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0. INTRODUCTION

In the theorems about compact convex sets it is usually assumed that the compact convex set
1s contained in a locally convex linear space. Examples for such theorems are the Schauder-
Tychonoff fixed point theorem and the Krein-Milman theorem. The problem whether the
Krein-Milman theorem remains true also in non locally convex linear spaces, was solved by
J.W. Roberts; he gave examples for absolutcly convex compact sets without extreme points
(IR 76], [R 77], [Ro 84]). It is, however, still an open problem, whether the Schauder-
Tychonoff theorem remains true in non locally convex linear spaces [M 81, Problem 54 of
Schauder]. A sufficient condition for a compact convex set to have e.g. the fixed point prop-
erty or to have extreme points is that it can be affinely embedded in a Hausdor{f locally convex
linear space. This observation, which was the starting point for [JOT 76] and [R 76], was left
out of account in various newer publications about Schauder-Tychonoff’s fixed point theorem
in non locally convex spaces, €.g. [H 84].

In the first section we give a survey and a precisation of results about sets athnely em-
beddable in locally convex linear spaces. In the second section we examine conditions for
compact convex sets introduced in literature in connection with fixed point theorems in non
locally convex linear spaces. In the last section we prove as consequence of Rosenthal’s
Lemma that in certain Orlicz sequence spaces for some g € [0, 1] every g-convex bounded
closed subset 1S compact.

We denote by N and R the set of all natural numbers and real numbers, respectively.

1. LOCALLY CONVEX SETS

In this section, let K be a non void subset of a Hausdorff topological linear space (E, T) .

We treat the question, when on F exists a Hausdorff locally convex linear topology o,
which induces on K the same topology as 7. By 1.1, forconvex K anequivalent question is,
when K is affinely embeddable in a locally convex linear space, i.e. when there 1s an affine
map h : K — F with values in a locally convex linear space F' suchthat h : K — h( K) 18
a homeomorphism; hereby h is called affine if h(az + (1 — a)y) = ah(z) + (1 —a)h(y)
forall z,y € K and o € [0, 1].

Proposition 1.1. If K is convex, then K is affinely embeddable in a locally convex linear
space iff E admits a Hausdorff locally convex linear topology o with o|K = 7|K .
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Proof of the implication = . Let h . K — (F,p) be an affine embedding in a locally
convex linear space (F,p). f(r(z —vy)) = r(h(z) — h(y)) (z,y € K;r > 0) defines
a linear map on FE, :=span( K ), which is injective since h is so. Let K, be an algebraic
complement space of E, in E, || || anormon E,, o, := f~!(p) the inverse image under
f of p and o the topology on FE, for which (z,y) — z + y 1s a homeomorphism from
(Ey,00) x (E || ||) on (E,0). Then ¢ is a Hausdorff locally convex linear topology.
Moreover, foranet (z_) in K and z € K, the following conditions are equivalent: z_ —
— z(0), f(z)—f(z) — 0(p), h(z,)—h(z) — 0(p), z, — z(7). Hence o|K = 7|K .

Proposition 1.2. Let K be convex and compact. Then K is affinely embeddable in a locally
convex linear space iff the space A of all real valued affine functions on K separates the

points.

Proof. <= We endow the algebraic dual A* of A with the weak™ topology o( A*, A). The
map h: K — (A% o(A*, A)), which sends every £ € K into the evaluation map A(z) =
= p, defined by o (f) = f(z) (f € A), is affine and continuous. If A separates the
points, then A is injective, hence an affine embedding, since K 1s compact.

= Let o be a topology according to 1.1. Since the continuous dual ( F, o)’ separates the
points, the set of restrictions {f|K : f € (F,c)’} is a point separating subset of A.

We mention a well-known consequence of 1.2.

Corollary 1.3. If K is convex and compact and (E,T)' separates the points, then K is
affinely embeddable in a locally convex linear space and therefore has extreme poinis and the
fixed point property.

In particular, 1.3 applies for Orlicz sequence spaces.

K is said to be (strongly) locally convex if every point of K has a neighbourhood base
consisting of (open) convex sets in the relative topology 7| K .

Jamison, O’Brien and Taylor [JOT 76] used Proposition 1.2 to prove that a convex compact
subset K of F is affinely embeddable in a locally convex linear space iff K 1s strongly locally
convex. They posed the problem whether every compact convex locally convex subset 1s even
strongly locally convex. J.W. Roberts solved this problem:

Theorem 1.4. [R 78]. If K is compact and convex, then K is affinely embeddable in a
locally convex linear space iff K is locally convex.

Kalton [K 80] gave an example for an Orlicz function space with trivial continuous dual
such that every compact convex subset is locally convex and therefore - by 1.4 - has extreme
poimnts and the fixed point property.

We denote by co K and aco K the convex hull and absolutely convex hull of K.
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Proposition 1.5. Let K be a compact convex subset of (E, 1) and o be a Hausdor(f linear
topology on E with o|K = 7|K . Then olaco K = 7laco K.

Proof. (1) We use the following fact: if X 1s a compact space and p : X — Y a surjective
map, then Y admits at most one Hausdorff topology, for which ¢ is continuous; the closed
sets In Y are exactly the images of closed subsets of X under ¢.

(if) (7, z) := rz defines a surjective map from [0,1] x K on K, := co(K U {0}).
Therefore, by (i), the topology on K, is uniquely determined by the topology on K, i.e.
o|K, = 7|K, since o|K = 7]|K .

(i) Applying (1) for o(z,y) ==z —y (z,y € K,) one gets o|K, — Ky, = 7|Ky — K
since o|Ky = 7|Ky. But Ky — K, is an absolutely convex set containing K .

Corollary 1.6. If K is convex, compact and locally convex, then aco K is locally convex.

Proof. By 1.4, K is affinely embeddable in a locally convex linear space. Let o be a topology
according to 1.1. Then olaco K = 7laco K by 1.5 and olaco K is locally convex.

The next theorem gives an easy proof of Roberts’ deep embedding theorem (Thcorem
1.4) under the additional assumption that K is absolutely convex. Therefore it would be of
interest to find an easy proof of 1.6 without using 1.4. That would give - together with 1.7 -
a new proof of Roberts’ Theorem 1.4.

Theorem 1.7. Let K be absolutely convex and E = span K . Thenthe sets | 7>, Y -, U.N
M1 K, where U, are 0-neighbourhoods in ( E,T), form a 0-neighbourhood base of a linear

$
topology o on E, which is finer than T and induces on K the same relative topology as .

If 0 has a neighbourhood base of convex setsin (K, T|K), then o is locally convex.

The proof of 1.7 is routine. If K is bounded, then o is the mixed topology determined
by the p,-topology and 7, where p, denotes the Minkowski functional of K, (see [W 61, p.
50]). The idea of 1.7 is essentially also contained in the proof of Theorem 1 of [K 80j. 1.7
suggests the following problem.

Problem 1. Is every convex locally convex subset of E affinely embeddable in a locally
convex linear space?

A positive answer would imply a positive answer to the following problem posed by
Krauthauscen.

Problem 2. Let K be convex and locally convex and M a compact subset of K . Is then
co M totally bounded? (see [Kr 76, p. 10], [H 82, p. 122]; c¢f. [H 84, p. 31]).

Under the additional assumption that K 1s absolutely convex the answer to Problem 2 1s
yes:
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Proposition 1.8. Let K be absolutely convex and locally convex. If M is a totally bounded
subset of K, then co M is totally bounded.

This follows from 1.7 and the fact that in a locally convex linear space the convex hull of
a totally bounded set is totally bounded.

Let K be compact; then K 1s called admissible if for every 0 -neighbourhood U there 1s
a conunuous map h : K — K such that A( K') is contained 1n a finite dimensional subspace
of ¥ and z — h(x) € U forevery z € K. Itis well-known that every compact convex
admissible set has the fixed point property. Klee posed the following problem:

Problem 3. /Kl 60]. Is every compact convex subset of E admissible?

Nagumo proved that every compact convex subset of a Hausdortl locally convex lincar
space 1s admissible [N 51, Theorem 2]. Nagumo’s theorem and Roberts’ embedding Theorem

1. 4 yields:
Theorem 1.9. Every compact convex locally convex subset of E is admissible.

Under the additional assumption that £ is metrizable Krauthausen proved 1.9 without
using an embedding theorem, (see [Kr 76, Theorem 1.14] or [H 84, Theorem 3, p. 27}).
It 1s possible to modify Krauthausen’s proof such that his metrizable assumption becomes
superfluous.

The problem posed by Peck and Waelbroeck [PW 70}, whether every compact convex
subset of F 1s locally convex, was answered by Roberts [R 76] negatively. Roberts’ con-
struction ([R 76], [Ro 84, section 5.6]) of a counterexample 1s based on the notion of a needle
point. z, € E is called a needle point if zy,# 0 and every 0-neighbourhood U contains a
finite set F suchthat co F C co{0,zy}+ U and z, €Eco F + U.

Suppose that z, is a needle point of £ and E 1s a complete F'-normed space. Choose
finitesets . CU_:={z € E:f| z || 27"} withzy, € co F, C co{0,z,} + U, and
z, € coF,.+U_, and F, := {0,z,}. Then K := ¢ol .-, F., and acoK are compact
convex sets, which are not locally convex (at 0). The difficult part of Roberts’ construction
is the proof of the existence of needle points. He proved: every nonzero point of an Orlicz

function space LF[O, 1] (with respect to the Lebesgue measure on [0, 1]) is a needle point

if the Orlicz function ¢ is concave and (%) /i — 0 (t — o0).
We will show that Roberts’ construction yields sets which are admissible and have there-

fore the fixed point property.

Proposition 1.10. [J81,2.8.2]. For every F-semi- norm || ||, on E thereisan F-seminorm
| ||, , whichinduces the same topology as || ||,, with the following property: for every = € E
with || z ||, #0 themap [0,+00[D t || tz ||, isstrictly increasing.

Lemma 1.11. Let z, € E and U be a 0 -neighbourhood in ( E, 7).
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(a) There is a uniformly continuous map f : E — co{—z,,xy} such that f(z) = z for
all £ € co{—zy,z,}.

(b) There is a uniformly continuous map v, : E — [0,1] and a O -neighbourhood
V such that for all x € co{0,zy}+V andt € [0,1] one has 0 < ¥,(tz) < t and
Vi(z)zg —z EU.

(c¢) There is a uniformly continuous map ¢, : E — [—1,1] and a O -neighbourhood
V' such that for all x € co{—zy,zo}+ V andt € [—1,1] one has |,(tz)| < |t| and

v, (z)zg —zEU.

Proof. We may assume that z, # 0 . Choose a continuous F-seminorm || || on (E,7) such

that {z € E:||z||[< 3} C U\ {zy}. On grounds of 1.10 we may assume that [0, +oco[3
3 t || tz, || is strictly increasing. Define (t) := a~'(t) for 0 <t <[] z, ||, B(1) := 1
for t >|| zo ||, ¥(z) := B(|| z ||) and g(=z) := ¥(z) -z, for z € E. Then ¢ and g are
uniformly continuous and g(z) = z for x € co{0,z,}. Put h(z) = 2z —z, for z € E.
Then f := hog o h™! isa function as required in (a).

Choose v > 0 with || 7z, ||< 1. Since 4 is uniformly continuous with respect to || ||,
there isa 6 €]0,1] suchthat z. € F and |z, — z,| < 6 imply |[¢(z,) — ¥(z,)]| < 7.
Define p: R - R byp(#) =t—qift>q p) =0 1f -y <t < q, p(T) =t + 1~
if t < —~. Then ¢, := p o ¢ isa uniformly continuous map from E into [0,1]. Put
Vi={z¢€ E:|| z]||<é}). Lett € [0,1] and z = sz, + 2 with 0 < s < 1 and
z € V. Then ||tz —tsz, ||=|| t2z ||< 6, hence |[¢(E, x) —ts| = [P(tx) — Y(Tszy)| < v and
¥, (tx) < ts < ¢, since Ju—v| < « implies s(u)| < |v]. Wenow provethat ¢, (z)zq—z €
€ U. Since |¢Y(z) — s] < «v and |¢,(z) — ¥(z)| < v, we have || ¥(z)zy — sz [|[< ]
and || ¥,(z)zy — P(z)z( ||< 1, hence || () g — 574 ||< 2 and || ¥,(x)zo — 7 ||<
<|| P (z)zg — sz || + || 2 ||< 3. Consequently ¢, (z)zy —xz € U.

The proof of (¢) is similar to that of (b). Write f(z) = ¢,(z)z, for z € E. Choose
6§ €10,1] such that z; € E and |z, — z,| < & imply |¢y(z;) — ¥o(z,)| < . Then
P, :=poy, and V := {2z € E:|| 2 ||< &} have the required properties.

Proposition 1.12. Let (E,||||) be acomplete F-normed linear space, x, € E\{0}, F, :=
= {0,z,} and F, finite subsets of U, 1= {z € E :|| = ||< 27"} such that co F, C
CcoFy+ U,  and zy € co F, + U, for n € IN . Assume further that M are closed linear
subspaces of E suchthat\ J,, UF, C M_ and M N span|J_, F; = (0). Thento|J2, F,
and aco| J.., F, are compact admissible sets, which are not locally convex.

Proof. (i) Before Proposition 1.10, we have just observed that K := acol| J—, F; and K| :=
= col J2, F; arc compact sets, which are not locally convex.

(i) We now prove that K is admissible. Let U a 0 -neighbourhood in E. Choose 4, and V
asin1.11(c)and n € N withU,_, C V. Then A := aco FyUl J;.,, F; and B := aco| J;_, F;
are compact subsets of K . Furthermore, A C co{~z,,z,} + V. By the assumption on M
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themap Ax B 3 (z,y) — z+y Isinjective, hence an homeomorphis onto A+ B . Therefore
h(z+y) = Y,(z)zyg +y (if 2 € A and y € B) defines a continuous map from A + B
in B, :=spanl J;_o F;. By .11 (¢) we have h(z+ y) — (z+ y) = ¥,(z)zy —z € U for
reAand y € B, hence h(z) —ze€ U forall z € K, since K C A+ B. We show that
h(K) C K:letze€ K. Thenthereare z € A, y € B and s,t € R with |s|+ |t| < | and
z =38z + ty. Since |9, (sz)| < |s| by 1.11 (c), one obtains h(z) = ¢, (sz)zy +ty € K.
(111) To prove the admissibility of K, we choose 4, and V' according to 1.11 (b) and define
am(z+y) = (), +yforz € A and y € B. Then A, isacontinuous map with values
mn £, hWiiK,) CK,and hy(2) —z€U forze€ K;.

From Robert’s construction sketched before Proposition 1.10 (¢f. [Ro 84, section 5.6])
and from Proposition 1.12 one obtains:

Corollary 1.13. If ¢ is a concave Orlicz function and o(t)/t — 0 (t — 00), then the
Orlicz space L [0, 1] contains absolutely convex compact sets, which are not locally convex,

out admissible and have therefore the fixed point property.

2. CONVEXLY TOTALLY BOUNDED AND STRONGLY CONVEXLY TOTALLY
BOUNDED SETS

In this section let ( E, 7) be a Hausdorff topological linear space and K a non void subset of
E.

K 1s said to be convexly totally bounded ( ctb for short) if for every 0-neighbourhood U
there are a finite number of convex subsets C,,...,C_ of U and points z,,...,z_ € E such
that £ C U:;] (z,; + C;) . This notion was introduced by Idzik [T 87] to establish fixed point
theorems in non locally convex linear spaces.

Theorem 2.1. [I 88, Theorem 4.3]. If K is convex, compact and ctb, then K has the fixed
point property.

Since every totatlly bounded subset of a locally convex linear space 1s ctb, 2.1 generalizes
the Schauber-Tychonoff fixed point theorem. Idzik [I 88, Problem 4.7] posed the problem,
whether every compact convex subset of a (non locally convex) topological linear space 18
ctb. A positive answer would solve Schauder’s problem [M 81, Problem 54]. In [DTW 93]
we answer [dzik’s problem negatively specializing Roberts’ example for an absolutely convex
compact non locally convex set (see section 1). Combining this result of [DTW 93] with 1.12
one obtains:

Theorem 2.2. If ¢ is a concave Orlicz function such that p(t) /t — 0 (t — o0), then the
Orlicz function spaces L [0, 1] contains absolutely convex compact sets with the fixed point

property, which fail to be ctb.
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Easy examples show that the convex hull of a ctb set doesn’t need to be cib [DTW 93].
We therefore introduced the following notion in [DTW 93]: K is said to be strongly convexly
totally bounded (ctb for short) if for every 0-neighbourhood U there is a convex subset O
of U and a finte subset F' of E suchthat K C F+ C.

Proposition 2.3, [DTW 93]. The closed absolutely convex hull of a sctb set is sctb.

Every sctb setis ctb and every ctb sctis totally bounded; in locally convex linear spaces
these three notions are equivalent.

Proposition 2.4. [f E is metrizable, then every totally bounded set is sctb iff F is locally
convex.

Proof of the implication = . If E is not locally convex, then E contains by [MO 48, state-
ment 1.642] a compact sct K such that co K 1s not bounded. By 2.3, K 1S not sctb.

In 2.4, the metrizability assumption 1s not superfluous: if 7 1s the finest linear topology
on F then every bounded subsct of E is contained in a finite dimensional subspace of E
and 1s therefore sctb, but 7 is not locally convex if the dimension of E' 1s uncountable, (sec
{J 81, p. 80 and p. 123}).

The example [DTW 93, 5.3(b)] shows that a ctb set is not necessarily sctb. But we don’t
know, whether there are also convex ctb sets, which are not sctb. On grounds of 2.8 an
equivalent question 1S:

Problem 4. Are there compact convex ctb sets, which are not affinely embeddable in a locally
convex linear space’?

The main aim of this section is the proof of Theorem 2.7. There we compare the notion of
scth sets also with the following notion introduced by Hadzi¢ [H 82, Definition 6] 1n connec-
tion with fixed point theorems. Hadzi€ calls K of Z-type if for every O -neighbourhood U
there is a 0 -neighbourhood V in (E, 1) suchthat co VN (K — K) C U. A convex set K
is of Z-type iff O has a neighbourhood base of convex scts in the relative topology (K — K .

Proposition 2.5. (¢f. [H 84, Proposition 3, p. 30] and [JOT, p. 204]). Let K be absolutely
convex. Then K is of Z-type iff K islocally convex.

Proof. <= This follows from the fact that = +— 2 z defines a homeomorphism from K onto
K- K.

= Let z € K. If U isa O-neighbourhood in ( £, 7) suchthat U, := UN( K —K) 1sconvex,
then (z+ U, )N K isaconvex neighbourhoodof z in ( K, 7(K) since (z+U)NK C z+Uj, .

Proposition 2.6. If K is sctb, then for every 0-neighbourhood U there is an absolutely
convex subset C of U and a finite subset F of K suchthat K C F'+ C.
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Proof. Let U and V be 0-neighbourhoods with V — V C U, C, aconvex subset of V and
Ty ...,z € Ewith K C|JL,(z,+C,) and (z;+ Cy) NK#@ fori=1,...,n. Choose
y; €E(z;+Cy)N K thenz,+ Cy Cy;,—Cy+Cy fori=1,... ,n. Therefore K C F+C
with F := {y,,...,y,} and C := C, — C, . Furthermore, C is an absolutely convex subset
of U.

Theorem 2.7. Let K be atotally bounded subset of K and F' = span K . Then the following
conditions are equivalent.

(1) K 1s sctb.

(2) K isof Z-type.

(3) aco K is locally convex.

(4) E admits a Hausdorff locally convex linear topology o, which induces on F a finer
topology than T, such that o|K 1is totally bounded.

(5) E admits a Hausdorff locally convex linear topology o, which induces on F' a finer
topologv than T, such that o|K = 7| K .

(6) E admits a Hausdorff locally convex linear topology o, which induces on F' a finer
topology than T, such that olaco K = Tl|aco K .

Proof. (6) = (5) = (4) = (1) and (6) = (3) is obvious.

(3) = (2) By 2.5, aco K isof Z-type. Therefore K 1s of Z-type, L0o.

(2) = (1) Let U be a 0-neighbourhood. By (2) there 1s a 0 -neighbourhood V such that
C:=coVN(K - K) CU. Since K is totally bounded, there is a finite number of points
T,,...,x, € E suchthat K C J.,(z;+ V). Since (z; + V) N K C z;+ C, we get
K c i (z; + C), where C is aconvex subset of U .

(1) = (6) (i) Let E be the completion of ( E, 7). Then GcoK (taken in E) is sctb by 2.3,
hence compact. Therefore we may assume that K is absolutely convex, compact and sctb.
Furthermore we may assume that E =span K, since every Hausdorff locally convex lincar
topology on F' can be extended to a Hausdorff locally convex linear topology on E' (cf. the
proof of 1.1).

(if) Let (U,),c a O-neighbourhood base in ( £, 7) . We will define o by a family (p,),cx
of seminorms, where each p_ is the Minkowski functional of a closed absolutely convex
subset B, of U,,.

Let « € A. Choose 0-neighbourhoods V, and W, such that U contains the closure
of Vp+Vyand V_ +V_CV__, and nW_ C V_ for n € IN. By 2.6, there arc absolutely
convex subsets C_ of W, and finite sets F, C E suchthat K C F, + C, forn € IN.
Let € > 0 with eK C V,. Define B_ as the closure of eK + | J2; ) ., ¢C,. Then B,
is a closed absolutely convex subset of U, . Since eK C B_, we have span B = E and
therefore the Minkowski functional p_, of B, is a seminormon E. Since B, C U, for all
a € A, the topology o induced by the family (p_),4 1S finer than 7.
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K is totally bounded in ( F,0): let « € A. We have only to prove that K 1s totally
bounded in (E,p,). Letn€ N and B := {z € F : p,(z) < 1/n}. Then we have, with
the notation above, C, C B since nC, C B, C nB. Itfollows that K C F, + B.

K is compactin (E,0): let (zg4)g.p beanetin K. Since (K, o|K) is totally bounded
and (K, 7|[K) is compact, (z4) has asubnet (y,),r, whichis Cauchy in (E, o) and con-
verges to some point y € K in (£, 7). It follows that (y,) converges to y in ( £, g), since
( E, o) has a O-ncighbourhood base of sets, which are closed in ( F, 7).

From the facts that 7 is Hausdorff and coarser than ¢ and that K 1s compactin ( E, 7)
and in ( K, o) follow that o|K = 7|K.

Corollary 2.8. Let K be a compact convex subset of (E, 1) and F = span K. Then the
following conditions are equivalent.

(1) K is scth.

(2) K i1sof Z-type.

(3) K 1is locally convex.

(4) K Is affinely embeddable in a locally convex linear space.

(5) E admits a Hausdorff locally convex linear topology o, which induces on F' a finer
topology than T, such that o|K = 7|K .

Proof. (1) <= (2) <= (5)and (3) «<= (4) hold by 2.7 and 1.4. (5) = (4) 1s obv10us.
(4) = (2) Let o be a locally convex topology according to 1.1 and Ky := aco K. Then
o|K, = 7|K, by 1.5 and so o|2 K, = 7|2 K,. Therefore 7|2 K, is locally convex and
consequently K is of Z-type, since K — K C 2 K,.

Let p > 0; then every convex ctb subsetof £, 1s sctb by 2.8 (4) == (1). We will see n
3.8, that every ctb subset of EP 1S sctb.

Krauthhausen [Kr 76, Satz 2.18] proved that every compact convex order-bounded subset
of an Orlicz function space is locally convex. By 2.8, these sets are sctb.

3. COMPACT CONVEX SETS IN CERTAIN ORLICZ SEQUENCE SPACES
In this section let ¢ : [0,00[ — [0, 00[ be an increasing function continuous in 0 such that
() =0 ifft=0.

We put || z ||,= > .2y w(|z,|) for every real sequence z = (z,) and £, = {z € RY :
| = ||,< oo}. For n € N, we denote by e, the sequence (9;,);cn, Where 6, = 1 and
6. =0 if 1 n.

o is said to satisfy the A, -condition at 0 if lim sup,_,p(2t) /p(t) < oo. The following
fact 1s well-known.

Proposition 3.1. (a) The following conditions are equivalent:
(1) ¢ satisfies the A, -condition at 0.
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(2) SUDP( 1o P(88) /(1) < 00 forall a,s > 0.

(3) Forevery a > 0 thereisa f > 0 suchthat T,y € R™ and|| = e 1l v ||, @
imply [|z+ y ||,< Bl z |, + 1yl

4) € E&D mplies 2x € .ﬂ,ﬂ .

(5) The sets {z € R™ || z l,< €} (& > 0) form a 0 -neighbourhood base for a group
topology on RN |

(6) £, is a linear subspace of RN and the sets {z € ¢, |l z{l,<e} (e >0) foma
0 -neighbourhood base for a linear topology T, On Eiﬂ .
(b) If p sauisties the A, condition at 0, then (€, T,) 1s a complelec metrizable topological

linear space and (e,),  i$ an cquicontinuous basis in Ew (in the sense of [, p. 296]).

The main aim of this section is to prove that in certain Orlicz sequence spaces £, in

particular in the spaces £, for 0 < p < 1, every ciosed bounded convex subset is compact
(see Theorem 3.7). More generally, we treat g-convex sets; {J 81, p. 101] for the definition.
Hereby the set Q, of all ¢ > 0, for which

JAm 9(g,5) = co, where 9(g,s) = UEI;I o(st) /sTp(1),

plays an important role. We examine this set more in detail at the end of this section. Here
we only note:

Lemma 3.2. If Q # D, then p satisfies the A,-condition at 0.

Proof. Let q € Q ,. Then there is a positive number s < 1/2 such that p(st) /s%(t) > 1
forall ¢t € [0, 1]. Therefore

o(t/2) /(1) > o(st) /p(t) = (p(st)[sTp(t)) -8 > s? for 0 <t< 1,

hence lim sup,_,0(t/2) /(1) < 579,
In the proof of Theorem 3.7 we use one implication (<) of the following known fact.

Proposition 3.3. Let (z.) . be an equicontinuous basis in a Hausdor(f topological linear

space E and P, : E — E the expansion operators defined by P,(x) = ZLI t,x, if

t. € Randz = > 2"t z_. Then a subset K of E is totally bounded iff P,(K) is

7

bounded for all k € N and P (x} — z (k — oo) uniformlyin z € K .

ﬁ'm{ Define Rk M S R ) by Rk(m) — I“—Pk(m).
(1) Suppose that P, ( K) 1s bounded forall k € N and P.(z) — z (k — oo) uniformly
in zx € K. Let U be a 0-neighbourhood in E. Choose £k € IN with R . (K) C U.
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Since P,( K) is a bounded subset of the finite dimensional space span{z,,...,z,}, the set
P, (K) is totally bounded and therefore P,( K) C F'+ U for some finite set /' C E. Hence
KCPFP(K)+ R (K)CF+UH+U. Itfollows that K 1s totally bounded.
(i) Let K be a totally bounded subset of £. Then K and therefore P, ( K') is bounded for
each k € N . Toprove that R, (z) — 0 (k — oo) uniformlyin z € K, weneed that { i, :
k € IN } is equicontinuous. Let U and V be 0-neighbourhood in £ such that R, (V) C U
for all £k € IN. Choose a finite set ' C F suchthat K C FF+ V and kK, € IN such that
R, (z) e U forallz € F and k > k,. Thenwehave R (K) C R(F)+ K, (V) CU+U
or k > k.

An essental tool in the proof of 3.7 is the following special version of Rosenthal’s Lemma
DU 77, Lemma 1, p. 18].

Rosenthal’s Lemma 3.4. Let o;; € [0,+00[ for 1,7 € N and sup;p ) 72, o < 00.

I'hen for everv € > G there is a sequence of natural numbers n, < n, < my < ... such that

E}?;% Apn S E for every 1 € N | in particular Qg S E ifi# 7.

Lemma3.5. || sz ||, > s || z ||, -%¥(q,s) -min{l,p(l)/a}ifs,qa>0andz=(z,) €

€ £, with sup, . (]2,]) < .
Proof. Let s,q,a > 0. Then p(st) > ¢¥(q,s)s%(t) 1f 0 <t <1, and
p(st) 2 p(s-1) 2> 9(g,9)s7p(1) 2 ¥(g,s)s7p(t)p(1)/a
if £t > 1 and p(t) < «; hence
o(st) > ¥(q,s)s%(t) -min{l,p(1)/a} forall t>0 with (t) < o.

[t follows that for z = (z,) € £, with sup p(|z,]) < o

sz ]l,= ) @ (slza]) > D 9(g,5) - 57 9 (sl|z,]) - min{1, (1) /a} =
n=1 n=1

= 9(q,8)s% || z ||, -min{1,o(1)/a}.

A subsct K of £, is called || [, -bounded if sup . || z |[,< oo. || ||, -boundedness

implies pointwise boundedness in £, iff sup,,o (1) = oco.

Proposition 3.6. Assume that ¢ satisfies the A,-condition at (). Then every bounded subset
of (£,,7,) is |||, -bounded and || ||, -bounded, hence pointwise bounded.

Proof. (i) The || ||, -topology is weaker than the || ||, -topology 7, since {z € £, :
|z ]|, <8} C{z el |l zi,<epfore>0and0 <8 < p(e). Therefore
7,,-boundedness implies || ||, -boundedness, hence pointwise boundedness.
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(ii) Let K be a bounded subset of (£ ,7,). Then « := sup{|| z ||: € K} < oo by
(i) and g := supoﬂgnp(st)/ga(t) < ooby3l(@ @) Let0 < r< 1 suchthat z € K
implies || rz || ,< 1 and s := 1/r. Then, for z = (z,) € K, we have

12 ll,= e (rlz,]) - o (s-rlz,]) /e(rlz, D) <l vz ||, -B < B.
n=1

Theorem 3.7. Let ¢ € Q,N[0,1] and K be a g-convex subset of £,. Then the following

conditions are equivalent:
(1) K is||||, -bounded and pointwise bounded.

(2) K 1s 7,-bounded.
(3) K Iis totally bounded in ( E, T,) -

Proof. By 3.2, p satisfies the A, -condition at 0.

(3) = (2) is obvious, (2) = (1) holds by 3.6.

(1) = (3)Put Py(z) = 3%, z.e, and R (2) := z — Py(z) if 7 = (z,) € £,. Then
P, (K) 1s bounded for all k € N, since K is pointwise bounded. Suppose that K 1s not
totally bounded. Then, by 3.3, (E,(x)) does not convergence uniformly in z € K to 0.
Therefore there are a positive number n > 0, asequence of integers 0 = k; < ky < k3 < ...
and z; = (z,;,),cx Such that

(%) Y o(lzal) >n

ki<n<kis

foreach 1 € N. Put f, := P, — P, and y,, = fi(z;) (4,7 € N).
(*) means that || y;; ||,> n for each 1 € IN. We will apply Rosenthal’s Lemma 3.4 1o
a;; =l y;; ||, (3,7 € N). The assumption of 3.4 is satisfied, since 332, «;; =[| =, ||, <

S" SuszK ” I ”lrp:: o < 00.
Let m € IN and € > 0 such that

m
z;€8, and | z|,<e (i=1,...,m) imply | z||,<a/m.
i=1

By 3.4 there 1s a sequence n; < n, < m3 < ... of natural numbers such that o, , < €

nny =
e s} s . m : : .
if 1# 7. Put 2;; 1= Unn, - Then || Z:;} z;;i |l,< @/m. We will estimate || sz ||, where
si=m /% and z:= 3., z;;. We have
m T m m
>0 szlle= Do D sz < Do 11 D2 < e
1<ij<m j=1 =1 j=1 1=l

i 17 i)
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Since K is g-convex, we have z := s ) 17, z, € K and therefore

Y sz 1< s ]],< o

1<17<m

Choose a number 8 > 0 for o according to 3.1 (a) (3). Then

Fszll,<BLI D szill,+ 1l ) sz;ll, | <2aB.

1<ij<m 1<i j<m /
17

On the other hand, || z || = }11 | z;; ||,> m -n = s7%n hence, by 3.5 with ~ :=
= min{1, p(1)/a},

| sz ]|,> 8" [[ 2 {l, ¥(g,8) -7 >n-9¥(g,5) -7

since each member of the sequence 2z
therefore ¢(|z,]) < a forallne N.
We have proved that

. (z,) 1s a member of some sequence of K and

n-9(q,8) -y <] sz || ,<2ap.

It follows that for every m € N

Y (q, m“”q) < 2af/m,

a contradiction to the assumption ¥{¢q,r) — oo (0 < r — 0).

Corollary 3.8. If inf[}{tgl p(st) /sp(t) — oo (0 < s — 0), then every ctb subset of £,

Is sctbh.

Proof. Modifying ¢(t) for t > 1 we may assume that sup,., p(t) = co. Let K be a ctb
subset of £, and U := {z € £, :|| = ||,< 1}. Choose a finite set F' = {z,,...,z,} CZ,

and convex subsets C; of U such that K C |J_,(z; + C;) . We may assume that 0 € C;.
Then co K C co F+ ), C;. Therefore co K is || ||, -bounded, since by 3.1 (a) (3) the

sum of || ||, -bounded sets is || || , -bounded. Consequently co K is totally bounded by 3.7

and co K is compact. Since the continuous dual of £, separates the points, co K 1S sctb by
2.8 (4) = (1). Therefore K is sctb, 100.
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Ifp >0 and 0 < ¢ < 1, then by 3.7 every bounded g-convex subset of £ 1s totally
bounded 1ff p < ¢g. An analogous statement does not hold for the function spaces LP[O, 1]:
since the set of all characteristic functions of LP[ 0, 1] is not totally bounded, the unit ball of
L_[0, 1] i1s an absolutely convex bounded subset of L,[0, 1], which is not totally bounded.

Recently G. Metafune has drawn my attention to Pitt’s Theorem [LT 77, 2.¢.3}, which says
that every continuous lincar operator T" : £, — .Ep 1Iscompactif I < p < ¢ < oo. Turpin

(T 76, Théoréme 3.5.3] proved a theorem of the same type, which 1s strictly related to the
following corollary of 3.7. Corollary 3.9 is actually equivalent to 3.7 (2) = (3).

Corollary 3.9. Assume that ¢ € Q ,N[0,1] and E is alocally q-convex linear space. Then

every continuous linear operator T' : ks — £, is compaci.

Proof. Let U be a bounded 0 -neighbourhood in £, and V' a g-convex 0-neighbourhood in
E suchthat 7(V) C U. Then T'(V) 1s g-convex and bounded, hence relatively compact

by 3.7 (2) = (3).
We now show that, viceversa, 3.7 (2) = (3) is a consequence of 3.9: let ¢ € Q N[0, 1]

and K be a g-convex bounded subset of Ew. Then B := K — K 1§ an absolutely g-convex
bounded subset of K. Therefore the sets e B, € > 0, form a 0-neighbourhood basc for a
locally g-convex linear topology o on E := span B, which is finer than Tw]E. Therefore

the identity map (£,0) 3z — 2 € (£, Tw) is continuous, hence compact by 3.9. It follows

that B and therefore K are relatively compact in (Ep, T,) -
We briefly examine boundedness for non g-convex sets.

Proposition 3.10. Assume that p satisfies the A, -condition at 0. The boundedness and || ||,

-boundedness are equivalent in (£,,7,) if
(1) Sup;sq p(t) = oo and
(ii) SUP g <41 p(st)/p(t) -0 (0 <s—0).

Proof. = (i) If sup,,, p(t) < oo, then {te; :t € R} is || ||, -bounded, but not bounded
in (Ew,TE).

(11)) Suppose that SUP o cc1 p(st)/p(t) does notconvergetoOfor 0 < s — 0. Put B, :=
={zx €, :||z]|,< e} for e > 0. We show that for no ¢ > 0 the set B, is bounded.

Let g, 6 €]0,1] with o(d) < e. Since

sup p(st)/p(t) < p(s)/p(8) -0 (0 <s—0),
5<t<1

SUPg <1< w(st)/p(t) does not converge to O for 0 < s — 0. Therefore there are se-
quences (s_),(f ) in ]0,48] and a number n > O suchthat s, — 0 (n — oo) and
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p(s,t.)/p(t,) > 2nforalln € N. Let s > 0. We show that sB, ¢ B, . Choose
n € N with s, < s. Since p(t,) < p(08) < g, there is a natural number k with

kp(l,) <e<2kp(t,). Then z:=1_ Zle e; € B, but sz ¢ B, since

I sz {l,= ke (st,) > ko (s,t,) 2 2nkp (t,) > ne.

<= Suppose that (i) and (i1) hold. In view of 3.6 it is enough to show that B_ is bounded for
every « > 0. Let oo, > 0. By (1) there 1s a number u > 1 with ¢(u) > «. Since by (11)

Y(s) := sup p(st)/p(t) < max { sup p(st)/e(1), p(su)/p(1) } — 0
D<t<u 0 <t<u J

for 0 < s — 0, there1san s > 0 with ay(s) < €.
We show that sB, C B,: let z = (z,) € B,. Then |z, < u for n € N and

| sz ||,= 3 o1 ©Cslz.) <200 wllz,Dy(s) =|[z (], ¥(s) <&,
As in [LT 77, p. 143] we define

B, = inf Bp, where

-

\
:=J o g9 = - nf 04
B, LQ>0 ﬂ;ﬁg]%ﬁ(ﬂ)/‘i p(t) >Oj {q:>0 Ggglvp(q,s) > JL

In [LT 77], p1is always assumed to be a convex Orlicz function; in this case ( st) /sp(t) =
= p(st+ (1 —35) -0)/(sp(t) + (1 — s)p(0)) < 1 for s,t €)0,1], hence B, > 1.
Analogously one sees that ﬁw < 1 if ¢ 1s concave. In our context the condition ﬁw < 118
important (cf. 3.12).

Lemma 3.11. If ﬁ;p < 00, then SUP§ ¢ sc v(B,,s)=1.

Proof, Let 5@ < o0o. Since ¥(g,1) =1 and 9(0,s) <1 forg>0and 0 < s < i, we

have only to prove that ¥(45,,s) <111, >0 and 0 < s < 1.
Letp:=8,>0,0 <s< 1anda > 1. Weprove that ¥(p,s) < a. Choose

g €]0,p[ with s97P < a. Since inf ,__, ¥(g,7r) = 0, there are numbers r,¢ €]0, 1] with

o(7t) /r%0(t) < s*9. Let k and n be integers > O such that

s*th < r<s® and s™' <t < 8™
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Then
$*? > p(rt) [r7p(t) 2> (5ﬂ+k+2) /Skq‘ﬁ:’(*ﬁn) = yn+k+2/3qun:

where y. := p(s'), hence

k+2
— k+2
]___[ynﬂ'/ynﬂ'—-l = Yneke2 [ Un < Sates

1=1

Therefore one of the k + 2 factors y .. /y,.._; 1S < s7. Let m be an integer > 0 with
Yrs1/Ym < 8. Then

p(s-5™) [sP0(s™) = ypu1 /57y, < sT7P < a,

hence ¥ (p,s) < a.
Obviously, B, = [B,, 00l or B, =]8,, 0ol . There are examples for 8, € By and for

B, ¢ By, (see 3.16).
Proposition 3.12. Q =18,,00l[.

Proof. (i) Obviously, p > ¢ € ,, implies p € Q.

) B, ¢ Q, by 3.11.

(i) ¢ > B, implies ¢ € Q,: let p € B, with p < ¢. Then inf,_. ., ¥(p,s) > 0,
hence ¥(q,s) = Y(p,s) -sP79 - 00 (0 <5 > 0).

Proposition 3.13. Let «, 8 > 0 with liminf ;_, ,0(2%) /(1) = 2% and lim sup,_,_,o
0(2t) [p(t) = 2P . Then o < B, < B.

Proof. (a) We first prove that ¢ > g implies ¢ € B ;. Choose a number a with 28 < a0 < 29

and € €]0, 1[ such that ©(2t) /(1) < a forall t €]0,e[. Then p(27") > p(t) -a™"
fort €]0,e] and ne IN. Put b:= min{1,279} - (&) /p(1). Let s,t €]0, 1]. We prove
that p(st) /s%p(t) > b. From that follows that g € B,.

Case 1,0 <t < e. Choose k € N with 27% < s < 2~*'! Then
p(st)/s%p(t) > p (27Ft) /275 DIp(t) > a7k /27D > 279 >

Case2,t > e and st < e. Then s < r:=st/e < 1. Using case 1 one obtains

p(st)/s%p(t) > (p(re) [T9(e)) - (p(e) [e(1)) >277 - p(e)/p(1) > b.
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Case 3, st > €. Then p(st)/s%(t) > w(e) /(1) > b.
(b) Let 0 < ¢ < a. We prove that ¢ ¢ B, . Choose a number a with 29 < a < 2% and

e €]0,1[ such that ¢(2t)/p(t) > a forall t €]0,e]. Then p(27") < (i) -a™™ for
t €]0,e] and n€ IN . It follows that

w(Z_“t)/(Z_")qtp(t) < (2‘?/&]“ — 0 (n— 00),

hence inf ) ©(st)/s%(t) =0 and ¢ € B,,.
From 3.2, 3.12, 3.13 follows:

Corollary 3.14. o satisfies the A, -condition at 0 iff B, < oo iff Q,# D .

If limg,_o p(21)/p(t) exists and is equal to 27, then 8 = B by 3.13. The following
fact shows in particular that there are functions ¢ with g, < 1 < f, where lim supg ., 0

p(2t) [p(t) = 27

Proposition 3.15. For every B and q with 0 < q < [ there is a conlinuous increas-

ing function  : [0,00[— [0, 00l such that p(t) O ift =20, sup,.qp(t) = oo,

lim supg ., o(2t) /(1) =2F and B, = q.

Proof. Define a function ¢ : [0, 00[ — [0, co[ in the following way: put d := 2F, o :=
= 27Pl1 = 4719 €10,1/2); p(a™) = d™™ and p(a®/2) := d™™! forne N U{0};
0(0) =0, p(t) =tift > 1, define o linear on the intervals [a™!, a™/2] and [a"/2,a"].

We show lim sup,_,_o(2%) /(1) = 2P:letne N and a™! < 2t < a™. Ift €
[a“”/Z,a“”] and 2t € [a™/2,a"], then

(1) =d"? [2(d—1)a™™ - t+2 —d] >
>d "2 [2(d— 1a™ - 2t+2 —d| = d ' p(21),
hence p(2t)/p(t) < d. If t € [a™!/2,a™'] and 2t € [a™',6a™/2], then ©(2t)/

Jo(t) < o(a™!)/p(a™!/2) = d. If t € [a™!,a"], then p(2t)/p(t) < p(a™)/
[p(a™/2) = d.
g > B, let s,t €]0,1] and k,n € IN such that of < s<aftand e < s < o™,
Then
p(st)/s%p(t) > p (a*™) /a* D (a™') = (a%d) Fa?/d = d72.

Therefore ¢ € B, and ¢ > 3.
q gﬁw: if 0 < p< q, thenfor s=a* andt = 1 we have

p(st)/s%p(t) = d*/a* = a'""P* -0 (k- 00),

hence p ¢ B, and p < 3. It follows that ¢ < ..
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Example 3.16. (a) Let p > 0 and o(t) = tP for t > 0. Then lim,_, p(2t)/p(t) = 27
and pr = [p, o0l.

(b) Letp > 0. Define p by p(t) = —tP/lnt if 0 <t < 1/e and p(t) = e'"P . if
t € [0,00[\]0,1/e[. Thenlim,_, o(2t) /p(t) = 2P and Bf# =]p, oo .

(¢) Define ¢ as in (b) with p = 0. In particular we have SUp,yo p(t) = oo. Smce
B, =0, every |||l , -bounded subset of £ ,, which is q-convex for some ¢ €10, 1], is totally

bounded by 3.7. On the other hand, £, contains by 3.10 || ||, -bounded scts, which are not
bounded, since for every s €]0, 1] SUP g 11 ¥ st) /() > o(s*)/p(s) = 1/2.
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