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ON THE CONVEX COMPACTNESS PROPERTY FOR THE STRONG OPERATOR
TOPOLOGY

JURGEN VOIGT

Dedicated to the memory of Professor Gottfried Kothe

In the strong operator topology, the space K(X,Y) of compact operators between two Ba-
nach spaces X, Y 1s not complete, not even sequentally complete. It 1s, however, Mackey
complete, 1.e., every bounded closed absolutely convex subset is a Banach disk (cf. [4]). In
this paper we show that K (X, Y ), with the strong operator topology, has a stronger com-
pleteness property, namely the convex compactness property (see the definiion below). This
property is also true for the space of weakly compact operators ([9]).

These considerations concerning the convex compactness property of K(X,Y ) and of
other subspaces of L(X,Y) (the space of all continuous linear operators) 1n the strong oper-
ator topology were motivated by the paper of Weis [11]. They originated from the context of
the perturbation theory of C,-semigroups, in particular from the application to the neutron
transport equation. We refer to [11] as well as to the references quoted there for motivation.

In section 1 we show the convex compactness property for K(X,Y ). In fact, we show
the «strong convex compactness property» which is, at least formally, slightly stronger.

In section 2 we indicate several other subspaces of L(X,Y ) which have this property,
for instance the space of weakly compact operators.

In section 3 it is shown that, under certain additional assumptions, the strong convex com-
pactness property is implied by the convex compactness property. In order to prove this we
establish a refined version of Carathéodory’s theorem on the equivalence of separable proba-
bility spaces and the unit interval, which should be of independent interest (Theorem 3.5).

In section 4 we discuss the relations between different completeness properties, and we
show by an example that not every closed subspace of L(X,Y’) has the convex compactness
property in the strong operator topology.

Concluding this introduction we recall the convex compactness property. For a locally
convex space E the [metric] convex compactness property is defined as follows: for each
[metrizable] compact subset C C FE the closed convex hull To(C) is compact (cf. [7], [13;
Definiton 9.2.8], [10; p. 92]).

The following equivalent formulation of these properties was pointed out to the author by
H. Pfister (Miinchen, 1981).

Theorem 0.1. Let E be a Hausdor(f locally convex space. Then the following conditions are
equivalent:
(a) E has the [metric] convex compaciness property.
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(b) If Q2 is a compact [metric] space, u a (positive) Borel measure on 2 and f : Q — E
continuous, then f 1s p-Pellis integrable.

Proof. (a) = (b). This i1s an immediate consequence of [3; chap. III, § 3, n. 2, Proposi-
ton 5]. (For the «metric» case, note that the continuous image of a compact metric space is
metrizable; cf. [2; chap. IX, § 2, n. 10, Proposition 17].)

e

(b) = (a). Let C be compact [and metrizable]. Then C{)(C)E 1S compact, where E de-

e

notes the completion of K. By [3; chap. 1V, § 7, n. 1, Proposition 1] every point of co(C) E

1s the barycenter of a probability measure on C. Now the hypothesis implies co(C) “CcE.

1. THE STRONG CONVEX COMPACTNESS PROPERTY FOR THE SPACE OF
COMPACT OPERATORS

The properties stated in Theorem 0.1 should serve as a motivation for the following definition
conceming subspaces of L(X,Y ), where X,Y arc Banach spaces.

Definition 1.1. Let E be a closed (with respect to the operator norm) subspace of L(X,Y) .
E isdefined to have the strong convex compactness property of the following holds: for any fi-
nite measure space (£2, A, u) and any bounded function U : 2 — FE whichis strongly meas-
urable (i.e., U(-)x is measurable for all x € X ) the strong integral [ Udp (€ L(X,Y)),
defined by

/Udp:ﬂ :=fU(w):r:dp(w) (z € X),
0 Q

belongsto E.

Remarks 1.2. (a) If E in the situation of the preceding definition has the strong convex
compactness property then ( E,7,), where T_ denotes the strong operator topology, has the

convex compactness property, by Theorem 0.1.
(b) The strong convex compactness property of £ C L(X,Y) i1s obviously equivalent to the

following property: for any measure space (£2, A, 1) and any function U : 2 — E which

is strongly measurable and for which the upper integral TQ | U(w) || dp(w) is finite, the

strong integral fn Ud p belongs to E'. It was 1n this form that the strong convex compactness
property was stated for various subspaces of L(X,Y), in [11].

Theorem 1.3. The space K(X,Y ) of compact operators has the strong convex compactness
property.

Remark 1.4. Theorem 1.3 was stated by Weis (cf. {11; Corollary 2.3]). There is, however, a
gap 1n the proof of [11; Proposition 2.2] which we shall explain subsequently.
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In [11, upper part of p. 9] 1t 1s claimed that, under the assumption that X 1s separable,
there exists a sequence M, O M, D ... of finite codimensional closed subspaces of X
such that || S|M, ||[— 0 forall § € K(X,Y). We now demonstrate that this statement iS
erroneous if X' is not separable, and for ¥ = K (the scalars). Let M; D M, D ... bea
sequence of finite codimensional closed subspaces of X . Without restriction codim M, = n

for all n € N . Then there exists a sequence (z;) C X' such that M, = [}, I}'l({{}})

for all n € N . Since X' is not separable there exists =’ € X'\ lin{z’;n € N}. It follows
from the Hahn-Banach theorem that

|| <M, || = dist (2, lin {Ij,.;l <j<nh)>

%

> dist {f’, lin {z;;j = N}) > 0.

Proof of Theorem 1.3. (1) An operatorin L(X,Y) 1s compact 1f and only if its restricuon to
any separable subspace 1s compact. Therefore we may assume without restriction that X 1s
separable.

(i) Let (£2, A, ) be a finite measure space, U :  — K{X,Y) bounded and strongly
measurable. Since X is separable it follows that there exists a g-null set N C €2 such that

{U(w)z,we Q\N,ze X}

is containcd in a separable subspace of Y. Therefore we may assume without restriction that
Y is scparable.

(iii)) As a separable Banach space, Y can be embedded isomorphically into C[0, 1] (cf. [1;
chap. XI, § 8 Théoréme 9]). Since enlarging the range space does not affect the compactness
of operators we may assume without restriction ¥ = (C[0,1]. As a consequence, since
C[0, 1] has a Schauder basis (cf. [6; p. 3]), we may assume that there exists a sequence
(P.) C L(Y) of finite dimensional projections converging strongly to the identity on Y.
Then, an operator T € L(X,Y’) iscompactifand onlyif || (] — P)T ||— 0 (n — o0).
(iv) Let (2, A, ) and U(-) be as in (11). Then

| (1= P) [Udull< [ 11(T=P)Uw) | du(w) -0

(n — o0), by the dominated convergence theorem (note that the measurability of
|| (I — P )U(-) || follows from the separability of X). 2

Remark 1.5. Assume that the dual X’ of X is separable. If Y is finite dimensional, then
any strongly measurable function U : Q — L(X,Y) 1s alrcady Bochner measurable as an

L(X,Y)-valued function.
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Therefore the proof of Theorem 1.3 shows that any bounded strongly measurable function
U:Q — K(X,Y) 1salready Bochner measurable (and therefore f Udp e K(X,Y) ) (the
author is endebted to G. Godefroy for pointing out this fact).

2. THE STRONG CONVEX COMPACTNESS PROPERTY FOR OTHER
SUBSPACES OF L(X,Y)

As 1n secuon 1, let X, Y be Banach spaces.

Proposition 2.1. The space V(X,Y) of completely continuous operators has the strong
convex compactness property (T completely continuous means: for each weak null sequence
(z.) C X the sequence (T'xz_ ) isa null sequence).

The proof consists in a straightforward application of the dominated convergence theorem.

Remarks 2.2. (a) It was shown by G. Schliichtermann [9] that the space W(X,Y) of
weakly compact operators has the strong convex compactness property.

(b) In[11; Proposition 2.4] itis proved that the subspace of L( X,Y’) consisting of the strictly
singular operators has the strong convex compactness property if X 1S Lp(u), 1 < p< oo,
or C(K) where K is compact and metric or compact and extremely disconnected (note that
the proof in [11] uses the contents of our Theorem 1.3).

(¢) For completeness we mention two further subspaces of L(X,Y) possessing the strong
CONveX COMpactness property:

(i) The space of unconditionally summing operators, {T" € L(X,Y"); for all sequences
(z,) C X suchthat Y | < z_,,2' > | < oo forall 2’ € X' the series ) Tz, is
convergent } ;

(ii) the space of Dieudonné operators, {T" € L(X,Y); for all weak Cauchy sequences
(z,) C X the sequence (T'z,) is weakly convergent}.

Again, the proof follows from the dominated convergence theorem.

3. EQUIVALENCE OF CONVEX COMPACTNESS PROPERTY AND STRONG
CONVEX COMPACTNESS PROPERTY

Throughout this section let X, Y be Banach spaces.

Remark 3.1. Let X be separable and let C C L(X,Y) be compact with respect to the
strong operator topology. Then C is metrizable.
In fact, let D C X be countable and dense. The countable family of seminorms

T || Tz || (z € D)
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separates the points of L(X,Y ) and therefore generates a metric which is coarser than 7.
Since C is T -compact this metric and 7 coincide on C.

Thus, for a closed subspace E of L(X,Y ) the convex compactness property and the
metric convex compactness property with respect to 7, are equivalent.

Definition3.2. Let E C L(X,Y) beaclosed subspace. We say that E has the measurability
property If the following is true: if U : [0,1] — L(X,Y) is bounded and strongly measur-
able (with respect to the Borel o-algebra on [0, 1] ) then the set {t € [0,1];U(t) € E} is
a Borel set.

Lemma 3.3. If X isseparable then K(X,Y) has the measurability property.

Proof. Let U : [0,1] — L(X,Y) be bounded and strongly measurable. As in the proof of
Theorem 1.3 we conclude that we may assume without restriction that there exists a sequence
(P,) C L(Y) of finite dimensional projections converging strongly to the identity. This
implies

{t€[0,1;U(1) € K(X,Y)}={te(0,1;]| (I-P,)U)||—0},

and the right hand side clearly defines a Borel subset of [0, 1]. B

The following theorem contains the main result of this section.

Theorem 3.4. Let X be separable, and let E C L(X,Y) be a closed subspace which has
the measurability property. Then E has the strong convex compactness property if and only
if E,T1,) hasthe (metric) convex compactness property.

In order to prove this theorem we need a refinement of Carathéodory’s theorem concerning
the isomorphism of separable probability spaces to the Borel sets of [0, 1} ; which we state

and prove next.
In the following, we denote by B the o-algebra of Borel subsets of [0, 1], and by A the

Borel-Lebesgue measure on [0, 1].

Theorem 3.5. Let (2, A, u) be a probability space, and let ' C & __ (L2, A;Y) be a sep-
arable subspace (here, & __(£2, A;Y’) denotes the smallest subspace of the bounded Y -va-
lued functions which contains the A-simple Y -valued functions and with each pointwise
convergent sequence contains the limit). Assume that pu restricted to the smallest o-algebra

for which all f € F are measurable is atom free.
(a) Then there exists a linear mapping

p: F—%_([0,1],5Y)
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with the following properties:

() llsp < Il S Hsups
{ p(f) esssup “chsssup!

][.ﬂ,”ao(f)d)« - Lfd;s

forall f € F'.
(b) There exist a set D C [0,1] of full outer Lebesgue measure (M\*(D) = 1), and a

mapping ¢ : D — 82 such that
o(|D=foy I — ae.on D

forall f € F.

We recall that, if D C [0, 1] satisfies A*( D) = 1, then the outer measure A* restricted
to the o-algebra BN D 1s a measure.

Proof of Theorem 3.5. The separability of F' implies that, for each € > 0, there exists a
set 2. € A, p(Q2\ Q) < g, such that the range f(€2.) of f on €_ is relatively compact
for all f € F. This implies that 2 is the disjoint union £ = N U, £2, of sets in A,
u(N) =0, and (€2 ) relatively compact forall f € F' and all n € IN . Using this fact it is
easy to see that it is sufficient to prove the theorem under the additional assumption that the
range f(£2) of f 1srelatively compact forall f € F'.

From the additional assumption together with the separability of /' it follows that there

exists a countable subalgebra A, of A such that F' C S(AF;Y)”'”“", where S(Ax YY)
denotes the A -simple Y -valued functions. Let N be the union of the p-null sets in A,
and define Q' := Q \ N, AL = A, NQ".

It then follows that there exist acountableset M C [0,1], 1 € M, andafamily (A,;t €
M) C A’s such that

(1) A,C A, fort,se M, t< s;

(if) A’ is the algebra generated by {A,;t € M };

(iif) p(A,) =tforallt € M.

This can be seen by looking at the proof of Carathéodory’s theorem in [5; sec. 41, Theorem
C, p. 173] or in [8; chap. 15, sec. 2, Theorem 2, p. 321].

Let B, C B be the algebra generated by the intervals {[0,%];t € M \ {0}}. Then we
obtain mappings

o SAn ) = S (B Y) =,
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which are defined by w’(yxﬂt) = YXJo0 1) @%(XAE) = X0 Tespectively, fort € M \ {0},

y € Y, and extension by lincarity and continuity. We note that ¢} and g are isometric
with respect to the sup norm and the essential sup norm, and that integrals are preserved. It
is then casy toseethat p : F — £ __ ([0,1],B;Y) defined by o( f) := ¢'( f|2") has the
desired propertics.

In order to prove (b) we define

Ay= | ) A, 4y= () A,

SEM s<t sEM s>t
for t € [0, 1]. We then define
D:={tel0, 1];A;¢A”t},

and proceed to show A*( D) = 1. We first note the easy equality Q' = [ o0, A" \ 4;-
Further, the properties (i), (i), (ii1) together with the assumption that the g-algebra generated
by F is atom free implies that M is densein [0, 1], and this in turm imples that C[0, 1] 1s
in the range of ¢ . Moreover, it is not difficult to show that for ¢ € C[0, 1] the functon

='j{.}‘il(g) can be obtained as follows: for w € Q' there exists a unique t € D such that

w € A", \ A, and with this ¢ we have o'y (g)(w) = g(1).
In order to show A\*( D) = 1 we have to show M K) = 0 forany compact £ C [0, 1]\
D Now, given a compact K C [0,1] \ D, there exists a sequence (g,) C C{0,1] such

that g, | xx pointwise. Then p‘ﬁl(gn) | 0 everywhere, by the previous paragraph. This
implies [¢.d\= [ 'R (g,)dp — 0, MK)=0.

We now define ¢ : D — Q' by choosing ¢(t) € A", \ A;, for t € D, and we assert
o(f) = foy A\*-ae.on D.Forallt € M\ {0} wehave pgr(x,) = X(0,4, and

1 for se DN[0,1),

XA:G¢(5)={0 for se€ DN (t, 1],

which implies ‘Pi}a(}i,q,) = Xa o1 A*-a.e. on D. This latter property extends to S(A'L;Y),

and theretore
e (fIQ)=foy AX*—ae.on D

for all f € S(AF;Y)”'H“"’ D F. 3

In the following proposition we single out a further detail of the proof of Theorem 3.4.
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Proposition 3.6. Let X be separable, E C L(X,Y) a closed subspace having the convex
compactness property for T, . Let {2 be a compact space and u a probability Borel measure
on Q. Let U : Q — E be bounded and strongly Borel measurable. Then [ Udu € E.

Proof. Let € > (0. Lusin’s criterion for measurability together with the separability of X
implies the existence of a compact subset €2, C €2 such that p(Q \ _) < € and such that
U : Q_ — E is strongly continuous. Then Theorem 0.1 implies [, Udu € E. This clearly

implies [, Udu € E. N

Proof of Theorem 3.4. We only have to show that the convex compactness property implies
the strong convex compactness property.

Let (€2, A, ) be a finite measure space, U : 2 — E bounded and strongly measurable.
Then F := {U(-)z;xz € X} is a separable subspace of & __(Q,A;Y). Further we may
assume that A is the smallest o-algebra making all f € F measurable. Let y = py + u,
be the decomposition of y into its discrete and continuous parts. The fact that F is closed
implies [Udu, € E, and therefore it remains to show [Udpu, € E. For the remainder of
the proof we may therefore assume u = u ., 1.€., y 1S atom free, and we are therefore under
the hypotheses of Theorem 3.5.

Let p, D,y be as in the conclusion of Theorem 3.5. We define functions

i}:D—}E,

U:[0.1] - L(X,Y)

as follows
U(t) := U(¥(t))  (t€ D),

U()z:=p(U()z) (z€X).

Then U(t) € E forall t € D. Also, U(t) € L(X,Y), | U(t) |< supeq || U(w) ||
for all £ € [0, 1] (but not necessarily f}(t) € FE). Since ff(t)z f}(t):n A*-a.e.on D
for all x € X, from Theorem 3.5, the separability of X mmplies [7( t) = f}'(t) A*-a.e. On
D. This shows that {¢t € [0, 1]; ff‘(t) € E} is a set of full outer measure. This set is also

fl

measurable, by the measurability property of E'. Replacing {7( t) by 0 on the complement of
this set has no effect on the strong measurability and on the integral f [7(1‘) dt. Now Theorem

3.5 implies fUd,u = f f}(t)dt, and the latter belongs to £ by Proposition 3.6. o



On the convex compactness property for the strong operator topology 267

4. ADDITIONAL REMARKS AND EXAMPLES

Remark 4.1. Here we recall the relations between the (metric) convex compactness property
and other completeness properties for a locally convex space E.

(a) There are the implications

quasi-complete ( = boundedly complete)

=> CONVEX compactness property =

MeELric convex compactness property =

Mackey complete ( = locally complete).

The last implication follows from the fact that Mackey completeness 1S equivalent to the
property that the closed convex hull of any convergent sequence is compact (cf. [4; Théoréme
1]).

All the implications are strict. For the third this follows from [13; Example 4.6.110, p.
244). For the second see (b) below.

(b) One also has the implications

quasi-complete = sequentially complete

=> MEIric CoONvex compactness property.

The last implication is a consequence of Theorem 0.1. Also, the convex compactness
property and sequential completeness are incomparable (cf. [13]). This implies in particular
that the last implication above and the second implication of (a) are strict.

(c) In connection with Theorem 0.1 we mention that the metric convex compactness property
is also equivalent to every continuous function f : [0,1] — E is Pettis-integrable for the
Lebesgue measure (cf. [12]). |

Example 4.2. We present an example showing that there are closed subspaces of L(X,Y)
not possessing the convex compactness property or the measurability property, respectively.

Fort € [0,1] let U(t) € L(L,(R)) be defined by

U(t) f(z) = f(z—1).

By M([0,1]) we denote the (signed) Borel measures on {0, 1]. We define a mapping
Vi M([0,1]) — L(L,(R)) by

V(ip) = fU(t)d,u(t) (strong integral) .

Then V is isometric: (if p € M([0,1]), and (f,) C L,(R) satisfies f, > O,
suppf, C (—=1/n,1/m), || f,||=1, then, forall g € C(R),

/(/U(t)fﬂdu(t)> (m)g(z)dm—*_/'y(m)dﬂ(m%
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(@) Let £ := V(£,([0,1])), where we identify £, ([0, 1]) with the discrete measures on
[0,1]. Then U : [0, 1] — E defined above is strongly continuous, but [U(t)dt = V()
(A Lebesgue measure on [0, 1]) has distance one from F. Therefore £ does not have the

metric convex compactness property.
(b) For A C [0,1] let

E, ={V(a);a€t([0,1),a,=0 forall te([0,1]\A}.

Then E, 1s aclosed subspace of L(L,(R)). If A is not a measurable subset of [0, 1],
then the mapping U shows that £, does not have the measurability property (cf. Definition

3.2).
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