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AN APPLICATION OF SPECTRAL CALCULUS TO THE PROBLEM
OF SATURATION IN APPROXIMATION THEORY

MANFRED WOLFF
Dedicated to the memory of Professor Gottfried Kothe

Abstract. Let & = (L) be a net of bounded linear operators on the Banach space E
converging strongly (o the identity on E . For a given complex-valued function f of a fixed
lype we consider the net (%) = (f(L_)), . Among other things we shall show that under
reasonable conditions the saturation space of &£ with respect to a given net © = (&,) of
positive real numbers converging to zero is equal to that one of f( ). More generally we
consider nets ( f,(L_,)) where ( f,) is a net of compiex-valued functions and we determine
the saturation space of such a nef in dependence of the saturation space of % .

1. INTRODUCTION

Let & = (L, )4 be anetof boudned linear operators on the Banach space E converging
strongly to the identity on E. Then we call % an approximation processes.
Let @ : Ax E — R, beafunction satisfying lim ®(«, z) = 0 forevery z € E. Then
o

the saturation space (or Favard-class) of (£, ®) is S(&,®) ={z € E:||Lz—z| =
= 0(P(a,z))}. & is saturated with respect to @ if the following two conditions are satis-
fied:

(i) If||Lz—z||= o(P(ce,x)) then L x =2z forall L_;

(if) There exists z € S(¥,P) such that L _x# z for all «.

For turther information see e.g. [1, 4].

Now let L be aclosed linear operator from D(L) C E into E, and suppose that D(L) 1s
denscin E. Morcover assume that li;n( (L,z—x)/P(a,z)) = Lz holdsforall z € D(L).

Nishishiraho [4] proved (under the hypothesis that & is independent of ), that then for
every fixed positive integer k Iim(L‘;m —z)/P(a,z) = kLz holds forall z € D(L).

Morecover under certain additional hypotheses he was able to prove

S((LY), @) = (&, ®) = D(L)®

where this latter space is defined as follows:
Let ||z||, := ||z|| + || Lz]| be the graph norm on D(L) and denote by B,;(0,t) the set

B,(0,t) = {z € D(L) : ||z||, < t}. Foraset A C E we denote by A its closure in E
w.r. to the given norm on E.
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Then D(L)E = | JB,(0,7).

t>0

[n fact this set turns out to be a Banach space with respect to the norm ¢(z) = inf {¢ >
>0:z€ B,;(0,t)}.

It is the main aim of the present note to generalize the results of [4] to the case where the
operator function T — T* is replaced by a general holomorphic function f(7T) or (in the
case of self-adjoint operators (L _) ) by a continuous function g differcntiable at 1. Morcover
we allow that @ dependes also on z (at least in the basic proposition).

The 1dea behind our proofs 1s taken from nonstandard analysis, which enables us to replace
a net of operators by one single (internal) operator on a larger space. In such a way it1s obvious
that one can apply spectral calculus to this single operator.

The paper 1s organized 1n the following manner: the second sccuon contains the main
additional notions and our main results. In the third secuon we replace the single funcuon
f by a sequence of functions ( f ) and study the rate of convergence of ( f . (L_)). In the
fourth section we present the ingredients from nonstandard funcuonal analysis. We refer the
reader to (2, 3, 5] for nice introductions into this field. The last two sections contain the proof
of the results of sect. 2, sect. 3, resp.

2. THE RESULTS FOR A SINGLE FUNCTION f

In order to be able to formulate the results in their full generality let us introduce 1in addiuon
to the notions of section 1 the following one:

Let (% ,p) be a normed algebra of complex-valued functions on the compact subset X
of € containing the polynomials as a dense subalgebra, and assume that point evaluations
are continuous. As an example we mention the algebra A(r) of all continuous functions
on K(r) = {z € C : |z|] < r} which are analytic in the interior of K(r). Here we
set p(g) = sup{lg(2)| : |z| = r}. Another example might be the algebra C(X) of all
continuous functions on X . A third example might be the algebra of all C* -functions on an
intervall X € R.

2.1 Definition. Let M be an arbitrary positive real number. A bounded linear operator T
on E admits (A4, M) spectral calculus if there is an algebra homomorphism o of 4 into
the algebra B( E) of all bounded linear operators on E salisfying

(i) (1) = I (identityon E)

(i) p(idx) =T

(iii) ||p(g)|| < M -p(g)

As usual we write g(T') in place of ©(g) .

2.2 Definition. The net £ = (L, ) admits (%, M) spectral calculus if every L does. We
then write g( ) in place of (g(L_)). (Note that the algebra homomorphisms o, depend

on a!).
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2.3 Definition. A function f € & is 4 -differentiable at z € X if there exists another
function g € # and a constant c := f'(z) satisfying

(i) g(z) =0
(ii) f(u) = f(2z)+ (u—2)(c+g(w) forall ue X

2.4 Remark. If 4 = A(r) and |z| < r orif 4 = C(X) then every function differentiable
at z in the usual sense is % -differentiable.

2.5 The main hypotheses:
The following hypotheses shall be satisfied from now on (unless stated otherwise explic-

itly):
() & = (L,).eca 1s a uniformly bounded net of linear operators converging strongly to
I (the identity on E').
(iil) @ : A x E— R satisfies P(a,z)#0 and im P (a,z) = 0 forall x
oY

(i) 1 € X,(.#,p) is a normed algebra of functions on X as above, and £ admits
(%, M) -spectral calculus for a certain M > 0.
(iv) (L, D(L)) is a closed densely defined linear operator in E such that lim((L _z —
O

z))/P(a,z)) = Lz holds forall z.€ D(L).
(v) f € # isagiven function which is # -differentiable at 1.

Our first result generalizes the basic lemma on p. 275 of [4].

2.6 Proposition. a) f( &) converges strongly to f(1) - 1I.
b) lim(f(L )z — f(Dz)/P(a,z) = f(1) Lz forall z € D(L).

For the sequel we need one further notion.

2.7 Definition. (£, L) is called regularizable if there exists a uniformly bounded net
e = (Rg) of linear operators on E satisfying

(i) (Rg) converges strongly to I

(ii) RgL, = L Rg forall a, .

(iti) Rg(E) C D(L)

R is called a regulator for (£ L) .

2.8 Remarks. (i) If L is the infinitesimal generator of the strongly continuous semigroup
X = (Ly)yso then (M\ — L) ~")y5u(1y s a regular for (£, L) . Another one is

1 4
C,: T —CT = -——/ T xds.
t Jo
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(ii) Let (f,) be an arbitrary net in 4. Then any regulartor of (£, L) is such one of
((folL ) L) . This is obvious if all f_ are polynomials. But polynomials are dense in
% , so the crucial condition (ii) above holds obviously also for f_(L_) .

Here 1s now our main result in this section:

2.9 Theorem. Assume that (%, L) is regularizable, and moreover assume that ® does not

depend on x . Then the following three assertions are true:
a) lim _|[(f(L)z— f(D)z/P(a) — f'(Dy||=0 holdsiff x € D(L) and y = Lz
b) Assume that f(1) =1 and f'(1)# 0. Then f(X£) is an approximation process and

S(f(2),®)=8S(Z,®) =D(L)F

or in other words: the saturation space of & and f(£) are the same and are equal to
D(LYE.

2.10 Corollary. Assume that L is the infinitesimal generator of the strongly continuous semi-
group & = (L,),~o. Moreover assume that f(1) = 1 and f'(1)#0. Then f(Z£) is

saturated iff L#0 .

A basic ingredient for the proof of this theorem is a slightly specialized version of thecorem
1 1n [4] which we formulate explicitly for the sake of convenience. The last assertion of our
version follows from theorem 2 of [4].

2.11 Theorem. (cf. [4], thm. 1). Assume that & and L satisfy (i) and (iv) of 2.5. Moreover
assume that (£, L) is regularizable and that ® does not depend on x. Then the following

two assertions are true:

(a) For z,y € Elim_|(L,z—2z)/P(a) —y|l=0 iff z € D(L) and y= Lx.

(b) S(Z,®) = D(L)~E.

Moreover if L is the infinitesimal generator of the strongly continuous semigroup ¥ =
= (L) then £ is saturated with respectto @ iff L#0 .

3. SEQUENCES OF FUNCTIONS OF OPERATORS

In the following we adhere to the gencral hypotheses of 2.5 but in order to facilitate our

considerations we restrict ourselves to sequences, 1.e. we assume A = IN .
Let ( f.) be asequence of functions in .4 which are % -differentiable at 1. We assume

that ( f,) satsfies the following two conditions:
(1) f.(1)#0 and lim f,‘;(l)@(n, ) =0 holdsforall z € £

(i) lim f (1) =1.
With these additional hypotheses we obtain:
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3.1 Proposition. (a) Forall x € D(L) we have
imy oo I fi( L)z = fil(D2) /(fi( 1) - @ (n,2)) — Lz|]| = 0.
(b) Consider the decomposition
fi(uw) = fil D) + fiD(u—1) + g (w) (u — 1)
Assume that g,(u) = h (u)(u — 1) where h, € A4 and
(I < CIfD|  forall  kn

Then for all £ € D(L)

Jim ISl L)z = f(D2) /(fi(1) - @(n,2)) ~ La|| = 0,
3.2 Corcllary. Assume that in addition to the general hypotheses of this section the hypoth-
esis of (b) of 3.1 above holds. Moreover assume that ||f.(L )|| < D for all k,n and some
fixed ID. Then the following two assertions are true:
(a) (f,(L,)) = % isan approximation process.
(b) Assume that (£, L) isregularizable and moreover that ® does not depend on x. Con-
sider the sequence P = f.( I)fIIJk; Then we have
/i) For ¢,y € Elifl;n Wf.(L)z— f.(D)x)/P" —y||=0 iff z € D(L) and y = Lz.

(ii) S(% ,®~) = D(L)™E.
(iii) Assume that L is the infinitesimal generator of the strongly continuous semigroup & =
= (Ly)yso - Then (f (Lg )) is saturated with respectto ©~ iff L#0.

3.3 Remarks. (i): g,(u) = h(u)(u— 1) with h, € A4 (see 3.1 (b)above) holds if A4 =
= A(r) for some r > O or if the following three conditions are satisfied:

(a) 1 € 1nt(X) as before

(b) A =C(X),

(c) each f, is twice differentiable at 1.

(ii) These two results show that the speed of convergence might be improved by use of
(f.(L_.})) in place of (L,) if (f;(1)) converges to zero. However a much better result
would be of a type where the product might be replaced by ( f.(®.)). But 3.1 and 3.2 show
that this cannot be achieved by means of spectral calcuius.

3.4 Example. The following example is a generalization of {4], sect. 3 (at least for contrac-

tions): Let & be an approximation processes of contractions on E and consider f,(u) = u.

Then we have ||f.L_|| < 1. By 3.1 (a) we obtain

lim {|[(Lfz —z)/k-®(n)) — Lz||=0 forall z in D(L).

k n—oo
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Moreover
k=1 k=1 j—1
gk(u)=2uﬂ-k, hk(u)=22u£,
=0 J=1 £=0

but ||h (L_)|| = OCk) uniformly is impossible since £ is an approximation process.

4. THE INGREDIENTS FROM NONSTANDARD ANALYSIS

In the following we adhere to the notions etc. of sect. 2. We consider now a suitable polysat-
urated enlargement *# of the full structure S# builtupon R(E U R, resp., if E is not
already in 5 ). We refer the reader to [2, 3, 5] for notions not explained here.

Recall that by definition 7" € *B( E) is of finite norm if its operator norm is nearstandard,
or equivalently if there is a standard positive real number c, say, such that ||T|| < ¢ holds.
This 1n turn 1S equivalent to the assertion: z &~ y implies always T’z ~ T'y.

Let T € *B(F) and let M be a positive real number (standard or not). By the transfer
principle the assertion that 7" admits (*.%4 , M) -spectral calculus is meaningful.

4.1 Lemma. Let T € *B(E) of finite norm. Moreover let T admit (* 4, M) -spectral
calculus where M is a standard real number. Let g € 4 be standard and let x € *E be of
finite norm.

Then T'x &~ z 1implies g(T)z =~ g(1)z.
k—1

Proof. Let k be a standard positive integer and assume Tz ~ z. Then 7% — [ = ZTJT
j=0

k—1
(T — I),hence T*z — z = ETf(Tz — 1) ~ 0 since the sum is of finite norm.
7=0
So the formula is proved to hold for standard polynomials. But by assumption polynomials

are dense in % .
Now let g € % be standard. Then the formula

(%) 3QIp(g — Q) + ||Q(T)z — Q(1)z|| < 1/n]

holds for all standard »n hence for some N infinitely large. Using the corresponding () we
get

19(Tyz — g(Dz|| < |[(g(T) = QT z|| + ||QIT)z — QD ][ + [Q(1) — g(1)] - [|=]]
< Mp(g — Q|||+ 1/N + [Q(1) — g(D]]|z]].

Since point evaluation is continuous on % this gives ||g(T)z — g(1)z|| = 0.
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4.2 Proposition. Let T € *B(FE) be of finite norm admitting (*4 , M) -spectral calculus
for a certain standard real number M . Let f € # be a standard function which is A -
differentiable at 1. Finally let ® :* E —* R, be an internal function satisfying

(i) ©(z) =~ 0 forall standard z € F

(ii) ©(y)#0 forall y € "E.

Assume that (T'x — ) /P(z) = Lz for all standard x € D(L). Then the following two

assertions are true:
(a) Ty =y forall standard y € E.
(b) (f(T)z— f()z)/P(x) ~ f'(1) Lz for all standard z € D(L).

Proof. (a) By assumption |[Tz — z|| ~ ®(z)||Lz|| ~ 0 for all standard z € D(L) . Since
D(L) is dense in E and T is of finite norm (a) follows by a routine argument.

(b) Byassumption f(2) = f(D(z—=1D+(f(1)+g(2))(z—1) where g € £ satisfies
g(1) =0.

By the transfer principle applied to the notion of (.4, M) -spectral calculus we obtain

(f(T)z — f(D)z}/P(z) = f(IN(Tz—2)/P(2) + g(T)(Tz — )/ P(2).

Since (Tz — z)/P(x) =~ Lxr we get \tf

(f(D)z— f(D)x)/P(2) = f(()) Lz + g(T)(Tz — z)/P(x).

But |[|g(T)|| < Mp(g) and this latter number is standard, hence g(T)(Tz — z) /P (z)
~ g(T)Lz. Now Lz is standard thus T Lz =~ Lz by (a). But then 4.1 yields ¢(T') Lz
~ g( 1)Lz = 0, and the proposition is proved.

R &

5. PROOF OF THE RESULTS OF SECT. 2

In the following we adhere to the notions and notational conventions of the previous sections.

5.1. Proof of 2.6. Choose an arbitrary o € *A being greater than every standard index
v. Then T'= L admits (*.4, M) -spectral calculus by the transfer principle.

Set &(z) = ®(w,z) forall z € *E. Since £ is uniformly bounded, T is of finite
norm. Moreover L, — I strongly implies Ty = y for all y standard. Finally assumption
(iv) in 2.5 implies (Tz — ) /®(x) ~ Lz for all standard z € D(L). Hence 4.2 yields
(f(TYz—f(Dz)/P(z) ~ f'(1)Lz forall z € D(L) . An equivalent standard formulation
(which is possible since « infinitely large was chose arbitrarily) yields 2.6 b and in the same
way we obtain 2.6 a from 4.1.

Now we come to the proof of the main result of sect. 2:
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5.2. Proofof 2.9. 1) Let % = (Rg) be aregulator for (£, L) . By 2.8 (ii) £ isalso a
regulator for ( f( ), L).

Assume that f(1) = 1 holds. then by 2.6 f(%) is an approximation process which
satisfics (i) and (iv) of 2.5 (where @ (a, z) 1s replaced by @~ (o, z) = f' (1) - P(a,z)).
So we can apply 2.11 replacing £ by (%) and ¢ by &~ . This gives 2.9b.

[I) So it remains to prove (a). To this end assume first of all that f(1) = 1. Then (a)
follows from 2.6 and 2.11 (cf. Part (I) above). Assume then O # f(1) # 1. Then (a) holds for
f~ = f/f(1),and an easy calculation shows that (a) holds also for f.

Finally assume f(1) = 0 and consider f~ = f+ 1. Then (a) holds for f~. But

(fF(L)z—= (D) /(fT(DP(a)) = f(L)z/f (1)

and the assertion follows.

Note that Corollary 2.10 follows obviously from 2.11 and 2.9,

6. PROOF OF THE RESULTS OF SECTION 3

6.1. Proofof 3.1: I) Choosc an n€* N \IN .

Then for T' = L, and ® = ¢(n,z) we have (T'z — z)/P ~ Lz for all standard
z € D(L) by hypothesis.

Consider the set

B:={k €' N :||(f(T)z — fi( Dz)/(fi(1) - ®) — Lz|| < 1/k}

B 1is intermal and contains all standard k by 4.2. Hence B contains an infinitely large k.
Since n above was arbitrary in *IN \IN the first assertion follows by a routine nonstandard
formulation of the nouon of im .
(I) Let z,7,P be as above and let k € N be arbitrary. Set f = f,. Then
(f(T) — f(1))x LI:Tzu—z_LI_i_h(T)(T_DTE—I
fI(HP % f'(1) D

By hypothesis (T'z — z) /® ~ Lxz,and TLx ~ Lz, hence ||[(T — I)(Tz — z)/P||~ 0.
Since h(T) /f'(1) is of finite norm by assumption the second summand on the righthand side
1s infinitesimally small. Hence

[(f(T)z — f(Dz)/(f(1)P) — Lz|][~ 0.

Since T = L_ for an arbitrary n = oo and f = f, for an arbitrary k£ = oo the assertion (b)
follows.
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6.2 Proof of 3.2. (a) Choose n = co. Then for x € D(L) standard we have (f (L,) —
(D))~ fi(1)P(n,z)Lz ~ 0 by 3.1b). But f (1) ~ 1 by assumption. Moreover
Wf.(L)|| < D,and D(L) isdensein E. Hence f (L _)y = y for all standard y € E (cf.
the proof of 4.2).

(b) Consider f” := f /f (1). By(a) (f2°(L,)) isalso an approximation process. More-
over every regulatorof (%, L) isalsoaregulatorof (( f-°(L.)), L) (cf. 2.8 (i1)). Then again
(a) implies that 2.11 is applicable to %™ := (f.°(L_)), L, and ®~, where @~ 1s given by
o~ = fI~(1)P,_. Thus (i)-(iii) holds for Z ™~ in place of % . But an easy calculation shows
that this implies (b).
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