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1 Introdution

The purpose of these letures is to ombine three topis, namely gradings on

assoiative algebras, polynomial identities and Brauer groups (division algebras).

There are well known onnetions among these topis. For instane, Galois

ohomology is one of the main tools in the study of �nite dimensional k-entral
simple algebras and Brauer groups. One way to realize this onnetion is via

�rossed produt strutures� one an put on (ertain) k-entral simple algebras.

Another way is via �Galois desent�.

Question: Can one introdue a rossed produt G-grading on every k-entral
simple algebra and in partiular on every k-entral division algebra?

Amitsur gave a negative answer to that question in 1972 by onstruting

�nonrossed produt� division algebras (see [8℄). His remarkable idea was to use

a �generi onstrution� and show that the �generi division algebra� is in gen-

eral not a rossed produt. The generi division algebra an be onstruted by

means of polynomial identities and this an serve as a bridge between Brauer
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groups and polynomial identities. In a similar way one an use G-graded poly-

nomial identities to onstrut �generi rossed produts�. In these letures I will

�rstly reall these notions (e.g. G-gradings, rossed produts, Brauer groups,

polynomial identities) and seondly I'll present relatively more reent results on

G-graded polynomial identities whih provide new �bridges� among the topis

mentioned above. In partiular, at the end, I will present a positive solution of

a onjeture of Bahturin and Regev on group gradings on assoiative algebras.

We start our journey with G-gradings on assoiative algebras.

2 Group gradings and Brauer groups

Let A be an assoiative algebra over a �eld F and G any group. We say that

A is G-graded if there exists a vetor spae deomposition

A ∼= ⊕g∈GAg

suh that for any g, h ∈ G we have AgAh ⊆ Agh. We refer to Ag, g ∈ G, as the
homogeneous omponent of degree g.

We say that the G-grading on A is strong if AgAh = Agh for every g, h ∈ G.
We say that the algebra A is a (ring theoreti) G-rossed produt over Ae (the

identity omponent) if and only if the homogeneous omponent Ag ontains

an invertible element for every g ∈ G. Note that if A is a (ring theoreti) G-
rossed produt, then it is neessarily strongly graded. The onverse is false as

the following example shows.

Example 2.1. Let A be the algebra of 3× 3-matries over a �eld F and G the

group with two elements (denoted by e, σ). Consider the G-grading on A given

by

Ae = spanF {e11, e12, e21, e22, e33}
Aσ = spanF {e13, e23, e31, e32}.

It is easy to hek that the grading is strong whereas the σ omponent has no

invertible elements.

The example above is a very speial ase of a general type of G-grading on

the algebra of n× n-matries over a �eld F .

De�nition 2.2. (Elementary grading) Let A be the algebra of n × n-matries

over a �eld F and let G be any group. Fix an n-tuple α = (g1, . . . , gn) ∈ Gn
.

For every g ∈ G we determine the g-homogeneous omponent of A to be

Ag = spanF {ei,j : g = g−1
i gj}.
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One heks easily that this indeed determines a G-grading on A.

Remark 2.3. 1) Note that α = (e, e, σ) ∈ {e, σ}3 yields the grading onsidered

in Example 2.1.

We observe (in the de�nition above) that sine the algebra A is simple, the

G-graded algebra A is G-simple (i.e. no nontrivial G-graded two sided ideals).

Next we present a �ompletely� di�erent type of G-gradings on semisimple

algebras whih turn into G-simple algebras. Let G be a �nite group and F a

�eld of harateristi zero or p and p does not divide the order of the group.

One knows (by Mashke's theorem) that the group algebra FG is semisimple.

Furthermore, sine every nonzero homogeneous element is invertible, the group

algebra FG is G-simple. More generally, we may twist the produt in FG by

means of a 2-oyle on G with oe�ients in F ∗
(reall that a funtion f :

G×G → F ∗
is a 2-oyle if for every σ, τ, ν ∈ G we have that f(στ, ν)f(σ, τ) =

f(σ, τν)f(τ, ν)) and obtain the twisted group algebra F fG. It is well known

that F fG is a semisimple (assoiative) algebra. Furthermore, we have that every

nonzero homogeneous element is invertible and hene F fG is G-simple. We an

extend this onstrution a bit more by taking a �nite subgroupH of any group G
and onsidering the twisted group algebra F fH as a G-graded algebra where the

g homogeneous omponent is 0 if g ∈ GrH (here: f is a 2-oyle onH). Clearly,

we obtain an H-simple algebra as above but we note that the algebra F fH is

also G-simple. In ase the �eld F is algebraially losed of harateristi zero, we

have that these two examples are the building bloks of any �nite dimensional

G-simple algebra. This is a theorem of Bahturin, Sehgal and Zaiev.

Theorem 2.4 ([10℄). Let A be a �nite dimensional G-graded simple algebra.

Then there exists a subgroup H of G, a 2-oyle α : H × H → F ∗
where the

ation of H on F is trivial, an integer r and an r-tuple g = (g1, g2, . . . , gr) ∈
Gr

suh that A is G-graded isomorphi to Λ = FαH ⊗ Mr(F ) where Λg =
spanF {πh ⊗ ei,j | g = g−1

i hgj}. Here πh ∈ FαH is a representative of h ∈ H
and ei,j ∈ Mr(F ) is the (i, j) elementary matrix.

In partiular the idempotents 1 ⊗ ei,i as well as the identity element of A are

homogeneous of degree e ∈ G.

Remark 2.5. Clearly, the G-graded algebra A is determined up to a G-graded

isomorphism by the presentation PG = (g = (g1, g2, . . . , gr), H, α).
An interesting question that arises here is the isomorphism problem, namely

what an we say about presentations PG,1 = (g1, H1, α1) and PG,2 = (g2, H2, α2)
of two G-graded algebras A1 and A2 if we know they are G-graded isomorphi?

De�nitely it is not true that the tuples g1 and g2 de�ning the orresponding

elementary grading must be the same. They also need not be equal up to per-

mutation. Similarly, the �nite subgroups H1 and H2 whih determine the �ne
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grading need not be equal as subgroups of G but they must be onjugate in G.

It turns out that there are 3 basi moves on any presentation PG of a G-graded

algebra A whih yield presentations of algebras whih are G-graded isomorphi

to A. The theorem says that any two algebras with given presentations are G-

graded isomorphi if and only if one an get from one presentation to the other

applying a �nite �nite number of moves of that kind. In ase G is abelian this

result was proved by Koshlukov and Zaiev (see [22℄). Later, in a joint work

with Darrell Haile (see [5℄), we proved it for any group G (i.e. not neessarily

abelian).

An important elementary G-grading is the so alled �rossed produt grad-

ing� (note: this is a very speial ase of the �ring theoreti rossed produt� we

mentioned above). Let G be a �nite group of order n and let A be the algebra

of n× n-matries over an algebraially losed �eld F . We onsider the element-

ary G-grading on A where the n-tuple g = (g1, . . . , gn) onsists of all elements

of G. It is easy to see that for any g ∈ G, the g-homogeneous omponents is

of dimension n and is obtained by the produt of all diagonal matries with a

suitable permutation matrix (namely, the permutation matrix whose entry (i, j)
is 1 whenever g = g−1

i gj and zero otherwise). We note that the e-omponent is

ommutative and for any g ∈ G we have agbg−1cg = cgbg−1ag, where ag, cg ∈ Ag

and bg−1 ∈ Ag−1 .

This grading takes us to Brauer group theory and spei�ally to the inter-

pretation of the Brauer group Br(k), k a �eld, as H2(Gk, k
∗
sep) where Gk is the

absolute Galois group of the �eld k and k∗sep is the separable losure of k. Hene,
before we ontinue with gradings, let us make a short trip into Brauer groups

theory and the theory of division algebras.

We �x a �eld k whih is usually not algebraially losed and we onsider �nite

dimensional entral simple algebras over k. By Wedderburn's theorem, suh an

algebra is isomorphi to the algebra of r × r matries over a �nite dimensional

division algebraD, whose enter is equal to k. Moreover, the integer r is uniquely
determined and the division algebra D is uniquely determined up to a k-algebras
isomorphism.

The Brauer group of k (denoted by Br(k)) onsists of equivalene lasses

of �nite dimensional k-entral simple algebras, where two algebras are equival-

ent if and only if they have underlying division algebras whih are k-algebra
isomorphi. So in fat, the elements Br(k) are in one to one orrespondene

with the k-entral division algebras. It looks a bit strange to de�ne the Brauer

group in that way. Why not just onsider the division algebras themselves? An

important reason is that we an introdue a natural multipliation on the set

of lasses, namely the tensor produt of lasses representatives over k. It is well
known that the tensor produt over k of two k-entral division algebras is a
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k-entral simple algebra (and hene matries over a k-entral division algebra)

but in general is not a division algebra. One shows (easily) that the produt of

lasses, via the tensor produt over k of their representatives, is well de�ned and

it indues an abelian group struture on Br(k). Indeed, the identity element is

the lass represented by k and the inverse of [A] ∈ Br(k) is [Aop] where Aop
is

the opposite algebra of A (one shows that A⊗Aop ∼= Md(k) where d = dimk(A)).
We refer the reader to [19℄ for a �ring theoreti� introdution to the theory of

simple algebras and Brauer groups.

An important haraterization of k-entral simple algebras is given by �k-
algebras that beome a matrix algebra after extending salars to an algebraially

losed �eld�. We say that k-entral simple algebras are twisted k-forms of matrix

algebras. This point of view will be very useful for us when we onsider the third

topi of these letures, polynomial identities. We refer the reader to [29℄ for an

introdution to the theory of Brauer groups using Galois desent.

We present now an important way to onstrut k-entral simple algebras. Let

L/k be a �nite Galois extension with Galois groupG. Consider the orresponding

skew group algebra LtG. It is isomorphi to the group algebra LG as a left L-
vetor spae and hene its elements are expressed by

∑
σ∈G aσuσ, where aσ ∈ L

and {uσ}σ∈G is a basis of LtG over L. The multipliation in LtG is de�ned

as to satisfy the relation auσbuτ = aσ(b)uστ , where a, b ∈ L and σ(b) is the

ation of σ on b as determined by the Galois ation of G on L. It is easy to

show that any element of LtG determines an endomorphism in Endk(L) by∑
σ∈G aσuσ(a) =

∑
σ∈G aσσ(a) and this orrespondene indues an isomorphism

of LtG with Endk(L) ∼= Mn(k) where n is the degree of the extension L/k. We

note in partiular that LtG represents the identity element in Br(k). Now we

wish to twist the produt in LtG by means of a 2-oyle f : G × G → L∗

(note: unlike the de�nition above, the ation of G on L is not trivial). Reall

that a funtion f : G × G → L∗
is a 2-oyle if for every σ, τ, ν ∈ G we

have f(στ, ν)f(σ, τ) = f(σ, τν)f(τ, ν)σ. Then by means of f we �hange� the

multipliation in LtG as to satisfy the rule

auσbuτ = aσ(b)f(σ, τ)uστ .

As above, a, b ∈ L and σ(b) is the ation of σ on b. It is easy to show that

the algebra we obtain is a k-entral simple algebra of dimension n2
over k. We

denote it by Lf
t G and refer to it as a rossed produt of G over L (see [19℄).

Remark 2.6. We emphasize one again that the terminology �rossed produt�

means di�erent type of algebras for di�erent researhers. The general de�nition

(for ring theorists and hene �ring theoreti rossed produt�) means a G-graded

algebra where every homogeneous omponent ontains an invertible element (see
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[23℄). The more restritive terminology (used by researhers in Brauer groups

and division algebras) means a k-entral simple algebra of the form Lf
t G.

Any 2-oyle determines a ohomology lass in H2(G,L∗) where 2-oyles
f and g are ohomologially equivalent (ohomologous) if there exists a 1-
parameter family {λσ}σ∈G ⊂ L∗

suh that for any σ and τ in G we have

f(σ, τ) = λσσ(λτ )λ
−1
στ g(σ, τ).

It is easy to show that up to a G-graded isomorphism the algebra Lf
t G

depends only on the ohomology lass α = [f ] ∈ H2(G,L∗) and not on the

representative f of α. We therefore write Lα
t G where α ∈ H2(G,L∗). The rossed

produt algebras play a key role in Brauer group theory sine any Brauer lass

an be represented by a rossed produt algebra. In fat, a k-rossed produt

algebra B = Lα
t G beomes trivial when extending salars to L, that is BL =

B ⊗k L = Mn(L) where n = ord(G), and one shows that the map

H2(G,L∗) → Br(k),

determined by sending a ohomology lass α to the lass represented by the

rossed produt algebra Lα
t G indues an isomorphism between H2(G,L∗) and

Br(L/k) = {[A] ∈ Br(k) : A⊗k L = Mr(L), some r}.
The fat that any Brauer lass may be represented by a rossed produt

algebra says that for any k-entral �nite dimensional division algebra there exists

an integer n suh that the algebra of n × n-matries over D is k-isomorphi to

a rossed produt algebra. But what about the division algebra itself? It was

an open question for many years whether any k-entral division algebra is a

rossed produt. This is known to be true for loal or global �elds (e.g. �nite

extensions of Q). In 1972, Amitsur showed that this is false in general by using

generi onstrutions (see [8℄). What is the relevane of all this to us? Reall

that we started our disussion with the desription of gradings on Mn(F ) and in

partiular we onsidered elementary gradings (rossed produt gradings) where

the tuple (g1, . . . , gn) onsists preisely of all elements of the group G (with

multipliity 1). It turns out and not di�ult to prove, that if we take a rossed

produt algebra Lα
t G and extend salars to F (the algebrai losure of k), we

obtain Mn(F ) with the rossed produt grading just mentioned. So, the rossed

produts areG-graded twisted k-forms of the matrix algebra with the elementary

grading. This will play a role in the sequel.

Before turning to our 3rd topi, namely polynomial identities, let me present

some results whih onern with ��ne gradings�. It is very well known that a

group algebra FG is semsimple (F of harateristi zero) and it is never simple

(unless G is of order 1). What about the twisted group algebra F fG where f is
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a 2-oyle? Can it be a simple algebra? For instane, onsider the quaternion

algebra over the omplex �eld F . It is isomorphi to M2(F ). On the other hand

it is isomorphi to a twisted group algebra with the Klein 4-group, where the 2-
oyle is determined suh that the generators of the group antiommute. More

generally, let k be a �eld whih ontains a primitive nth root of unity ζ. For any
a, b ∈ k∗ and integer n ≥ 2, we onsider the �symbol algebra� (a, b)n,k of degree n
over the �eld k. It is given by (a, b)n,k = 〈x, y : xn = a, yn = b, yx = ζnxy〉 (i.e.,
the k-algebra generated by x, y subjet to the relations xn = a, yn = b, yx =
ζnxy). It is not di�ult to show that any symbol algebra is k-entral simple.

A fundamental result of Merkurjev and Suslin says that if k-ontains enough

roots of unity then all elements of Br(k) are represented by tensor produts

of symbol algebras. More preisely, if k ontains a primitive n-th root of unity,

then any element in Br(k) whose order divides n is represented by the tensor

produt of symbol algebras (over k). Note that the symbol algebra (a, b)n,k is

isomorphi to kfZn ×Zn with a suitable 2-oyle f . Moreover, it is easy to see

that tensor produt of symbol algebras is isomorphi to a twisted group algebra

of the form kfU×U , where U is a (�nite) abelian group. So we see that twisting

a group algebra FG with a 2-oyle where the group G is abelian may give

a matrix algebra and more generally provides important examples of k-entral
simple algebras.

Question: Suppose G is nonabelian. Can we twist a group algebra FG into

a matrix algebra? It turns out that the answer is positive.

De�nition 2.7. A �nite group G is of entral type (nonlassially) if it admits

a nondegenerate 2-oyle f with values in C∗
suh that CfG ∼=Mn(C) for some

n.

Clearly, a group of entral type must be of square order. Howlett and Isaas

proved in 1982, using the lassi�ation of �nite simple groups, that suh a group

must be solvable (see [20℄).

Let me present an example of a group of entral type of order 36. Consider
the semidiret produt G = Sym(3)⋉C6 where Sym(3) is the symmetri group

of order 6 (generated by an element σ of order 3 and by an involution τ) and
C6 is the yli group of order 6 (generated by x). We let Sym(3) at on C6 via

the involution τ (that is via the image Sym(3)/ < σ >) where τ(x) = x−1
. One

shows with this set up that there is a bijetive 1-oyle from Sym(3) onto C6

and using that funtion one an onstrut a nondegenerate 2-oyle on G. It
turns out that this is a speial ase of a rather general onstrution introdued

by Etingof and Gelaki (see [14℄). Let H be a group of order n and suppose it

ats on an abelian group A of order n making A and hene A∗
, the dual of

A, into an H-module. Suppose there exists a bijetive 1-oyle π : H → A∗
.
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Then the semidiret produt H ⋉A is a group of entral type. Note that by the

result of Isaas and Howlett mentioned above, any group H admiting a bijetive

1-oyle onto an abelian group must be solvable. Let us remark here that the

last statement an be proved without the lassi�ation of �nite simple groups.

The onstrution of Etingof and Gelaki was extended by Ben David and

Ginosar. Using a bijetive 1-oyles fromH onto A∗
as above, one an onstrut

entral type groups whih are nonsplit extensions of H and A. Based on that

theory, jointly with Angel del Rio, we found an example of a group of entral

type of order 64 whih annot be expressed as a semidiret produt of two groups

of order 8 (see [12℄).

3 Polynomial identities

We now present the 3rd topi in this series of letures, namely polynomial

identities of assoiative algebras and G-graded polynomial identities of G-graded
assoiative algebras. We'll work throughout over a �eld F of harateristi zero.

�Most of the time� the �eld F will represent an algebraially losed �eld but if

we want to onnet PI theory with Brauer theory we drop that assumption. In

partiular we will be interested in �nding, roughly speaking, �small �eld� over

whih our algebras are de�ned. This will take us to a task whih we all minimal

�elds of de�nition of a given algebra. It is obvious that a matrix algebra is de�ned

over the rationals, but what about the G-simple algebras over the omplex �eld?

What is the minimal �eld of de�nition? In general we don't know the answer to

that question. However, we have an answer in ase the group G is abelian, or

in ase the grading is elementary or �ne. In order to prove this we need �graded

polynomial identities�.

Let us start our presentation with ordinary polynomial identities. Let A be

an algebra over a �eld F . We let F 〈X〉 be the free algebra over F with a ount-

able set of variables X. Elements of the free algebra will be alled polynomials in

nonommuting variables and we say that a nonzero polynomial f is an identity of

the algebra A if the polynomial vanishes upon any evaluation on A. We also say

that the algebra A satis�es the polynomial identity f (or simply say that A satis-

�es the polynomial f). So for example [x, y] = xy−yx is a polynomial identity of

any ommutative algebra and learly this haraterizes ommutative algebras. A

more interesting example is the Wagner identity of M2(F ). Consider the polyno-
mial [x, y]. Clearly, any evaluation of this polynomial on 2×2-matries is a trae

zero matrix and hene the eigenvalues are both zero or of opposite sign. If both

eigenvalues are zero then the square of the matrix is zero and hene in that ase

[x, y]2 represents the zero matrix. If the eigenvalues are of opposite sign, then the

matrix is diagonalizable, and so our matrix is similar to a diagonal matrix of the
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form (d,−d). Hene, in that ase, the square of the matrix is similar to (d2, d2)
whih is a salar matrix and nonzero. It follows that our matrix is salar. This

will be important for us later on. The polynomial [x, y]2 is an example of a entral

(nonidentity) polynomial. The existene of suh polynomials for n× n-matries

is a highly nontrivial problem whih was solved independently by Formanek and

Razmyslov. Later I will present a entral polynomial that was onstruted by

Regev. But where is the polynomial identity? Wagner's identity is [[x, y]2, z]. We

note that this is an homogeneous nonmultilinear polynomial of degree 5. It is
not di�ult to show (left to the reader) that the algebra of 2 × 2-matries has

an identity of smaller rank, namely s4 =
∑

σ∈Sym(4) sgn(σ)xσ(1)xσ(2)xσ(3)xσ(4).
More generally, the algebra of n × n-matries over a �eld satis�es the polyno-

mial identity s2n =
∑

σ∈Sym(2n) sgn(σ)xσ(1)xσ(2) · · ·xσ(2n). This is the famous

Amitsur-Levitzki theorem. Furthermore, and this is easy to show, the algebra

Mn(F ) does not satisfy any nonzero identity of degree < 2n. Let me show for

instane that Mn(F ) does not satisfy s2n−1. Consider the produt of the 2n− 1
elementary n×n-matries e1,1e1,2e2,2 · · · e(n−1),nen,n. We note that this produt

is equal to e1,n and hene nonzero. On the other hand, any nontrivial permuta-

tion vanishes as some of the indies do not math. We therefore see, by evaluating

the variables of s2n−1 as above, that we get e1,n and hene nonzero.

We say that an algebra is PI if it satis�es at least one nontrivial identity. As

we saw above, ommutative algebras are PI. Finite dimensional algebras are also

PI sine any algebra of dimension n satis�es any polynomial whih alternates

on n+1 variables. �In partiular� any �nite dimensional algebra over F satis�es

the Capelli polynomial

cn+1 =
∑

σ∈Sym(n+1)

sgn(σ)y0xσ(1)y1xσ(2)y2 · · ·xσ(n+1)yn+1.

Does every PI algebra satis�es a Capelli polynomial cn for some n? The

answer is negative. A ounter example whih is key for the whole theory of poly-

nomial identities is the Grassmann algebra E of ountable rank. By de�nition

E = F 〈x1, x2, . . . , xn, . . .〉/ < xixj + xjxi : i, j ≤ 1 > .

The algebra E is spanned by multilinear monomials where the monomials of

even length and odd length determine a Z2-grading in a natural way. It satis�es

the identity [[x, y], z] and this identity generates all identities in a sense I'll

soon desribe. It is not di�ult to prove that E does not satisfy any Capelli

polynomial.

Given an algebra A whih is PI, we onsider the set of all polynomial iden-

tities it satis�es. We denote this set by Id(A). It is easily seen that Id(A) is

a 2-sided ideal of F 〈X〉. Furthermore, Id(A) is losed under substitutions (or
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equivalently, it is losed under endomorphisms of F 〈X〉). We all an ideal with

that property, a T -ideal. Note that any T -ideal is the T -ideal of identities of an
algebra. Indeed, given a T -ideal I we may onsider the orresponding relatively

free algebra F 〈X〉/I. It is easy to see that Id(F 〈X〉/I) = I.

Now, we wish to �nd �simpler� generators of Id(A). Using a Vandermonde

argument one an show easily that if f is a polynomial identity of A, then if we

deompose f into a sum of polynomials f1+f2+ . . .+fr where eah fi is the sum
of all monomial of f with exatly the same variables, then fi is an identity for

every i. Next, using a well known multilinearization proess, all identities are on-
sequenes of polynomials identities whih are multilinear. Sine this is important

for us let me illustrate how this is done. Take, for instane, the polynomial x2.
Suppose it is an identity of an algebra A. Then (x1+x2)

2 = x21+x1x2+x2x1+x22
is also an identity of A. The terms x21 and x22 are identities for the same reason

and so the multilinear polynomial x1x2+x2x1 is an identity of A. We an dedue

that the multilinear polynomial x1x2 + x2x1 is a onsequene of (i.e. belongs to

the T -ideal generated by) the polynomial x2. But what about the onverse? In-
deed, we would like to see whether our original polynomial x2 is a onsequene of
x1x2+x2x1. Putting x1 = x2 = x we obtain 2x2 and not x2. In order to get x2 we
need to divide by 2 and so we need our �eld to be of harateristis not 2. This is
a major problem and indeed, in positive harateristis we don't have generation

of the T -ideal of identities by multilinear polynomials. There are good reasons to

deal with multilinear polynomials and with multilinear identities. One of them

whih is important for us, is that identities �do not hange� upon extension of

salars. This implies that the T -ideal of identities of a k-entral simple algebra

of degree n2
is the same as the ideal of identities of n× n-matries.

One of the main questions in PI theory is the so alled Speht problem,

namely whether the T -ideal of identities is �nitely generated as a T -ideal? (see

[30℄). This was established in the positive by Kemer in the mid 80's. Kemer

proved a fantasti result whih says that if S is an algebra over F (F is algeb-

raially losed of harateristi zero) whih satis�es a Capelli polynomial then

there exists a �nite dimensional algebra A over F whih is PI-equivalent to S.
This is the representability theorem for a�ne algebras. With some e�orts, the

representability theorem implies a positive solution of Speht problem, namely

the �nite generation of any T -ideal (see [21℄).

What happens if S does not satisfy a Capelli polynomial (e.g. the in�nite

dimensional Grassmann algebra)? Then it annot be PI-equivalent to a �nite

dimensional algebra (sine the latter does satisfy a Capelli polyniomial). It turns

out the the in�nite Grassmann algebra is basially the only example with that

property in the sense that there exists a Z2-graded �nite dimensional algebra

A = A0 ⊕ A1 suh that its Grassmann envelope E(A) = E0 ⊗ A0 ⊕ E1 ⊗ A1
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is PI equivalent to S. This is the representability theorem for arbitrary (i.e.

not neessarily a�ne) assoiative algebras over an algebraially losed �eld of

harateristi zero. Using this result one an give a positive solution to the Speht

problem.

The fat that the T -ideal of identities is �nitely generated says nothing about

�nding expliit polynomials whih generate Id(A). Suh generators are known

for an extremely short list of algebras. For instane, it is a nontrivial fat that the

two identities mentioned above for M2(F ), namely the Wagner identity and the

standard identity s4 of degree 4 are generators of the T -ideal of identities (this
was shown by Ramyslov and Drensky). It is not di�ult to show that the identity

[[x, y], z] generates the T -ideal of identities of the in�nite dimensional Grassmann

algebra. But already for the algebra of 3 × 3-matries no suh generators are

known. Furthermore, knowing a generating set says not muh about the problem

of desribing expliitly the elements in Id(A). Therefore, it seems more e�etive

to alulate invariants of Id(A) and in partiular invariants related to the size

of Id(A).

The �odimension sequene� of an algebra A.

We saw that the T -ideal of identities of an algebra A is generated as a T -
ideal by multilinear identities. Therefore, while onsidering polynomial identities

of degree n, we an restrit ourselves to the intersetion of a T -ideal I with the

n!-dimensional spae

Pn = spanF {xσ(1)xσ(2) · · ·xσ(n) : σ ∈ Symn}.

Clearly, dim(I ∩ Pn) > 0 for some n if and only if the algebra A is PI and it

turns out, roughly speaking, that in that ase, the �magnitude� of dim(I ∩ Pn)
is �lose� to n!. It is therefore more informative to measure the nonidentities,

meaning dimF (Pn/(Pn ∩ I)). We denote this dimension by cn. Regev (in his

pioneering work) showed in 1972 that if I is nontrivial, then cn is exponentially

bounded, that is

limn→∞
n
√
cn < ∞.

Amitsur onjetured that the limit exists and is a (nonnegative) integer.

This was proved in a remarkable work by Giambruno and Zaiev in the late 90's

(see [17℄, [18℄). The limit is denoted by exp(A). In their proof, Giambruno and

Zaiev, give an interpretation of exp(A) as the dimension of a ertain subalgebra

A0 of A in ase the algebra is �nite dimensional. In ase the algebra is a�ne and

PI one uses Kemer's theory to pass to a �nite dimensional algebra whereas in

the general ase exp(A) is interpreted as the dimension of a ertain Z2-graded

subspae of the �nite dimensional Z2-graded algebra whose existene is assured

by Kemer's theorem.
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For instane, if A ∼= Mn(F ), then the subalgebra A0 is Mn(F ) itself and

hene exp(A) = n2. For an arbitrary �nite dimensional algebra A we proeed

as follows. We write A as a diret sum of Ā (the semisimple part) and J , the
Jaobson radial (where the deomposition is a deomposition of vetor spaes).

Next we deompose the semisimple part Ā into diret sum of matrix algebras

M = {A1, . . . , Ar}. Then we onsider nonzero produts (denoted by α) of the
form

α : Ai1JAi2J · · · JAik

where Aij ∈ M and to eah produt of this type we attah an integer nα whih is

the sum of the dimensions of the di�erent simple omponents that partiipate in

the produt (i.e. ignore repetitions). Giambruno and Zaiev proved that exp(A)
oinides with the max{nα} where we run over all possible produts α. You see

in partiular, that if the algebra is simple, the exponent is just its dimension

over F .

Polynomial identities were found to be very useful in the onstrution of the

generi division algebra and Azumaya algebras whih serve as a representing

objet with respet to all k-entral simple algebras, any k, of degree n. Let
us present this lassial onstrution before we turn our attention to G-graded
polynomial identities.

4 Polynomial identities and the generi division al-

gebra

Let F be an algebraially losed �eld of harateristi zero. Let A be the

algebra of n× n-matrix algebra over F and onsider the k-forms of the algebra

A where k is a sub�eld of F . It is well known that these are preisely the k-entral
simple algebras of dimension n2 over their enter.

Our goal is to onstrut an algebraA suh that every k-entral simple algebra

of degree n over its enter is a speialization of A (this means that for any k
and any k-entral simple algebra B of degree n, there exists a prime ideal I of

Z(A) (the enter of A), suh that Z(A)/I is a Q-subalgebra of k and suh that

the algebra A/(IA) beomes isomorphi to B after extension of salars to the

�eld k. Conversely, any simple homomorphi image of A is a form of Mn(F ).

In order to onstrut the algebra A we �rst need to �nd a �eld k (if exists)

whih is the minimal sub�eld k of F over whih there is a k-form of Mn(F ).
Obviously, this is the rational �eld Q sine there is a form over Q and it is

minimal. This very �rst step is already problemati for G-simple algebras.

Next we onsider the free algebra Q〈X〉 on a ountable number of variables

and let I = Id(A) be the T -ideal of identities of A = Mn(F ). A simple lemma
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shows that if there is a form over a ertain �eld then the identities are de�ned

over that �eld and hene the polynomial identities of A are de�ned over Q. We

onsider the relatively free algebra Q〈X〉/I over Q.

Clearly, the algebra Q〈X〉/I an be mapped �onto� any k-form (after exten-

sion of salars). Indeed, any map from the free algebra Q〈X〉 intoMn(F ) fators
through its quotient Q〈X〉/I. However it is not di�ult to see that we an send

(some of) the variables to zero and obtain an homomorphi image whih is not

a form of A. For instane, one an easily get Q as an homomorphi image. To

��x� this problem we loalize the algebra Q〈X〉/I by a entral element.

Suppose we an �nd a entral (nonidentity) polynomial s(x1, . . . , xn) ∈ Q〈X〉
of Mn(F ), that belongs to every T -ideal J that stritly ontains I = Id(A).
Then, if we invert s(x1, . . . , xn) in the relatively free algebra Q〈X〉/I, we see

that s−1Q〈X〉/I annot have nonzero homomorphi images whih stritly satisfy

more identities than A and in partiular the identities of (n − 1) × (n − 1)-
matries. On the other hand, the algebra s−1Q〈X〉/I satis�es the identities of

n× n-matries and so invoking a fundamental theorem of Artin and Proesi we

obtain that the algebra A = s−1Q〈X〉/I is an Azumaya algebra of rank n2 over

its enter (see [24℄). Reall that an algebra A is said to be Azumaya of rank n2 if
it is faithful, �nitely generated projetive over its enter and suh that modulo

maximal ideals we obtain entral simple algebras.

How to onstrut suh a entral polynomial? As mentioned above this a

nontrivial problem whih was solved independently by Formanek and Razmyslov

(see [15℄, [25℄). Here is an expliit polynomial Rn (alled Regev polynomial)

whih is of degree 2n2 and is known to be entral for the algebra A:

Rn =

τ∈Sym(n2)∑

σ∈Sym(n2)

sgn(σ)sgn(τ)xσ(1)yτ(1)xσ(2)xσ(3)xσ(4)yτ(2)yτ(3)yσ(4)xσ(5) · · ·xσ(9)

yτ(5) · · · yτ(9) · · ·xn2−(2n−1) · · ·xn2yn2−(2n−1) · · · yn2

Note that the polynomial Rn is alternating on sets of ardinality n2 and hene it

must be an identity on an algebra of dimension < n2 and in partiular on the algebra

of (n− 1)× (n− 1)-matries.

If we extend salars of A to the �eld of quotients of Z(A), we get the �famous�

generi division algebra of degree n (over Q). This algebra is of great importane in

Brauer theory. For instane, using that onstrution Amitsur proved in 72 the existene

of nonrossed produts for any degree divisible by 8 or by p2 (where p is an odd prime).

To this end (say in the ase where p is odd) he showed the existene of rossed produts

with the group Zp2
whih are not rossed produts with the elementary abelian group

Zp × Zp, and on the other hand the existene of rossed produts with the elementary

abelian group Zp × Zp whih are nonyli algebras (that is, are not rossed produts

with the yli group of order p2). Then the generi division algebra annot be a rossed
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produt sine if it were, say with a group G, then every speialization would have to

be a rossed produt with the same group.

Muh attention is devoted to rationality questions of the enter of the generi

division algebra. Let me only say that part of the interest on this question ame from

the fat that its positive solution would lead to a rather easy proof of the result we

mentioned above of Merkurjev and Suslin (on generation of the Brauer group by symbol

algebras).

My goal for the rest of these letures is to present generalizations of several of the

results mentioned above to the ontext of G-graded algebras and at the end present an

appliation of graded PI theory for the solution of a onjeture of Bahturin and Regev

on regular gradings of algebras.

5 G-graded polynomial identities

We start with the the de�nition of graded identities. Let G be any group

and XG = ∪g∈GXg be a set of nonommuting graded variables, where Xg =
{xg,1, xg,2, . . .} is a ountable set of variables of degree g ∈ G. We onsider the

free G-graded algebra F 〈XG〉, where the homogeneous degree of a monomial

xg1xg2 · · ·xgn is g1g2 · · · gn ∈ G. Suppose A is a G-graded (assoiative) algebra.

We say that a polynomial in F 〈XG〉 is a G-graded identity of A if it vanishes

on any admissible evaluation, that is, graded variables are evaluated only by

homogeneous elements of A of the same degree.

As in the ungraded ase, the set IdG(A) of G-graded identities of a G-graded
algebra is a G-graded ideal of F 〈XG〉. Furthermore, it is a G-graded T -ideal, that
is, invariant by all G-graded endomorphisms of F 〈XG〉. Conretely, an homo-

geneous variable of degree g an be replaed by a polynomial p whose monomials

are of degree g. See [1℄ for more details on graded polynomial identities.

Example 5.1. Consider Mn(F ), the algebra of all n × n matries with the

rossed produt grading mentioned above. It was proved by Di Vinenzo for

G ∼= Z2 ([13℄), by Vasilovsky for G ∼= Zn ([33℄) and by Bahturin and Drensky

for any group ([9℄), that the identities are generated as a G-graded T -ideal by

(1) xeye − yexe

(2) xσyσ−1zσ − zσyσ−1xσ for every σ ∈ G.

As one an see, graded identities are muh easier to desribe sine polynomials

need not vanish on all evaluations but only on speial ones. Nevertheless, the

graded identities �tell the whole story� in the sense that two algebras that satisfy

the same G-graded identities they satisfy the same ordinary identities. This basi

fat will be used later.
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As in the ungraded ase there is a �Representability Theorem� for G-graded
algebras where G is a �nite group (see [1℄). The theorem says that if W is a PI

algebra over an algebraially losed �eld F of harateristi zero, whih is G-
graded (G �nite), then there exists a �nite dimensional Z2 × G-graded algebra

A over F suh that its Grassmann envelope is G-graded PI equivalent to W .

In order to state the theorem preisely, reall that given any Z2-graded algebra

A = A0⊕A1 we may onsider its Grassmann envelope E(A) = E0⊗A0⊕E1⊗A1

as an ungraded algebra. Thus, if A = (⊕g∈GA0,g)⊕(⊕g∈GA1,g) is a Z2×G-graded
algebra, we may onsider its Grassmann envelope E(A) = E0 ⊗ (⊕g∈GA0,g) ⊕
E1 ⊗ (⊕g∈GA1,g) as a G-graded algebra where E(A)g = E0 ⊗ A0,g ⊕ E1 ⊗ A1,g.

The representability theorem for PI algebras whih are G-graded an be stated

as follows.

Theorem 5.2. Let G be a �nite group and let W be a PI algebra and G-

graded. Then there exists a Z2 × G-graded �nite dimensional algebra A suh

that IdG(W ) = IdG(E(A)).

From these results one an dedue (with some e�orts) the positive solution

of the Speht problem for G-graded algebras whih are PI.

Remark 5.3. In ase the group is abelian, the representability theorem and the

solution of the Speht problem was obtained independently by Irina Sviridova

(see [32℄).

Remark 5.4. Note that an algebra W may be G-graded PI and non-PI (as an

ungraded algebra). Of ourse, the representability theorem for G-graded algebras

annot hold for suh algebras. This follows from the following two fats: (1)

any two algebras that are G-graded PI-equivalent, are also PI-equivalent as

ungraded algebras (2) the Grassmann envelope of a �nite dimensional algebra

is (ungraded) PI. Nevertheless one may ask and indeed it is an open problem

whether the Speht problem holds for G-graded PI non-PI algebras.

As mentioned in the beginning of these letures, also the asymptoti PI-

theory was developed in the G-graded ase. Let W be a PI algebra whih is

G-graded (G-�nite). It was proved by Antonio Giambruno, Daniela La Mattina

and the author of these notes that limn→∞
n
√
(cGn (W )) exists and is equal to

a nonnegative integer denoted by expG(W ) (see [4℄, [16℄, [3℄). The sequene

cGn (W ) is determined as follows. Consider the n! ord(G)n-dimensional vetor

spae spanned by all multilinear G-graded monomials of degree n

PG
n = spanF {x

gi1
σ(1)x

gi2
σ(2) · · ·x

gin
σ(n) : σ ∈ Sym(n), gij ∈ G}.

We let PG
n /(P

G
n ∩IdG(W )) be the spae of all G-graded funtions onW represen-

ted by a multilinear polynomial of degree n and let cGn (W ) be its dimension over
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F . We refer to the integer cGn (W ) as the nth term of the G-graded odimension

sequene of W .

In ase the algebra W is �nite dimensional, the integer expG(W ) is inter-

preted as the dimension of a ertain G-graded subalgebra of W/J(W ). If W is

an a�ne G-graded algebras we �pass� to a �nite dimensional G-graded algebra

via the representability theorem whereas if W is nona�ne we �redue the alu-

lation� to �nding the exponent of the �nite dimensional Z2 ×G-graded algebra

whih appears in the representability theorem for G-graded algebras. In parti-

ular, in ase A is a �nite dimensional G-simple algebra, then the G-exponent is

just the dimension of the algebra A.

6 PI and the Generi rossed produt algebra

In this �tiny� paragraph we present brie�y a natural extension of Amitsur's

onstrution of the generi division algebra. Consider the matrix algebraMn(F )
with the rossed produt G-grading where G is of order n. Applying G-graded

polynomial identities we onstrut the relatively free algebra over Q

Q〈XG〉/IdG(Mn(Q)).

This algebra an be loalized by a �entral polynomial� and we obtain aG-graded

Azumaya algebra whih speializes preisely to all G-rossed produt algebras.

Taking the �eld of frations of the enter we obtained the generi G-rossed

produt. It should be noted that one an �nd in the literature di�erent ways to

onstrut the �generi rossed produt�(see [27℄, [31℄ and [28℄). Generi onstru-

tions were obtained for other G-gradings (e.g. twisted group algebras) and also

for ertain type of H-omodule algebras (see [6℄, [7℄). Applying the onstrution

of a generi rossed produts and the orresponding G-graded Azumaya algebra

mentioned above it is not hard to prove the following result.

Theorem 6.1. Let G be a �nite group and let BG be the family of all G-

rossed produt algebras over a �eld of harateristi zero. Suppose every G-

rossed produt A is also an H = HA rossed produt (ord(G) = ord(H) but

nonisomorphi). Then there exists a group S suh that any G-rossed produt is

also an S-rossed produt. A group G satisfying the ondition above is said to be

�nonrigid�.

7 Regular G-gradings and PI-asymptotis

We lose this series of letures by presenting a rather di�erent onnetion

between (asymptoti) PI theory and G-gradings. In partiular I'll present a pos-
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itive solution of a onjeture posed by Bahturin and Regev on regular gradings

(see [11℄). This is joint work with O�r David. We start with the de�nition of

regular gradings (see [26℄).

De�nition 7.1. Let A be an assoiative algebra over a �eld F (algebraially

losed of harateristi zero) and let G be a �nite abelian group. Suppose A is

G-graded. We say that the G-grading on A is regular if there is a ommutation

funtion ϑ : G×G → F×
suh that

(1) For every integer n ≥ 1 and every n-tuple (g1, g2, . . . , gn) ∈ Gn
, there are

elements ai ∈ Agi , i = 1, . . . , n, suh that

∏n
1 ai 6= 0.

(2) For every g, h ∈ G and for every ag ∈ Ag, bh ∈ Ah, we have agbh =
ϑg,hbhag.

Let me say right away that the de�nition above an be extended to nona-

belian groups, but in these letures I will restrit myself to abelian groups.

Clearly, any G-grading on an algebra A indues a natural G/N -grading on

A where N is a normal subgroup of G. Indeed, we let the gN -omponent AgN

to be the sum of all omponents Agn, n ∈ N . We say that a regular G-grading

is minimal if for any normal subgroup N of G, the indued G/N -grading on A
is not regular. It is easy to show that any regular G-grading on A yields (via a

homomorphi image of G) a minimal regular grading (Remark: this partiular

fat is false in ase G is nonabelian).

Let me start with some examples.

The following example orresponds to the grading determined by the symbol

algebra (1, 1)n over F .

Example 7.2. Let Mn(F ) be the matrix algebra over the �eld F , and let G =
Z/nZ× Z/nZ. For ζ a primitive n-th root of 1 we de�ne

X = diag(1, ζ, ..., ζn−1) =




1 0 · · · 0

0 ζ 0
...

0 ζ2
. . .

...
. . .

. . . 0
0 · · · 0 ζn−1




Y = En,1 +

n−1∑

1

Ei,i+1 =




0 1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 0 1
1 0 · · · 0 0



.
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Note that ζXY = Y X. Furthermore, the elements

{
XiY j | 0 ≤ i, j ≤ n− 1

}
form a

basis of Mn(F ), and so we an de�ne a G-grading on Mn(F ) by (Mn(F ))(i,j) = FXiY j
.

Let us hek the G-grading is regular. For any two basis elements we have that

(Xi1Y j1)(Xi2Y j2) = ζi2j1Xi1Xi2Y j1Y j2 = ζi2j1Xi2Xi1Y j2Y j1

= ζi2j1−i1j2
(
Xi2Y j2

) (
Xi1Y j1

)

⇒ ϑ(i1,j1)(i2,j2) = ζi2j1−i1j2

and hene the seond ondition in the de�nition of a regular grading is satis�ed. The

�rst ondition in the de�nition follows at one from the fat that the elements X and Y
are invertible. Finally we note that sine ζ is a primitive n-th root of unity, the regular

grading is in fat minimal.

Next we present an example of a di�erent nature.

Example 7.3. Let E be the Grassmann algebra onsidered above with the usual

Z/2Z-grading. The ommutation funtion is given by τ0,0 = τ0,1 = τ1,0 = 1 and

τ1,1 = −1. It is easy to see that this grading regular and minimal.

Now it is lear that an algebra A may admit nonisomorphi regular gradings

and even nonisomorphi minimal regular gradings. In fat, it is easy to show

that more is true, that is, an algebra A may admit minimal regular gradings

with nonisomorphi groups. For instane, onsider the following two (minimal)

regular gradings on M4(F ): (1) with the group Z/4Z×Z/4Z (as in the example

above) (2) with the group Z/2Z × Z/2Z × Z/2Z × Z/2Z (here we grade two

opies of M2(F ), eah with the Klein 4-group, and then we take their tensor

produt over F ).

Bahturin and Regev onjetured however that the order of the group is in-

variant. More preisely they onjetured that if an algebra A admits minimal

regular gradings with �nite abelian groups G1 and G2, then ord(G1) = ord(G2)
(see [11℄). In addition, Bahturin and Regev made a onjeture whih onerns

with the �ommutation matrix� of a minimal regular grading: Let A be an assoi-

ative algebra and suppose it is regularly graded with the group G = {g1, . . . , gn}.
Consider the n × n-matrix Θ (the ommutation matrix) whose entry (i, j) is

given by Θi,j = ϑgi,gj where ϑ is the ommutation funtion. It is not di�ult to

show that a regular grading is minimal if and only if the ommutation matrix is

invertible.

Conjeture 7.4. Let A be an assoiative algebra over a �eld F of harateristi

zero and suppose it is regularly graded by groups G1 and G2. Suppose the grad-

ings are minimal and let ΘG1 , ΘG2 be the orresponding ommutation matries.

Then det(ΘG1) = det(ΘG2).
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In a joint work with O�r David we prove these onjetures (see [2℄). We show

that if an assoiative algebra admits a G-grading whih is minimal and regular,

then ord(G) = exp(A). In partiular the order of the group is invariant. For the

seond onjeture, we show that the determinant of the ommutation matrix is

equal to exp(A)exp(A)/2
. We lose these notes explaining roughly the idea of the

proof.

Suppose that A is G-graded and let IdG(A) be the orresponding T -ideal
of G-graded identities. In ase the G-grading is regular one an write down

expliitly G-graded polynomials whih generate IdG(A). Then, we onstrut

a �model algebra� B, whih admits a regular G-grading and suh that is G-
graded PI equivalent to A, namely IdG(A) = IdG(B). The point here is that

two algebras that are G-graded PI equivalent are also (ordinary) PI-equivalent

and hene, in partiular, they have the same exponent. The �nal step is to realize

that the order of G oinides with exp(B).

For the seond onjeture we prove that two ommutation matries of two

minimal regular gradings are onjugate to eah other and hene have the same

harateristi values. In partiular the ommutation matries arising from min-

imal regular gradings on an assoiative algebra A over F have the same determ-

inant.
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