soluble groups.

Proof of Theorem 2.3. Consider the S
hun
k 
lass H of all soluble groups whose

primitive epimorphi
 images belong to the 
lass of all primitive epimorphi
 im-

ages of G/Q. If we argue by minimal 
ounterexample, then G = 〈U, V g〉, for
all g ∈ G, and U ∩ Q = V ∩ Q = 1. Gas
hütz's lemma implies that U and

V are 
ontained in H-proje
tors U∗
and V ∗

of G respe
tively. Hen
e G ∈ H, a


ontradi
tion proving the result.

QED

In the following we shall show that it is possible to go mu
h further in the


onjuga
y problem for elements in f(G).
If we turn the situation on its head and look for stu
tural 
onditions on a

normal subgroup of a group having a 
onjuga
y 
lass of supplements 
omposed

of maximal subgroups we have:

Theorem 2.4 (Ballester-Bolin
hes, Ezquerro, [4℄). Suppose that G is a group

and Q is a normal subgroup of G su
h that any two maximal subgroups of G
supplementing to Q in G are G-
onjugate. Then Q is a soluble group of nilpotent

length at most 2.

The bound of the previous theorem is best possible as the following example

shows:

Example 2.5. Consider the group X = SL(2, 3) a
ting on a 2-dimensional

ve
tor spa
e V over the Galois �eld GF(3). Constru
t the semidire
t produ
t

G = [V ]X. If Z = Z(X), the 
entre of X, then Q = ZV is a supersoluble non-

nilpotent normal subgroup of G. The set of maximal subgroups supplementing

Q in G is the 
onjuga
y 
lass of all 
ore-free maximal subgroups of G 
omple-

menting V .

We present now some results whi
h 
an be viewed as partial 
onverses of

the above theorem in the 
ase when Q is a normal nilpotent subgroup of G.
They are, therefore, results providing su�
ient 
onditions to ensure 
onjuga
y

of subgroups in fQ(G).
The following example shows that imposing some 
onditions on the interse
-

tions su
h as lo
al 
onjuga
y seems quite reasonable.

Example 2.6. Let G = 〈a, b, x : a3 = b3 = x2 = 1 = [a, b], ax = a−1, bx = b−1〉.
If Q = 〈a, b〉 ∼= C3 × C3, then the subgroups U = 〈a, x〉 and V = 〈b, x〉 are two
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supplements to Q in G whi
h are not G-
onjugate. In this 
ase U ∩Q and V ∩Q
are two di�erent normal subgroups of G.

De�nition 2.7. Two subgroups A and B of a group G are lo
ally G-
onjugate

if every Sylow subgroup of A is G-
onjugate to a Sylow subgroup of B.

Our next theorem des
ribes a minimal 
on�guration en
ountered in the study

of 
onjuga
y of supplements of normal nilpotent subgroups of soluble groups,

from whi
h su�
ient 
onditions and 
ounterexamples emerge.

Theorem 2.8 (Ballester-Bolin
hes, Ezquerro, [4℄). Let X be a Q-
losed 
lass of

groups, and

F = (G : G/M ∈ X for some nilpotent normal subgroup M of G).

Let G be a soluble group of minimal order in F among the groups satisfying the

following property:

(†) there exists a nilpotent normal subgroup Q of G and non-G-


onjugate elements U and V in fQ(G) su
h that U ∩ Q is lo
ally

G-
onjugate to V ∩Q.

Then G is a p-group for some prime p.

The above theorem allows us to obtain a number of results on 
onjuga
y

of supplements of nilpotent normal subgroups of soluble groups, all of them

proved in [4℄. They allows us to 
on�rm that lo
al 
onjuga
y is a good subgroup

embedding property to study the 
onjuga
y problem for subgroups in f(G). The
�rst one is an extension of Theorem 2.3.

Corollary 2.9. Let G be a soluble group and Q a nilpotent normal subgroup of

G su
h that no G-
hief fa
tor of G/Q is G-isomorphi
 to a G-
hief fa
tor of Q.

If U , V ∈ fQ(G) su
h that U ∩ Q and V ∩ Q are lo
ally G-
onjugate, then

U and V are G-
onjugate.

An advantage of Parker and Rowley's pro
edure in Theorem 2.3 is that the


ondition U ∩Q = V ∩Q holds in subgroups 
ontaining both U and V . This is

not longer true in the 
ase of lo
al 
onjuga
y.

We shall show now by an example that no statement of similar kind is possible

if we remove the hypothesis on the 
hief fa
tors.

Example 2.10. Let Q be a group isomorphi
 to the quaternion group of order

8. Consider a subgroup T of Aut(Q) isomorphi
 to S3. Write T = 〈b, c : b3 =
c2 = 1, bc = b−1〉. Set B = 〈b〉 and C = 〈c〉. Constru
t the semidire
t produ
t
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G = [Q]T . Write Z = Z(Q) = 〈z〉. Note that G/QB is a 
omplemented 
entral

2-
hief fa
tor of G over Q and Z/1 is also a 
entral G-
hief fa
tor of G below Q.

Consider the subgroups U = 〈b, c〉 and V = 〈b, zc〉. Then U and V are two

non-
onjugate supplements to Q in G su
h that U ∩Q = 1 = V ∩Q.

Corollary 2.11. Suppose that G is a soluble group and Q is a nilpotent normal

subgroup of G. If U, V ∈ fQ(G) su
h that U and V are lo
ally G-
onjugate, then

U and V are G-
onjugate.

Let F be a saturated formation. If G is a group and G 6∈ F, then the F-

residual GF
of G is a non-trivial normal subgroup of G whi
h is supplemented

in G by every F-proje
tor of G.

Corollary 2.12. Let F be a saturated formation and let G be a soluble group

whose F-residual GF
is nilpotent. Then any two supplements U and V of GF

in

G are G-
onjugate provided U ∩GF
and V ∩GF

are lo
ally G-
onjugate.

The 
ase when GF
is abelian is parti
ularly interesting. In this 
ase, GF

is


omplemented in G and its 
omplements form a 
onjuga
y 
lass of subgroups of

G ([7, IV, 5.18℄). In this 
ase, Corollary 2.12 is equivalent to the fa
t that the


omplements of GF
are 
onjugate in G.

Corollary 2.13. Let F be a saturated formation and let G be a soluble group

whose F-residual GF
is abelian. The following 
onditions are equivalent:

(1) Any two supplements U and V of GF
in G are G-
onjugate provided U∩GF

and V ∩GF
are lo
ally G-
onjugate.

(2) Any two 
omplements U and V of GF
in G are G-
onjugate.

3 Subgroups of hyper
entral type

The fo
us of this se
tion relates to the in�uen
e of minimal subgroups, i.

e. subgroups of prime order, on the stru
ture of a group. It is known that the

embedding of minimal subgroups of a group often gives a good insight into the

group stru
ture: a theorem of It� about the p-nilpoten
e of a group in whi
h the

subgroups of order p or order 4 if p = 2 are 
entral is a good example.

A typi
al situation one 
an �nd in this 
ontext is the following: Let f be

a persistent subgroup embedding property. Suppose we would like to prove a

result of the following type:

A group G belongs to a 
lass X provided that the minimal subgroups

of G belong to f(G).
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Through the approa
h of a minimal 
ounterexample, G /∈ X and every proper

subgroup of G belongs to X, that is, G is an X-
riti
al group. Hen
e if we wanted

to prove a result of the above type, we would need to have a good stru
tural

knowledge of the groups in su
h minimal 
lasses. Therefore it is 
onvenient to

settle the following de�nition.

De�nition 3.1. Let X be a 
lass of groups. A group G is said to be X-
riti
al

(or 
riti
al for X) if G /∈ X, but all proper subgroups of G belong to X.

It is 
lear that a detailed knowledge of the X-
riti
al groups is likely to give

some insight into just what makes a group to belong to X.

One of the most popular 
riti
al groups are the ones asso
iated to the 
lass of

all nilpotent groups. These groups were investigated by S
hmidt in 1924 and so

they are usually 
alled S
hmidt groups. By a result of It�, every 
riti
al group for

the 
lass of all p-nilpotent groups, p a prime, is a S
hmidt group. The stru
ture

of the N-
riti
al groups is very restri
ted as the following theorem shows.

Theorem 3.2 (S
hmidt, [15℄). (1) If every proper subgroup of a group G is

nilpotent, then G is soluble.

(2) Assume that every proper subgroup of G is nilpotent, but G is not nilpotent.

Then G satis�es:

a. • |G| = paqb for prime numbers p 6= q,

• the Sylow p-subgroup is normal in G,

• the Sylow q-subgroups are 
y
li
, and

• for every Sylow q-subgroup Q of G, Φ(Q) 6 Z(G).

b. The nilpoten
y 
lass of the Sylow p-subgroup P of G is at most two.

Moreover, Φ(P ) 6 Z(G).


. • For p > 2, P has exponent p;

• for p = 2, the exponent of P is at most 4.

In the sequel, we shall dis
uss a 
ouple of re
ent results in whi
h the above

method of proof 
ould be applied. To this end, we need the following notation.

Let P be a p-group. If k is a natural number we denote

Ωk(P ) = 〈x ∈ P : xp
k

= 1〉, and Ω(P ) =

{
Ω1(P ) if p is odd,

Ω2(P ) if p = 2.

We 
onsider the subgroup embedding property f de�ned by:

f(G) = {H 6 G | H 6 Z∞(G) }.
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Here Z∞(G) is the hyper
entre of G, that is, the last term of the as
ending


entral series of the group G.
It follows that f is a persistent subgroup embedding property.

Let p be a prime and let X be the saturated formation of all p-nilpotent
groups. Assume that G is a group su
h that Ω(P ) ⊆ f(G) for some P ∈ Sylp(G).
Then Op(G) 6 CentG

(
Ω(P )

)
and therefore G 
annot be an X-
riti
al group by

Theorem 3.2. Therefore G should belong to X. This proves:

Theorem 3.3 (González-Sán
hez, Weigel, [10, Theorem A℄). Let p be an odd

prime and let G be a p-
entral group of height k > 1. Then G is p-nilpotent.

Here a group G is said to be pi-
entral of height k if Ωi(P ) 6 Zk(G), where
P ∈ Sylp(G) and Zk(G) is the kth term of the as
ending 
entral series of G.

The above theorem does not hold for p = 2.

Example 3.4. Let G be the semidire
t group of the quaternion group of order

8 with a 
y
li
 group of order 3 permuting the subgroups of order 4 of the

quaternion group. Then the unique subgroup of G of order 2 is 
entral in G and

G is not 2-nilpotent.

Let D be a 
lass of p-groups, p a prime. We say that a subgroup H of a group

G 
ontrols fusion of D-groups in G if

(1) any D-subgroup of G is 
onjugate to a subgroup of H, and

(2) for any D-subgroup A of G and for any g ∈ G su
h that A, Ag 6 H, there

exists x ∈ H su
h that for all a ∈ A, ag = ax.

If p is a prime, let Dp denote:

(1) the 
lass of 
y
li
 groups of order p, if p is odd, and

(2) the 
lass of 
y
li
 groups of order 2 or 4, if p = 2.

Let

fp(G) = {H 6 G | H 
ontrols fusion of Dp-subgroups }.
If G is p-nilpotent, it is 
lear that Sylp(G) is 
ontained in fp(G). Conversely,
assume, arguing by 
ontradi
tion, thatG is not p-nilpotent and Sylp(G) ⊆ fp(G).
Then G 
ontains a subgroup C whi
h is 
riti
al for the 
lass of all p-nilpotent
groups. By Theorem 3.2, C = AB, where A is a normal p-subgroup of C and

expA = p if p is odd, or expA 6 4 if p = 2, and B = 〈g〉 is a 
y
li
 Sylow

q-subgroup of C, where q 6= p. The minimality of C implies that A = [A, g].
Moreover the hypothesis on G implies that there exists a Sylow p-subgroup P
of G su
h that A 6 P and there exists x ∈ P su
h that ax = ag for every a ∈ A.
This means that A 6 Z(P ) and the 
ondition on G implies that A = 1. This

ontradi
tion proves:
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Theorem 3.5 (González-Sán
hez, [9, Main Theorem℄). Let p be a prime. A

group G is p-nilpotent if and only if every Sylow p-subgroup of G belongs to

fp(G).

Example 3.4 shows that it is ne
essary to 
onsider the subgroups of order 4
in the above theorem.

These results belong to a 
onsolidated resear
h proje
t in whi
h subgroups

of hyper
entral type are used as des
riptors for 
hara
terising some stru
tural

properties of the groups. The theory of formations turns out to be a useful tool

and provides a suitable language to analyse these phenomena.

Let me introdu
e some de�nition and results before stating our next theorem.

They 
an be found in [7, IV, Se
tion 4℄.

A formation F is said to be a Baer-lo
al formation if there exists a fun
tion

F whi
h assigns to every simple group J a 
lass of groups F (J) ⊆ F provided

that F (J) is a formation whenever the simple group J is abelian, su
h that F

is equal to the 
lass of all groups G su
h that for every G-
hief fa
tor H/K,

G/CentG(H/K) ∈ F (J) if the 
omposition fa
tors of H/K are isomorphi
 to

J . In addition, F 
an be 
hosen satisfying SpF (J) = F (J) if J is isomorphi
 to

a 
y
li
 group of order p.
In a groupG, aG-
hief fa
torH/K whose 
omposition fa
tors are isomorphi


to a simple group J is said to be F-
entral in G if G/CentG(H/K) ∈ F (J).
Note that G belongs to F if and only if every 
hief fa
tor of G is F-
entral in

G. More generally, a normal subgroup N of G is said to be F-hyper
entral in G
if every G-
hief fa
tor below N is F-
entral in G. The produ
t of all normal F-

hyper
entral subgroups of G is also F-hyper
entral in G. This subgroup is 
alled

the F-hyper
entre of G and it is denoted by ZF(G). For the 
lass N of nilpotent

groups, we have ZN(G) = Z∞(G).
Any saturated formation is a Baer-lo
al formation. The 
lass of all generalised

nilpotent groups is a non-saturated Baer-lo
al formation.

Theorem 3.6 (Ballester-Bolin
hes, Ezquerro, Skiba [5℄). Let F be a Baer-lo-
al

formation. Given a group G and a normal subgroup E of G, let ZF(G) 
ontain a

p-subgroup A of E whi
h is maximal being abelian and of exponent dividing pk,
where k is some natural number, k 6= 1 if p = 2 and the Sylow 2-subgroups of E
are non-abelian. Then

E/Op′(E) ≤ ZF

(
G/Op′(E)

)
.

Suppose the result is false and let the group G provide a 
ounterexample of

least order. Among the normal subgroups of G for whi
h the theorem fails we


hoose E of minimal order. Then E is a normal subgroup of G, 
ontaining a

p-subgroup A whi
h is maximal being abelian and of an exponent dividing pk,
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where k is some natural number, k 6= 1 if p = 2 and the Sylow 2-subgroups
of E are non-abelian su
h that A 6 ZF(G) but E/Op′(E) is not 
ontained in

ZF(G/Op′(E)).
Let W = AG

be the normal 
losure of A in G and set C = CE(W ). Let
Ep be a Sylow p-subgroup of E 
ontaining A. Then Cp = Ep ∩ C is a Sylow

p-subgroup of C. The 
ontradi
tion follows after the following steps.

(1) Op′(E) = 1.

(2) E/C ≤ ZF(G/C).

(3) Cp 6= 1 and Ωk(Cp) ≤ A.

(4) C = E. In parti
ular, Ωk(Ep) ≤ A ≤ Z(E).

(5) E = Ep.

As an immediate dedu
tion we have:

Corollary 3.7. Let F be a Baer-lo
al formation. Given a group G and a normal

subgroup E of G su
h that G/E ∈ F, let ZF(G) 
ontain a p-subgroup A of E
whi
h is maximal being abelian and of exponent dividing pk, where k is some

natural number, k 6= 1 if p = 2 and the Sylow 2-subgroups of E are non-abelian.

Then G/Op′(E) ∈ F.

Corollary 3.8. Let F be a Baer-lo
al formation. Consider a group G and a

normal subgroup E of G. For ea
h prime divisor p of |E| assume that ZF(G)

ontains a p-subgroup A of E whi
h is maximal being abelian of exponent dividing

pk, where k is some positive integer, k 6= 1 if p = 2 and the Sylow 2-subgroups
of E are non-abelian. Then E ≤ ZF(G).

Sin
e ZF(G) 
entralises the F-residual of G ([7, IV, 6.10℄), and the generalised

Fitting subgroup 
ontains its 
entraliser ([12, X, 13.12℄), we have:

Corollary 3.9. Let F be a Baer-lo
al formation and E = F∗(G) the generalised

Fitting subgroup of G. For ea
h prime divisor p of |E| let ZF(G) 
ontain a p-
subgroup A of E whi
h is maximal being abelian and of exponent dividing pn,
where n is some natural number, n 6= 1 if the Sylow 2-subgroups of E are non-

abelian. Then G ∈ F.

Some earlier results 
an be also dedu
ed from Theorem 3.6.

Corollary 3.10 (Ballester-Bolin
hes, Pedraza-Aguilera, [6℄). Let K be a normal

subgroup of a group G with G/K 
ontained in the saturated formation F. If every

element of order p or 4 (if p = 2) lies in ZF(G), then G/Op′(K) belongs to F.



46 A. Ballester-Bolin
hes

Corollary 3.11 (Ballester-Bolin
hes, Pedraza-Aguilera, [6℄). Let F be a sub-

group-
losed saturated formation. Suppose that G is a group with a normal sub-

group N su
h that G/N ∈ F. If every minimal subgroup of N is 
ontained in

ZF(G) and N has abelian Sylow 2-subgroups, then G is an F-group.

Corollary 3.12 (Yokoyama, [17℄). Let F be a saturated formation 
ontaining

the 
lass of all nilpotent groups. Let N be a normal subgroup of a soluble group

G su
h that G/N ∈ F. If every subgroup of N of prime order is 
ontained in

ZF(G) and the Sylow 2-subgroups of N are quaternion-free, then G ∈ F.

Corollary 3.13 (Laue, [13℄). Let F be a lo
al formation and G a soluble group.

For ea
h prime divisor p of |F(G)| let ZF(G) 
ontain a p-subgroup A of E whi
h

is maximal being abelian and of exponent dividing pn, where n is some natural

number, n 6= 1 if p = 2. Then G ∈ F.

4 p-length and p-nilpoten
y

The fo
us of this se
tion relates to some questions 
on
erning p-length and p-
nilpoten
y of p-soluble groups. The results we are going to present are motivated

by the papers [10℄ and [16℄.

In the sequel, p will denote a prime number.

The p-nilpoten
y of a group G is a property whi
h 
an be read o� from the

stru
ture of the Sylow p-subgroups of G and the way in whi
h they are embedded

in G. For instan
e, if a Sylow p-subgroup P of a �nite group is abelian, then

G is p-nilpotent if and only if NG(P ) is p-nilpotent. This is a 
lassi
al result

of Burnside ([11, IV, 2.6℄), whi
h was extended to modular Sylow p-subgroups,
i. e. groups with modular subgroup latti
e, by Esteban-Romero and the author

of this paper (see [1, 2, 2.2.5℄). This result is extremely useful in establishing

relationships between lo
al 
hara
terisations of T-, PT- and PST-groups.

Following [16℄, we say that a 
lass of groups X determines p-nilpoten
y lo
ally

if a group G with a Sylow p-subgroup P in X is p-nilpotent whenever NG(P ) is
p-nilpotent.

Of 
ourse, not every 
lass of p-groups determines p-nilpoten
y lo
ally. It is

enough to 
onsider a 
lass 
ontaining a p-group P whi
h 
an be embedded in a

non-p-nilpotent group G as a Carter subgroup. On the positive side, the above-

mentioned results show that the 
lass of all abelian p-groups and the 
lass of

all modular p-groups are both examples of subgroup-
losed 
lasses of p-groups
determining p-nilpoten
y lo
ally. Regular p-groups ([11, III, Se
tion 10℄) is also

a subgroup-
losed 
lass of p-groups whi
h determines p-nilpoten
y lo
ally by

virtue of a result of Hall and Wielandt ([11, IV, 8.1℄). Every �nite p-group of

nilpoten
y 
lass less or equal to p− 1 and every �nite p-group of exponent p are
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regular. Therefore the 
lass of all p-groups of nilpoten
y 
lass at most p− 1 and

the 
lass of all p-groups of exponent p are subgroup-
losed 
lasses determining

p-nilpoten
y lo
ally.

Weigel [16℄ proved that if p is odd, there exists a subgroup-
losed 
lass of

p-groups whi
h determines p-nilpoten
y lo
ally and 
ontains every subgroup-


losed 
lass of �nite p-groups with this property. It is de�ned as follows.

De�nition 4.1. Let E = 〈g1, g2, . . . , gp〉 be an elementary abelian group of

order pp. Let C = 〈x〉 be a 
y
li
 group of order pm a
ting on E, where m is a

natural number, in su
h a way gxi = gi+1 for 1 6 i 6 p − 1 and gxp = g1. Let
Yp(m) = [E]C be the 
orresponding semidire
t produ
t.

Note that Yp(1) is just the regular wreath produ
t Cp ≀ Cp.

We say that a p-group P is slim if P 
ontains no subgroup isomorphi
 to

Yp(m) for all m ≥ 1.
By [16, Main Theorem℄, the 
lass of all slim p-groups, p odd, determines p-

nilpoten
y lo
ally and it 
ontains every subgroup-
losed 
lass �nite of p-groups
whi
h determines p-nilpoten
y lo
ally ([16, 4.3℄).

For the proof of his Main Theorem, Weigel 
onsiders the semidire
t produ
t

S = [V ]S0, where V is a faithful and irredu
ible S0-module over GF(p), the
�nite �eld of p-elements and S0 = [Q]Cp is the semidire
t produ
t of Cp with a

faithful and irredu
ible Cp-module Q over GF(q) for a prime q 6= p (here Cp is

the 
y
li
 group of order p). These groups are 
alled pqp-sandwi
h groups in [16℄.

Weigel also deals with groups X with a normal p-subgroup N 
ontained in the

Frattini subgroup Φ(X) of X su
h that X/N ∼= S and N ∩Op(X) 6 Z(Op(X)).
The 
orresponding natural map τ : X −→ S is 
alled there a p-S
hur-Frattini
extension. The main result of [16℄ follows from the interesting fa
t that su
h a

group X always possesses a subgroup isomorphi
 to Yp(m) provided that p is

odd ([16, Se
tion 3.4 and Proposition 3.5℄). This fa
t is useful in some arguments

by minimal 
ounterexample.

Unfortunately, we have found some deli
ate points in the proof of the above

statement. For instan
e, the image of the form de�ned in Equation (3.14) is not


ontained in general in GF(pe) be
ause we 
annot assure in general that this

image is �xed by the 
orresponding Frobenius-type automorphism. Moreover, in

the 
onstru
tion of the subgroup isomorphi
 to Yp(m) in Case 1.B in the proof

of [16, Proposition 3.5℄, it is not su�
ient to ensure that the 
hosen element x

is not �xed under the automorphism x 7→ xp
f
, be
ause x 
ould be taken as an

element of the maximal submodule of the regular module and hen
e x might

generate a non-regular submodule.

We have been unable to over
ome those di�
ulties just following Weigel's

proof and so we have tried to solve them by presenting an alternative proof of

Proposition 3.5 of [16℄. This is the main result of the paper [2℄.
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Suppose that k is a natural number and let Xk be the 
lass of all p-groups
P su
h that Ω(P ) 6 Zk(P ). It is 
lear that Xk is a subgroup-
losed 
lass of

p-groups.
If p is odd, then every P ∈ Xp−1 has to be slim. Therefore we have:

Corollary 4.2 (González Sán
hez, Weigel, [10, Theorem D℄). Let p be an odd

prime. Then Xp−1 determines p-nilpoten
y lo
ally.

Our aim in the sequel is to des
ribe a 
ompletely di�erent approa
h based

on the 
lassi
al theory of Hall and Higman and fo
using the attention on the

p-length and moving from here to p-nilpoten
e. The next result is a stru
tural

theorem about p-soluble groups of minimal order among the groups belonging

to a subgroup-
losed 
lass of groups and whose p-length is greater than 1. Su
h
groups are 
riti
al for the subgroup-
losed saturated Fitting formation Lp of all

p-soluble groups of p-length at most 1.

Theorem 4.3 (Ballester-Bolin
hes, Esteban-Romero, Ezquerro, [3℄). Let P be

a subgroup-
losed 
lass of p-groups and let Y(P) denote the 
lass of all p-soluble
groups whose Sylow p-subgroups are in P. Suppose that Y(P) 6⊆ Lp, and let G
be a p-soluble group of minimal order in Y(P)r Lp. If P is a Sylow p-subgroup
of G, then Φ(G), the Frattini subgroup of G, is 
ontained in P and one of the

following holds.

(1) If p is not a Fermat prime or the Hall p′-subgroups of G are abelian, then

the nilpoten
y 
lass of P/Φ(G) is greater or equal than p.

(2) If p is a Fermat prime, then the nilpoten
y 
lass of P/Φ(G) is greater or

equal than p− 1.

Our group G satis�es the following stru
tural 
onditions:

(1) Op′(G) = 1. Therefore if F is the Fitting subgroup of G, then F = Op(G)
and CentG(F ) 6 F .

(2) G/Φ(G) is primitive and so F/Φ(G) = Soc(G/Φ(G)) is a 
hief fa
tor of

G/Φ(G).

(3) If P is a Sylow p-subgroup of G, then NG(P ) is the unique maximal sub-

group of G 
ontaining P .

(4) G is a { p, q }-group for some prime q 6= p. Then there exist a Sylow p-
subgroup P of G and a Sylow q-subgroup Q of G su
h that G = PQ.

(5) Write A = Op,q(G). If N/Op(G) = Φ(A/Op(G)), then A/N is the unique

minimal normal subgroup of G/N and NG(P ) = PN . Moreover Op(G) 6
A.
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(6) Let M be a maximal subgroup of G 
omplementing F/Φ(G). Write B =
P ∩M and let Q be a Sylow q-subgroup of G 
ontained in M . We have:

a. B is a Sylow p-subgroup of M and M = QB.

b. B/Φ(G) is a 
y
li
 p-group. Hen
e P/F is 
y
li
.


. M = NG(Q) and Z(M/Φ(G)) is 
y
li
.

d. [Op(G),Φ(G)] = 1.

e. B 6 CentG(Φ(Q)).

f. Z∞(G) = Φ(G).

We fo
us now our attention on the quotient group G = G/Φ(G). For
any subgroup X of G we will write X to denote the image of X in G:

X = XΦ(G)/Φ(G).

(7) Q is either elementary abelian or an extraspe
ial q-group.

F 
an be regarded as an irredu
ible and faithful M -module over K, the

�nite �eld of p-elements. Let FB denote the subgroup F regarded as B-

module over K by restri
tion.

(8) IfQ is abelian, then FB is a dire
t sum of 
opies of the regularKB-module.

Assume that Q is extraspe
ial.

(9) If p is not a Fermat prime, then regular KB-module is a dire
t summand

of FB.

(10) If p is a Fermat prime then two possibilities arise:

• either the regular KB-module is a dire
t summand of FB,

• or FB is a dire
t sum of 
opies of the Ja
obson radi
al, J(KB), of
the regular KB-module.

Write W = Cp ≀Cp. Note that Z(W ) is of order p, W ′
is elementary abelian

of order pp−1
and the nilpoten
y 
lass of W is p. Hen
e the nilpoten
y 
lass

of W/Z(W ) is p− 1.

a. Suppose that p is not a Fermat prime or Q is abelian. Then a dire
t

summand of FB is isomorphi
 to the regular KB-module. In this 
ase

P/Φ(G) 
ontains a subgroup isomorphi
 to W . Then the nilpoten
y


lass of P/Φ(G) is greater or equal than p.
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b. Suppose that p is a Fermat prime. Then it 
ould o

ur that FB is a

dire
t sum of inde
omposable KB-modules isomorphi
 to J(KB). In
this 
ase P/Φ(G) 
ontains a subgroup isomorphi
 to W/Z(W ) and

so the nilpoten
y 
lass of P/Φ(G) is greater or equal than p− 1.

Example 4.4. The group of automorphisms of Q ∼= C11 has a subgroup iso-

morphi
 to H = C5. Let S = [Q]H be the 
orresponding semidire
t produ
t. Let

V be an irredu
ible and faithful module for S over the �eld of 5 elements. The

dimension of V as a GF(5)-ve
tor spa
e is 5. Let G = [V ]S be the 
orresponding

semidire
t produ
t.

The Sylow 5-subgroup of G is isomorphi
 to [V ]H, whi
h is isomorphi
 to

the wreath produ
t C5 ≀C5. The nilpoten
y 
lass of P is exa
tly 5. Moreover, the

maximal subgroups of G are isomorphi
 to S, to [V ]S or to [V ]Q, all of them of

5-length one. Sin
e Φ(G) = 1, the bound of Theorem 4.3 
annot be improved in

general.

Example 4.5. Let Q be a 
entral produ
t of a quaternion group of order 8
and a dihedral group of order 8 with |Q| = 32. Let g1 be an automorphism of

Q of order 5 and let R = [Q]〈g1〉. The group R 
an be regarded as a group

of automorphisms of an extraspe
ial group E of order 55 and exponent 5. The
semidire
t produ
t G = [E]R has order |G| = 25 ·56 = 500,000. Then G is soluble

of 5-length 2, but every maximal subgroup of G is of 5-length 1. The nilpoten
y

lass of P/Φ(G) is 4 = 5− 1. This shows that the bound of Theorem 4.3 
annot

be improved for the Fermat prime p = 5.

Let Y(Xk) denote the 
lass of all p-soluble groups whose Sylow p-subgroups
are in Xk, k a natural number. Assume that Y(Xk) is not 
ontained in Lp. If

G is a group of minimal order in Y(Xk) r Lp then G is a group des
ribed in

Theorem 4.3. We use the same notation.

Consider the normal subgroup A. Suppose that every element of order p of

A is in Φ(G). Then Ω(F ) 6 Z∞(G) ∩ A 6 Z∞(A). Then A is p-nilpotent. This
implies that Q 6 CentG(F ) 6 F , and this is not true. Therefore there exists an

element of order p, or order 2 or 4 if p = 2, say g, in F r Φ(G).
Sin
e F/Φ(G) is a minimal normal subgroup of G/Φ(G), then the normal


losure of 〈gΦ(G)〉 in G/Φ(G) is F/Φ(G). Hen
e 〈g〉GΦ(G) = F . In fa
t, sin
e

g ∈ F , then 〈g〉G 6 F and then 〈g〉G 6 Ω(P ). Hen
e F = 〈g〉GΦ(G) 6

Ω(P )Φ(G).
Sin
e Ω(P ) 6 Zk(P ), then

F/Φ(G) 6 Ω(P )Φ(G)/Φ(G) 6 Zk(P )Φ(G)/Φ(G) 6 Zk(P/Φ(G)).

Sin
e P/F ∼= B is a 
y
li
 group, we have that the nilpoten
y 
lass of P/Φ(G)
is lesser or equal to k.
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Consequently, the 
lass Y(Xk) is 
ontained in Lp for all k < p−1. If k = p−1
and p is not a Fermat prime, Y(Xp−1) is 
ontained in Lp either. Moreover, every

group G in Y(Xp−1) whose Hall p′-subgroups of G are abelian is of p-length at

most 1.
Therefore we have:

Corollary 4.6. Let p be a prime.

(1) If p is odd, then Xp−2 determines p-length lo
ally.

(2) If p is not a Fermat prime, then Xp−1 determines p-length lo
ally.

(3) If p is odd, then Xp−1 determines p-length lo
ally in groups with abelian

Hall p′-subgroups.

Corollary 4.7. Suppose that p is a prime. Let G be a group and P a Sylow

p-subgroup of G. Assume that NG(P ) is p-nilpotent.

(1) If Ω(P ) 6 Zp−1(P ), then G is p-nilpotent.

(2) If p = 2, and either Ω(P ) 6 Z(P ), or Ω1(P ) 6 Z(P ) and P is quaternion-

free, then G is 2-nilpotent.

These results improve Theorem E and Theorem D of [10℄ respe
tively.
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