ON BASIC SEQUENCES IN BANACH SPACES M. VALDIVIA

Dedicated to the memory of Professor Gottfried Köthe

SUMMARY

Let X be a Banach space with X^{**} separable. If X has a shrinking basis and Y is a closed subspace of X^{**} which contains X, there exists a shrinking basis (x_n) in X with two complementary subsequences (x_{m_i}) and (x_{n_j}) so that $[x_{m_j}]$ is a reflexive space and $X + [x_{n_j}] = Y$, where we are denoting by $[x_{n_j}]$ the weak-star closure of $[x_{n_j}]$ in X^{**} . If (y_n) is a sequence in X that converges to a point in $X^{**} \sim X$ for the weak-star topology, there is a basic sequence (y_{n_j}) in (y_n) such that $[y_{n_j}]$ is a quasi-reflexive Banach space of order one. Given a Banach space Z with basis it is also proved that every basic sequence (z_n) in Z has a subsequence extending to a basis of Z.

The vector spaces we use here are defined on the field of the real or complex numbers. If X is a Banach space write $||\cdot||$ to denote its norm; X^* denotes the Banach space conjugate of X, X^{**} and X^{***} are the conjugate of X^* and X^{**} respectively. As it is usual, we shall consider X and X^* as subspaces of X^{**} and X^{***} respectively. Some times we write $\langle x,u\rangle$ instead of u(x) for $u\in X^{**}$ and $x\in X^*$. If (x_n) is a sequence in X, we write $[x_n]$ to denote its closed linear hull. The sequences (x_{m_j}) and (x_{n_j}) are said to be complementary if

$${m_j : j = 1, 2, ...}$$
 and ${n_j : j = 1, 2, ...}$

are disjoint complementary subsets of the set of positive integers. We say that the sequence (x_n) is normalized when $||x_n|| = 1$, n = 1, 2, ... if A is a subset X, $\lim A$ is the linear hull of A.

If (x_n) is a basic sequence in a Banach space X we put x_n^* , $n=1,2,\ldots$, to denote the functional coefficients of (x_n) in $[x_n]^*$. Given a non negative integer k, the basic sequence (x_n) is called k-shrinking if $[x_n^*]$ has codimension k in $[x_n]^*$. It is said that (x_n) is k-boundedly complete when $[x_n] + [x_n^*]^{\perp}$ has codimension k in $[x_n]^*$, where $[x_n^*]^{\perp}$ is the subspace of $[x_n]^{**}$ orthogonal to $[x_n^*]$, [6].

If X is a Banach space the weak-star topology on X^* is the topology of point wise convergence on every vector of X; we write X^*_{σ} to denote X^* endowed with this topology. In the

Supported in part by DGICYT.

same way, the weak-star topology on $X^{**}(X^{***})$ is the topology of pointwise convergence on every vector of $X^*(X^{**})$. If A is a subset of X^* , both \widetilde{A} and A^{\sim} denote its closure in X^*_{σ} . If B is a subset of X, \widetilde{B} and B^{\sim} denote the closure of B in X^{**}_{σ} .

A Banach space X is called quasi-reflexive when it has finite codimension in X^{**} ; when this codimension is p we shall say that X is quasi-reflexive of order p.

Proposition 1. Let (x_n) and (y_n) two bases in a Banach space X. If

$$\sum_{n=1}^{\infty} \parallel x_n^* \parallel \cdot \parallel x_n - y_n \parallel < \infty$$

then $[x_n^*] \supset [y_n^*]$.

Proof. Let us fix a positive integer m. In the weak-star dual X_σ^* we have

$$y_m^* = \sum_{n=1}^{\infty} \langle x_n, y_m^* \rangle x_n^*.$$

If we write

$$s_k = \sum_{n=1}^k \langle x_n, y_m^* \rangle x_n^*$$

and we take x in X with ||x|| < 1, we have for k > m the following:

$$\begin{split} |\langle x, y_m^* - s_k \rangle| &= |\sum_{n=k+1}^{\infty} \langle x_n, y_m^* \rangle \langle x, x_n^* \rangle| = \\ &= |\sum_{n=k+1}^{\infty} \langle x_n - y_n, y_m^* \rangle \langle x, x_n^* \rangle| \le ||y_m^*|| \sum_{n=k+1}^{\infty} ||x_n^*|| \cdot ||x_n - y_n|| \end{split}$$

SO

$$\lim_{k} ||y_m^* - s_k|| = 0$$

and therefore y_m^* belongs to $[x_n^*]$ and $[y_n^*] \subset [x_n^*]$.

Q.E.D.

Proposition 2. Let (x_n) be a basis in a Banach space X. If (y_n) is a sequence in X such that

$$\sum_{n=1}^{\infty} \mid\mid x_n^* \mid\mid \cdot \mid\mid x_n - y_n \mid\mid < 1$$

then (y_n) is a basis in X with $[y_n^*] = [x_n^*]$.

Proof. It is well known that (y_n) is a basis in X and there is an isomorphism T from X onto X that transforms x_n in y_n , n = 1, 2, ..., [1]. From (1) it follows that $[y_n^*]$ is contained in $[x_n^*]$ because of the former proposition. On the other hand, if T^* is the isomorphism from X^* onto X^* , the adjoint of T, we have

$$T^*y_n^* = x_n^*, \qquad n = 1, 2, \ldots,$$

and so

$$\sum_{n=1}^{\infty} ||y_n^*|| \cdot ||y_n - x_n|| \le$$

$$\le ||(T^*)^{-1}||\sum_{n=1}^{\infty} ||x_n^*|| \cdot ||y_n - x_n|| \le ||(T^*)^{-1}||.$$

We can apply again the former proposition to obtain that $[x_n^*]$ is contained in $[y_n^*]$.Q.E.D.

The following proposition is a straightforward consequence of Proposition 2:

Proposition 3. Let (x_n) be a basis in a Banach space X. If (u_n) is a sequence in $[x_n^*]$ such that

$$\sum_{n\neq 1}^{\infty} \mid\mid x_n\mid\mid \cdot \mid\mid x_n^* - u_n\mid\mid < 1$$

there exists a basis (y_n) in X such that $y_n^* = u_n$, n = 1, 2, ...

In the proof of Theorem 1 we shall need the following result that we have proved in [8]:

a) Let X be an infinite dimensional Banach space with X^{**} separable. If Z is a closed subspace of X^{**} that contains X, there is an infinite dimensional closed subspace Y of X such that $X + \widetilde{Y} = Z$.

Theorem 1. Let X be a Banach space with a shrinking basis. Let Z be a closed subspace of X^{**} that contains X. If X^{**} is separable, there exists a shrinking basis (x_n) in X with two complementary subsequence (x_{m_j}) and (x_{n_j}) such that $[x_{m_j}]$ is reflexive and $X + [\widehat{x_{n_i}}] = Z$.

Proof. We write X^{\perp} and Z^{\perp} for the subspace of X^{***} which are orthogonal to X and Z respectively. Let $(u_{2m-1})_{m=1}^{\infty}$ be a sequence in X^{\perp} such that its linear hull is weak-star dense in X^{\perp} and $||u_{2m-1}|| \le 1$, $m = 1, 2, \ldots$ Let $(u_{2m})_{m=1}^{\infty}$ be a sequence in Z^{\perp} so that its

linear bull is a weak-star dense subspace of Z^{\perp} and $||u_{2m}|| \leq 1$, $m=1,2,\ldots$ If we apply result a) we obtain an infinite dimensional closed subspace Y of X such that $X+\tilde{Y}=Z$. Let G be the subspace of X^* which is orthogonal to Y. The closure of G in X_{σ}^{***} contains Z^{\perp} and so, for every positive integer m, a sequence $(u_{mn})_{n=1}^{\infty}$ in X^* can be determined so that it converges to u_m in X_{σ}^{***} and $u_{(2m)n}$ belongs to G, $n=1,2,\ldots$ Selecting $(u_m)_{m=1}^{\infty}$ we can suppose that $(u_{mn})_{n=1}^{\infty}$ is normalized, $m=1,2,\ldots$ Let (y_n) be a shrinking basis in X and K the basis constant of (y_n) . We would have

$$\lim_{n} u_{mn} \left(y_{j} \right) = 0, \qquad m, j = 1, 2, \ldots$$

We order the pairs mn in the sequence:

(2)
$$11, 12, 21, \ldots, 1n, 2(n-1), \ldots,$$

that means pq is less than mn if and only if either p+q < m+n or p+q=m+n and p < m. Suppose we take $\varepsilon_{mn} > 0$ by asking

$$72 K(K+1) \sum_{m,n=1}^{\infty} \varepsilon_{mn} < 1.$$

We put $m_{11} = 1$ and $n_{11} = 0$. We find a positive integer n_{12} such that

$$||u_{1m_{11}}-z_{11}||<\varepsilon_{11}$$

where

$$z_{11} = \sum_{j=n_{11}+1}^{n_{12}} u_{1m_{11}} \left(y_j \right) y_j^*.$$

We proceed by recurrence and suppose for a given index pq such that rs is the next index in (2), we would have obtained

$$z_{pq} = \sum_{j=n_{pq}+1}^{n_{pq}} u_{pm_{pq}} \left(y_j \right) y_j^*.$$

We could determine a positive integer m_{rs} such that

$$\|\sum_{j=1}^{n_{rs}} u_{rm_{rs}} \left(y_j \right) y_j^* \| < \frac{1}{2} \varepsilon_{rs}.$$

If hk is the indew coming after rs in (2), a positive integer n_{hk} could be found so that

$$||\sum_{j=n_{hk}+1}^{\infty}u_{rm_{rs}}\left(y_{j}\right)y_{j}^{*}||<\frac{1}{2}\varepsilon_{rs}.$$

Therefore

$$||u_{rm_{rs}}-z_{rs}||<\varepsilon_{rs}$$

where

$$z_{rs} = \sum_{j=n_{rs}+1}^{n_{hk}} u_{rm_{rs}} \left(y_j \right) y_j^*.$$

The sequence

(3)
$$z_{11}, z_{12}, z_{21}, \dots, z_{1n}, z_{2(n-1)2}, z_{n1}, \dots$$

is a block basic sequence of (y_n^*) and so, applying a result of Zippin [9] (see also [7, pp. 67-68]), there is a basis (v_n) in X^* extending (3) and such that $[v_n^*] = X$ with basis constant no greater than 18 K(K+1). Hence

$$||v_n^*|| \cdot ||v_n|| \le 36 K(K+1)$$

and we would have

$$||v_n^*|| \le 72 K(K+1)$$

for the values of n corresponding with some z_{pq} because

$$||z_{pq}|| \ge ||u_{pm_{pq}}|| - ||u_{pm_{pq}} - z_{pq}|| \ge 1 - \varepsilon_{pq} > \frac{1}{2}.$$

Suppose we define a sequence (w_n) in X^* by letting w_n be v_n when this element does not belongs to the sequence (3), and w_n be $u_{pm_{pq}}$ when $v_n = z_{pq}$. Then would have

$$\sum_{n=1}^{\infty} ||v_n^*|| \cdot ||v_n - w_n|| \le 72 K(K+1) \sum_{n=1}^{\infty} ||v_n - w_n|| =$$

$$=72 K(K+1) \sum_{p,q=1}^{\infty} ||u_{pm_{pq}} - z_{pq}|| \le 72 K(K+1) \sum_{p,q=1}^{\infty} \varepsilon_{pq} < 1$$

and we could apply Proposition 3 to obtain a basis (x_n) in X such that $x_n^* = w_n$, $n = 1, 2, \ldots$

Let us consider now the increasing sequence (m_j) of all positive integers such that $x_{m_j}^*$ is an element of the form $u_{(2p-1)m_{(2p-1)q}}$. Let x_{n_j} be the subsequence of (x_n) complementary to (x_{m_j}) . Every element of the form $u_{(2p)m_{(2p)q}}$ belongs to $(x_{n_j}^*)$ and so the closure of $[x_{n_j}^*]$ in X_{σ}^{***} contains X^{\perp} from where it follows that $[x_{m_j}]$ is reflexive. The closure of $[x_{m_j}^*]$ in X_{σ}^{***} contains Z^{\perp} from where it follows that $[x_{n_j}]$ is contained in Z. On the other hand, $x_{m_j}^*$ belongs to G, $j=1,2,\ldots$, and so $[x_{n_j}]$ contains Y. Finally we have $X+[x_{n_j}]=Z$. Q.E.D.

Corollary 1. Let X be a Banach space with shrinking basis. Let p be a non negative integer less or equal than the dimension of X^{**}/X . If X^{**} is separable there is a shrinking basis (x_n) of X and two complementary subsequences (x_{m_j}) and (x_{n_j}) of (x_n) such that $[x_{m_j}]$ is reflexive and $[x_{n_i}]$ is quasi-reflexive of order p.

Proof. It is enough to take Z in the former theorem such that X has codimension p in Z. Q.E.D.

Corollary 2. Let X be a Banach space with shrinking basis. Let p be a non negative integer less or equal than the dimension of X^{**}/X . If X^{**} is separable there is a shrinking basis (x_n) of X and two complementary subsequences (x_{m_j}) and (x_{n_j}) of (x_n) such that $[x_{m_j}]$ is reflexive and $X/[x_{n_i}]$ is quasi-reflexive of order p.

Proof. It is enough to take Z in the former theorem so that the codimension of Z in X^{**} be equal to p.

Q.E.D.

Proposition 4. Let (x_n) be a normalized sequence in a Banach space X. If X^* is separable the following two conditions are equivalent:

- 1) The set $\{x_n : n = 1, 2, ...\}$ is not weakly relatively compact.
- 2) There is a basic subsequence (z_n) of (x_n) so that every subsequence of (z_n) is 1-shrinking.

Proof. Firstly we suppose that condition 1) holds. Since X^* is separable there is a point x_0 in $X^{**} \sim X$ and a subsequence (y_n) of (x_n) weak-star converging to x_0 . Indeed, the sequence (y_n) could be also found being a basic sequence [3, pp. 41-42]. Let H be the closed hypperplane of X^* defined by

$$H = \{u\varepsilon X^* : \langle x_0, u \rangle = 0\},\,$$

and let us take a sequence (u_n) in H with $[u_n] = H$. We obviously have

$$\lim_{n} \langle y_n, u_m \rangle = 0, \qquad m = 1, 2, \dots$$

Let n_1 be a positive integer such that

$$|\langle y_{n_1}, u_1 \rangle| < \frac{1}{2}.$$

Proceeding by recurrence, let us suppose we have found the positive integer n_p . We could choose another integer $n_{p+1}>n_p$ so that

$$|\langle y_{n_{p+1}}, u_m \rangle| < \frac{1}{2^{p+1}}, \qquad m = 1, 2, \dots, p+1.$$

We define the sequence (z_m) by letting $z_m = y_{n_m}$, $m = 1, 2, \ldots$ The sequence (z_n) is the basic subsequence of (x_n) that we are looking for condition 2) to be held. Indeed, let (z_{m_j}) be any subsequences of (z_m) and let L be equal to the orthogonal subspace to $[z_m]$ in X^* . We shall denote by Ψ the canonical mapping from X^* onto X^*/L . It is obvious that L is contained in H, so $\Psi(H)$ is a closed hyperplane of $\Psi(X^*) = [z_{m_j}]^*$. It is easily shown that $[z_{m_j}^*]$ is contained in $\Psi(H)$. On the other hand,

$$\sum_{j=1}^{\infty} |\langle z_{m_j}, u_p \rangle| < \infty, \qquad p = 1, 2, \dots$$

Therefore the series

$$\sum_{j=1}^{\infty} \langle z_{m_j}, \Psi(u_p) \rangle z_{m_j}^*$$

converges in $[z_{m_j}]^*$ to $\Psi(u_p)$, $p=1,2,\ldots$ Consequently, $[z_{m_j}^*]$ coincides with the hyperplane $\Psi(H)$ and (z_{m_i}) is 1-shrinking.

Conversely, let us now suppose thay condition 2) holds. Since X^* is separable there is a subsequence (t_n) of (z_n) that converges to a point t_0 of X^{**} for the weak-star topology. We always have $t_0 \neq 0$ because in case $t_0 = 0$ [5, Proposition 2.3] could be applied to obtain a shrinking subsequence of (t_n) , so a contradiction with condition 2). Let us write

$$M = \left\{ u \in \left[t_n\right]^* : \langle t_0, u \rangle = 0 \right\}.$$

Obviously

$$\lim_{n} \langle t_n, t_m^* \rangle = 0 = \langle t_0, t_m^* \rangle, \qquad m = 1, 2, \dots$$

and $[t_n^*] \subset M$, from where it follows that M is weak-star dense in $[t_n]^*$, so t_0 can not belong to X and 1) is verified. Q.E.D.

For the proof of Proposition 5 we need the following result [8]:

b) Let B be the closed unit ball of a Banach space X. Let F be a subspace of finite codimension and weak-star closed in X^{**} . Then $(F \cap B)^{\sim} = F \cap \widetilde{B}$.

Proposition 5. Let X be a Banach space with X^* separable. Let (u_n) be a sequence in X^* that converges to u for the weak-star topology. If

$$\bigcap_{n=1}^{\infty} \left[u_n, u_{n+1}, \ldots \right]^{\sim} = lin\{u\}$$

there exists a subsequence (u_{n_i}) of (u_n) such that

$$\left[u_{n_{j}}\right] = \left[u_{n_{j}}\right] + lin\{u\}.$$

Proof. Let G be the subspace of X^{**} which is orthogonal to $\{u_n\} \cup \{u\}$. Since X^* is separable, we could take a sequence (v_n) in G with $||v_n|| \le 1$, $n = 1, 2, \ldots$, so that its linear hull whould be weak-star dense in G. Let B be the closed unit ball of X. For every positive integer n, we denote by

$$\{V_{mn}: m=1,2,\ldots\}$$

a fundamental system of neighbourhoods of v_n in B for the weak-star topology. We order the neighbourhoods of (4) in a sequence

$$\{V_m; m=1,3,\ldots\}.$$

We write $n_1 = 1$ and we suppose that for a positive integer p we have obtained the positive integers n_1, n_2, \ldots, n_p . We put

$$L_p = lin\{u_{n_1}, u_{n_2}, \dots, u_{n_p}, u\}.$$

Let H_p be the subspace orthogonal to L_p in X^{**} . We write A_{pn} to denote the subspace of X which is orthogonal to L_p in X^{**} . We write A_{pn} to denote the subspace of X which is orthogonal to

$$L_p \bigcup [u_n, u_{n+1}, \ldots]^{\sim}$$
.

Since

$$\bigcap_{n=1}^{\infty} \left(L_p \bigcup \left[u_n, u_{n+1}, \ldots \right]^{\sim} \right) = L_p \bigcup lin\{u\} = L_p$$

it follows that $\bigcup_{n=1}^{\infty} A_{pn}$ is a dense subset of $H_p \cap X$. We claim that there is a positive integer $n_{p+1} > n_p$ so that

$$A_{pn_{p+1}} \cap V_p \neq \emptyset$$
.

Indeed,

$$v_n \in H_p, n = 1, 2, \ldots,$$

and result b) assures us tht $(B \cap H_p)^{\sim} = \tilde{B} \cap H_p$, from where it follows that

$$V_p \cap B \cap H_p \neq \emptyset$$

and so

$$\left(\bigcup_{n=1}^{\infty} A_{pn}\right) \bigcap V_{p} \neq \emptyset,$$

therefore, the positive integer $n_{p+1} > n_p$ such that $A_{pn_{p+1}} \cap V_p \neq \emptyset$ can be found. Let x_p be a point in this non-void subset. Obviously,

$$\langle x_p, u_{n_i} \rangle = 0, \quad j = 1, 2, \dots, p, \quad \langle x_p, u_n \rangle = 0, \quad n = n_{p+1}, n_{p+1} + 1, \dots$$

We are going to see now how the sequence $(u_{n_j})_{j=1}^{\infty}$ is the subsequence we are looking for. Let M be the subspace of X which is orthogonal to $[u_{n_j}]$. Since

$$x_j \in M, \quad j = 1, 2, ...$$

and v_n is a weak-star cluster point in X^{**} of the sequence (x_j) , $n=1,2,\ldots$, it follows that $G\subset \widetilde{M}$, therefore

$$\left[u_{n_{j}}\right]\subset\left[u_{n_{j}}\right]+lin\{u\},$$

from where the conclusion follows.

Theorem 2. Let (x_n) be a normalized sequence in a Banach space X. If X^{**} is separable, the following conditions are equivalent;

- 1) The set $\{x_n : n = 1, 2, ...\}$ is not weakly relatively compact.
- 2) There is a subsequence (z_n) of (x_n) such that if (y_n) is any subsequence of (z_n) , then $[y_n]$ is a quasi-reflexive Banach space of order one.

Proof. Let us suppose firstly that 1) holds. We could apply Proposition 4 to find a basic subsequence (t_n) of (x_n) converging to a point t_0 in $X^{**} \sim X$ in the weak-star topology and such that every subsequence of (t_n) is 1-shrinking; $[t_n^*]$ is an hyperplane of $[t_n]^*$ orthogonal to t_0 and consequently

$$\bigcap_{n=1}^{\infty} \left[t_n, t_{n+1}, \ldots \right]^{\sim} = \lim \{ t_0 \} .$$

Applying now the former proposition we obtain a subsequence (z_n) of (t_n) so that

$$[z_n]^{\sim} = [z_n] + lin\{t_0\}.$$

It results obvious tht if (y_n) is any subsequence of (z_n) , $[y_n]$ is a quasi-reflexive Banach space of order one.

Conversely, when suppose that 2) is true, 1) also follows bearing in mind Proposition 4. Q.E.D.

Proposition 6. Let (x_n) be a basis in a Banach space X. Let F be a subspace of X^* that contains $[x_n^*]$. If $[x_n^*]$ has finite codimension in F there is a basis (y_n) in X such that $[y_n^*] = F$.

Proof. It is clear the only case need to show is when $[x_n^*]$ is an hyperplane of F. If we take a vector u in $F \sim [x_n^*]$ with ||u|| = 1, we can find an increasing sequence $(n_p)_{p=1}^{\infty}$ of positive integers such that if $n_0 = 0$ and

$$z_p = \sum_{n=n_{p-1}+1}^{n_p} u(x_n) x_n^*$$

it follows that

inf
$$\{||z_p||: p=1,2,\ldots,\}>0$$
.

Applying now a method due to Zippin [9] (see also [7, pp. 67-68]), it is possible to obtain a basis (v_n) in $[x_n^*]$ such that $[v_n^*]$ coincides with the restriction of X on $[x_n^*]$ and

$$v_{n_p} = z_p, \quad p = 1, 2, \dots$$

We define a sequence (w_n) in the following way:

$$w_n = v_n$$
 if $n \neq n_p$, $w_{n_p} = v_1 + v_2 + ... + v_p$, $p = 1, 2, ...$

The sequence (w_n) is a basis in $[x_n^*]$ such that

$$w_n^* = v_n^*$$
 if $n \neq n_p$, $w_{n_p}^* = v_p^* - v_{p+1}^*$, $p = 1, 2, ...$

Let H be the hyperplane of X orthogonal to $\{u\}$. Let y_1 be a vector in X such that $\langle y_1,u\rangle=1$. The restriction of H on $[x_n^*]$ obviously coincides with $[w_n^*]$ and therefore if y_{n+1} is the vector in X with restriction on $[x_n^*]$ equal to u_n^* , $n=1,2,\ldots$, we have the basis (y_n) in X and

$$y_1^* = u$$
, $y_n^* = w_{n-1}^* - \langle y_1, w_{n-1} \rangle u$, $n = 1, 2, ...$

from where the conclusion follows.

Q.E.D.

Proposition 7. Let X be a Banach space with basis. Let k be a non negative integer. The following conditions are equivalent:

- 1) X is quasi-reflexive of order k.
- 2) X has a k-boundedly complete basis and every basis of X is j-boundedly complete with $0 \le j \le k$.

Proof. The implication $1) \Rightarrow 2$) is obvious. Let us now suppose that 2) holds. Let (x_n) be a k-boundedly complete basis in X. Then $X + [x_n^*]^{\perp}$ has codimension k in X^{**} , where $[x_n^*]^{\perp}$ denotes the subspace of X^{**} which is orthogonal to $[x_n^*]$. Let us suppose that X is not quasi-reflexive of order k. It follows that there is a vector v non equal to zero in $[x_n^*]^{\perp}$. Let u be a vector in X^* such that $\langle v, u \rangle \neq 0$. If F is the linear hull of $[x_n^*] \cup \{u\}$ we can apply the former proposition to F and we obtain a basis (y_n) of X such that $[y_n^*] = F$. Obviously, (y_n) is (k+1)-boundedly complete and this contradiction finishes the proof. Q.E.D.

Proposition 8. Let (z_n) be a basis in a Banach space Z. Let G be a be a closed subspace of finite codimension in $[z_n^*]$. If G is weak-star dense in Z^* there exists a basis (t_n) in Z such that $[t_n^*] = G$.

Proof. It is clear that the only case we need to show is when G is an hyperplane of $[z_n^*]$. Let u be a vector in \mathbb{Z}^{**} with ||u||=1 which is zero on G. Let S be the canonical mapping from \mathbb{Z}^{**} onto $\mathbb{Z}^{**}/[z_n^*]^{\perp}$, where $[z_n^*]^{\perp}$ is the orthogonal to $[z_n^*]$ in \mathbb{Z}^{**} . Then $S(\mathbb{Z})=[z_n^{**}]$. If F is the linear hull of $[z_n^{**}] \bigcup Su$, we have the hyperplane $[z_n^{**}]$ in F. Proceedin as in

the proof of Proposition 6 we could obtain a basis (y_n) in the hyperplane of $[z_n^*]$ orthogonal to $\{u\}$ in such a way that, if (u_n) are the elements of $[z_n^{**}]$ verifying

$$\langle u_n, y_n \rangle = 1$$
, $\langle u_m, y_n \rangle = 0$, $m \neq n$, $m, n = 1, 2, \dots$

we would have $[u_n] = [z_n^{**}]$. If t_n is the vector of X such that $St_n = y_n$, $n = 1, 2, ..., (t_n)$ is a basis in Z with $[t_n^*] = G$.

Q.E.D.

Proposition 9. Let X be a Banach space with a basis. Let k be a non negative integer. The following conditions are equivalent:

- 1) X is quasi-reflexive of order k.
- 2) X has a k-shrinking basis and every basis of X is j-shrinking, $0 \le j \le k$.

Proof. 1) \Rightarrow 2) is obvious. Let us suppose now that 2) holds. Let (x_n) be a k-shrinking basis of X. If $[x_n^*]^{\perp}$ is the subspace of X^{**} which is orthogonal to $[x_n^*]$, the dimension of $[x_n^*]^{\perp}$ is precisely k. Let us suppose that X is not quasi-reflexive of order k. We could find a vector u in $X^{**} \sim (X + [x_n^*]^{\perp})$. If F is the subspace of $[x_n^*]$ which is orthogonal to $\{u\}$, F is weakly-star dense in X^* and so, applying the former proposition, we could obtain a basis (y_n) of X such that $[y_n^*] = F$. Consequently, (y_n) would be a (k+1)-shrinking basis. This contradiction finishes the proof.

Theorem 3. Let X be a Banach space with basis. If (y_n) is a basic sequence in X there exists a basis in X which extends some subsequence of (y_n) .

Proof. We can suppose without any restriction that $||y_n|| = 1, n = 1, 2, \ldots$ Let (x_n) be a basis in X. If

(5)
$$\lim_{n} \langle y_{n}, x_{m}^{*} \rangle = 0, \quad m = 1, 2, \dots,$$

it would be enough to apply [2, Theorem 3]. Let us now suppose thay (5) does not hold. Then there is a weak-star cluster point y in $X^{**} \sim X$ of the sequence (y_n) . We put

$$H = \{u \in X^* : \langle y, u \rangle = 0\}.$$

If $H \cap [x_n^*]$ is weak-star dense in X^* we could apply Proposition 8 and obtain a basis (z_n) in X such that $[z_n^*] = H \cap [x_n^*]$. In that case, we can take a subsequence (y_{n_j}) of (y_n) such that

$$\lim_{j} \langle y_{n_j}, z_m^* \rangle = 0, \quad m = 1, 2, \dots,$$

and the proof is reduced to the former case. If $H \cap [x_n^*]$ is not weak-star dense in X^* there is an element x_0 in X such that

$$\langle x_0, v \rangle = 0, \quad v \in \bigcap [x_n^*].$$

There exists an element u in H such that $\langle x_0, u \rangle \neq 0$. Let F be the linear hull of $[x_n^*] \bigcup \{u\}$. We could apply Proposition 6 and obtain a basis (z_n) of X such that $[z_n^*] = F$. We would have now that $H \cap F$ is weak-star dense in X^* and so, according to Proposition 8, there is a basis (w_n) in X such that $[w_n^*] = H \cap [z_n^*]$. If (y_{n_j}) is now a subsequence of (y_n) such that

$$\lim_{j} \langle y_{n_j}, w_m^* \rangle = 0, \quad m = 1, 2, \dots$$

the proof is also reduced to the first case in that situation.

Q.E.D.

Note. The original proof of Proposition 2 was longer than the one presented here. We are grateful to Dr. V. Montesinos for providing the proof given here.

REFERENCES

 C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), pp. 151-164.

- [2] D.W. DEAN, I. SINGER, L. STERNBACH, On shrinking basic sequences in Banach spaces, Studia Math., 40 (1971), pp. 23-33.
- [3] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.
- [4] R.C. JAMES, Bases and reflexivity of Banach spaces, Ann. Math., (2) 52 (1950), pp. 518-527.
- [5] W.B. JOHNSON, H.P. ROSENTHAL, On w* basic sequences and their applications to the study of Banach spaces, Studia Math., 43 (1972), pp. 77-92.
- [6] I. SINGER, Bases and quasi-reflexivity of Banach spaces, Ann. Math., 153 (1964), pp. 199-209.
- [7] I. SINGER, Bases in Banach spaces I, Springer-Verlag, New York-Berlin-Heidelberg, 1970.
- [8] M. VALDIVIA, Banach spaces X with X** separable, Israel J. Math., 59 (1987), pp. 107-111.
- [9] M. ZIPPIN, A remark on bases and reflexivity in Banach spaces, Israel J. Math., 6 (1968), pp. 74-79.

Received December 31, 1990 M. Valdivia Facultad de Matemàticas Dr. Moliner, 50 Burjasot - 46100 (Valencia) Spain