ON BASIC SEQUENCES IN BANACH SPACES M. VALDIVIA Dedicated to the memory of Professor Gottfried Köthe ## **SUMMARY** Let X be a Banach space with X^{**} separable. If X has a shrinking basis and Y is a closed subspace of X^{**} which contains X, there exists a shrinking basis (x_n) in X with two complementary subsequences (x_{m_i}) and (x_{n_j}) so that $[x_{m_j}]$ is a reflexive space and $X + [x_{n_j}] = Y$, where we are denoting by $[x_{n_j}]$ the weak-star closure of $[x_{n_j}]$ in X^{**} . If (y_n) is a sequence in X that converges to a point in $X^{**} \sim X$ for the weak-star topology, there is a basic sequence (y_{n_j}) in (y_n) such that $[y_{n_j}]$ is a quasi-reflexive Banach space of order one. Given a Banach space Z with basis it is also proved that every basic sequence (z_n) in Z has a subsequence extending to a basis of Z. The vector spaces we use here are defined on the field of the real or complex numbers. If X is a Banach space write $||\cdot||$ to denote its norm; X^* denotes the Banach space conjugate of X, X^{**} and X^{***} are the conjugate of X^* and X^{**} respectively. As it is usual, we shall consider X and X^* as subspaces of X^{**} and X^{***} respectively. Some times we write $\langle x,u\rangle$ instead of u(x) for $u\in X^{**}$ and $x\in X^*$. If (x_n) is a sequence in X, we write $[x_n]$ to denote its closed linear hull. The sequences (x_{m_j}) and (x_{n_j}) are said to be complementary if $${m_j : j = 1, 2, ...}$$ and ${n_j : j = 1, 2, ...}$ are disjoint complementary subsets of the set of positive integers. We say that the sequence (x_n) is normalized when $||x_n|| = 1$, n = 1, 2, ... if A is a subset X, $\lim A$ is the linear hull of A. If (x_n) is a basic sequence in a Banach space X we put x_n^* , $n=1,2,\ldots$, to denote the functional coefficients of (x_n) in $[x_n]^*$. Given a non negative integer k, the basic sequence (x_n) is called k-shrinking if $[x_n^*]$ has codimension k in $[x_n]^*$. It is said that (x_n) is k-boundedly complete when $[x_n] + [x_n^*]^{\perp}$ has codimension k in $[x_n]^*$, where $[x_n^*]^{\perp}$ is the subspace of $[x_n]^{**}$ orthogonal to $[x_n^*]$, [6]. If X is a Banach space the weak-star topology on X^* is the topology of point wise convergence on every vector of X; we write X^*_{σ} to denote X^* endowed with this topology. In the Supported in part by DGICYT. same way, the weak-star topology on $X^{**}(X^{***})$ is the topology of pointwise convergence on every vector of $X^*(X^{**})$. If A is a subset of X^* , both \widetilde{A} and A^{\sim} denote its closure in X^*_{σ} . If B is a subset of X, \widetilde{B} and B^{\sim} denote the closure of B in X^{**}_{σ} . A Banach space X is called quasi-reflexive when it has finite codimension in X^{**} ; when this codimension is p we shall say that X is quasi-reflexive of order p. Proposition 1. Let (x_n) and (y_n) two bases in a Banach space X. If $$\sum_{n=1}^{\infty} \parallel x_n^* \parallel \cdot \parallel x_n - y_n \parallel < \infty$$ then $[x_n^*] \supset [y_n^*]$. *Proof.* Let us fix a positive integer m. In the weak-star dual X_σ^* we have $$y_m^* = \sum_{n=1}^{\infty} \langle x_n, y_m^* \rangle x_n^*.$$ If we write $$s_k = \sum_{n=1}^k \langle x_n, y_m^* \rangle x_n^*$$ and we take x in X with ||x|| < 1, we have for k > m the following: $$\begin{split} |\langle x, y_m^* - s_k \rangle| &= |\sum_{n=k+1}^{\infty} \langle x_n, y_m^* \rangle \langle x, x_n^* \rangle| = \\ &= |\sum_{n=k+1}^{\infty} \langle x_n - y_n, y_m^* \rangle \langle x, x_n^* \rangle| \le ||y_m^*|| \sum_{n=k+1}^{\infty} ||x_n^*|| \cdot ||x_n - y_n|| \end{split}$$ SO $$\lim_{k} ||y_m^* - s_k|| = 0$$ and therefore y_m^* belongs to $[x_n^*]$ and $[y_n^*] \subset [x_n^*]$. Q.E.D. **Proposition 2.** Let (x_n) be a basis in a Banach space X. If (y_n) is a sequence in X such that $$\sum_{n=1}^{\infty} \mid\mid x_n^* \mid\mid \cdot \mid\mid x_n - y_n \mid\mid < 1$$ then (y_n) is a basis in X with $[y_n^*] = [x_n^*]$. *Proof.* It is well known that (y_n) is a basis in X and there is an isomorphism T from X onto X that transforms x_n in y_n , n = 1, 2, ..., [1]. From (1) it follows that $[y_n^*]$ is contained in $[x_n^*]$ because of the former proposition. On the other hand, if T^* is the isomorphism from X^* onto X^* , the adjoint of T, we have $$T^*y_n^* = x_n^*, \qquad n = 1, 2, \ldots,$$ and so $$\sum_{n=1}^{\infty} ||y_n^*|| \cdot ||y_n - x_n|| \le$$ $$\le ||(T^*)^{-1}||\sum_{n=1}^{\infty} ||x_n^*|| \cdot ||y_n - x_n|| \le ||(T^*)^{-1}||.$$ We can apply again the former proposition to obtain that $[x_n^*]$ is contained in $[y_n^*]$.Q.E.D. The following proposition is a straightforward consequence of Proposition 2: Proposition 3. Let (x_n) be a basis in a Banach space X. If (u_n) is a sequence in $[x_n^*]$ such that $$\sum_{n\neq 1}^{\infty} \mid\mid x_n\mid\mid \cdot \mid\mid x_n^* - u_n\mid\mid < 1$$ there exists a basis (y_n) in X such that $y_n^* = u_n$, n = 1, 2, ... In the proof of Theorem 1 we shall need the following result that we have proved in [8]: a) Let X be an infinite dimensional Banach space with X^{**} separable. If Z is a closed subspace of X^{**} that contains X, there is an infinite dimensional closed subspace Y of X such that $X + \widetilde{Y} = Z$. Theorem 1. Let X be a Banach space with a shrinking basis. Let Z be a closed subspace of X^{**} that contains X. If X^{**} is separable, there exists a shrinking basis (x_n) in X with two complementary subsequence (x_{m_j}) and (x_{n_j}) such that $[x_{m_j}]$ is reflexive and $X + [\widehat{x_{n_i}}] = Z$. *Proof.* We write X^{\perp} and Z^{\perp} for the subspace of X^{***} which are orthogonal to X and Z respectively. Let $(u_{2m-1})_{m=1}^{\infty}$ be a sequence in X^{\perp} such that its linear hull is weak-star dense in X^{\perp} and $||u_{2m-1}|| \le 1$, $m = 1, 2, \ldots$ Let $(u_{2m})_{m=1}^{\infty}$ be a sequence in Z^{\perp} so that its linear bull is a weak-star dense subspace of Z^{\perp} and $||u_{2m}|| \leq 1$, $m=1,2,\ldots$ If we apply result a) we obtain an infinite dimensional closed subspace Y of X such that $X+\tilde{Y}=Z$. Let G be the subspace of X^* which is orthogonal to Y. The closure of G in X_{σ}^{***} contains Z^{\perp} and so, for every positive integer m, a sequence $(u_{mn})_{n=1}^{\infty}$ in X^* can be determined so that it converges to u_m in X_{σ}^{***} and $u_{(2m)n}$ belongs to G, $n=1,2,\ldots$ Selecting $(u_m)_{m=1}^{\infty}$ we can suppose that $(u_{mn})_{n=1}^{\infty}$ is normalized, $m=1,2,\ldots$ Let (y_n) be a shrinking basis in X and K the basis constant of (y_n) . We would have $$\lim_{n} u_{mn} \left(y_{j} \right) = 0, \qquad m, j = 1, 2, \ldots$$ We order the pairs mn in the sequence: (2) $$11, 12, 21, \ldots, 1n, 2(n-1), \ldots,$$ that means pq is less than mn if and only if either p+q < m+n or p+q=m+n and p < m. Suppose we take $\varepsilon_{mn} > 0$ by asking $$72 K(K+1) \sum_{m,n=1}^{\infty} \varepsilon_{mn} < 1.$$ We put $m_{11} = 1$ and $n_{11} = 0$. We find a positive integer n_{12} such that $$||u_{1m_{11}}-z_{11}||<\varepsilon_{11}$$ where $$z_{11} = \sum_{j=n_{11}+1}^{n_{12}} u_{1m_{11}} \left(y_j \right) y_j^*.$$ We proceed by recurrence and suppose for a given index pq such that rs is the next index in (2), we would have obtained $$z_{pq} = \sum_{j=n_{pq}+1}^{n_{pq}} u_{pm_{pq}} \left(y_j \right) y_j^*.$$ We could determine a positive integer m_{rs} such that $$\|\sum_{j=1}^{n_{rs}} u_{rm_{rs}} \left(y_j \right) y_j^* \| < \frac{1}{2} \varepsilon_{rs}.$$ If hk is the indew coming after rs in (2), a positive integer n_{hk} could be found so that $$||\sum_{j=n_{hk}+1}^{\infty}u_{rm_{rs}}\left(y_{j}\right)y_{j}^{*}||<\frac{1}{2}\varepsilon_{rs}.$$ Therefore $$||u_{rm_{rs}}-z_{rs}||<\varepsilon_{rs}$$ where $$z_{rs} = \sum_{j=n_{rs}+1}^{n_{hk}} u_{rm_{rs}} \left(y_j \right) y_j^*.$$ The sequence (3) $$z_{11}, z_{12}, z_{21}, \dots, z_{1n}, z_{2(n-1)2}, z_{n1}, \dots$$ is a block basic sequence of (y_n^*) and so, applying a result of Zippin [9] (see also [7, pp. 67-68]), there is a basis (v_n) in X^* extending (3) and such that $[v_n^*] = X$ with basis constant no greater than 18 K(K+1). Hence $$||v_n^*|| \cdot ||v_n|| \le 36 K(K+1)$$ and we would have $$||v_n^*|| \le 72 K(K+1)$$ for the values of n corresponding with some z_{pq} because $$||z_{pq}|| \ge ||u_{pm_{pq}}|| - ||u_{pm_{pq}} - z_{pq}|| \ge 1 - \varepsilon_{pq} > \frac{1}{2}.$$ Suppose we define a sequence (w_n) in X^* by letting w_n be v_n when this element does not belongs to the sequence (3), and w_n be $u_{pm_{pq}}$ when $v_n = z_{pq}$. Then would have $$\sum_{n=1}^{\infty} ||v_n^*|| \cdot ||v_n - w_n|| \le 72 K(K+1) \sum_{n=1}^{\infty} ||v_n - w_n|| =$$ $$=72 K(K+1) \sum_{p,q=1}^{\infty} ||u_{pm_{pq}} - z_{pq}|| \le 72 K(K+1) \sum_{p,q=1}^{\infty} \varepsilon_{pq} < 1$$ and we could apply Proposition 3 to obtain a basis (x_n) in X such that $x_n^* = w_n$, $n = 1, 2, \ldots$ Let us consider now the increasing sequence (m_j) of all positive integers such that $x_{m_j}^*$ is an element of the form $u_{(2p-1)m_{(2p-1)q}}$. Let x_{n_j} be the subsequence of (x_n) complementary to (x_{m_j}) . Every element of the form $u_{(2p)m_{(2p)q}}$ belongs to $(x_{n_j}^*)$ and so the closure of $[x_{n_j}^*]$ in X_{σ}^{***} contains X^{\perp} from where it follows that $[x_{m_j}]$ is reflexive. The closure of $[x_{m_j}^*]$ in X_{σ}^{***} contains Z^{\perp} from where it follows that $[x_{n_j}]$ is contained in Z. On the other hand, $x_{m_j}^*$ belongs to G, $j=1,2,\ldots$, and so $[x_{n_j}]$ contains Y. Finally we have $X+[x_{n_j}]=Z$. Q.E.D. Corollary 1. Let X be a Banach space with shrinking basis. Let p be a non negative integer less or equal than the dimension of X^{**}/X . If X^{**} is separable there is a shrinking basis (x_n) of X and two complementary subsequences (x_{m_j}) and (x_{n_j}) of (x_n) such that $[x_{m_j}]$ is reflexive and $[x_{n_i}]$ is quasi-reflexive of order p. *Proof.* It is enough to take Z in the former theorem such that X has codimension p in Z. Q.E.D. Corollary 2. Let X be a Banach space with shrinking basis. Let p be a non negative integer less or equal than the dimension of X^{**}/X . If X^{**} is separable there is a shrinking basis (x_n) of X and two complementary subsequences (x_{m_j}) and (x_{n_j}) of (x_n) such that $[x_{m_j}]$ is reflexive and $X/[x_{n_i}]$ is quasi-reflexive of order p. **Proof.** It is enough to take Z in the former theorem so that the codimension of Z in X^{**} be equal to p. Q.E.D. **Proposition 4.** Let (x_n) be a normalized sequence in a Banach space X. If X^* is separable the following two conditions are equivalent: - 1) The set $\{x_n : n = 1, 2, ...\}$ is not weakly relatively compact. - 2) There is a basic subsequence (z_n) of (x_n) so that every subsequence of (z_n) is 1-shrinking. *Proof.* Firstly we suppose that condition 1) holds. Since X^* is separable there is a point x_0 in $X^{**} \sim X$ and a subsequence (y_n) of (x_n) weak-star converging to x_0 . Indeed, the sequence (y_n) could be also found being a basic sequence [3, pp. 41-42]. Let H be the closed hypperplane of X^* defined by $$H = \{u\varepsilon X^* : \langle x_0, u \rangle = 0\},\,$$ and let us take a sequence (u_n) in H with $[u_n] = H$. We obviously have $$\lim_{n} \langle y_n, u_m \rangle = 0, \qquad m = 1, 2, \dots$$ Let n_1 be a positive integer such that $$|\langle y_{n_1}, u_1 \rangle| < \frac{1}{2}.$$ Proceeding by recurrence, let us suppose we have found the positive integer n_p . We could choose another integer $n_{p+1}>n_p$ so that $$|\langle y_{n_{p+1}}, u_m \rangle| < \frac{1}{2^{p+1}}, \qquad m = 1, 2, \dots, p+1.$$ We define the sequence (z_m) by letting $z_m = y_{n_m}$, $m = 1, 2, \ldots$ The sequence (z_n) is the basic subsequence of (x_n) that we are looking for condition 2) to be held. Indeed, let (z_{m_j}) be any subsequences of (z_m) and let L be equal to the orthogonal subspace to $[z_m]$ in X^* . We shall denote by Ψ the canonical mapping from X^* onto X^*/L . It is obvious that L is contained in H, so $\Psi(H)$ is a closed hyperplane of $\Psi(X^*) = [z_{m_j}]^*$. It is easily shown that $[z_{m_j}^*]$ is contained in $\Psi(H)$. On the other hand, $$\sum_{j=1}^{\infty} |\langle z_{m_j}, u_p \rangle| < \infty, \qquad p = 1, 2, \dots$$ Therefore the series $$\sum_{j=1}^{\infty} \langle z_{m_j}, \Psi(u_p) \rangle z_{m_j}^*$$ converges in $[z_{m_j}]^*$ to $\Psi(u_p)$, $p=1,2,\ldots$ Consequently, $[z_{m_j}^*]$ coincides with the hyperplane $\Psi(H)$ and (z_{m_i}) is 1-shrinking. Conversely, let us now suppose thay condition 2) holds. Since X^* is separable there is a subsequence (t_n) of (z_n) that converges to a point t_0 of X^{**} for the weak-star topology. We always have $t_0 \neq 0$ because in case $t_0 = 0$ [5, Proposition 2.3] could be applied to obtain a shrinking subsequence of (t_n) , so a contradiction with condition 2). Let us write $$M = \left\{ u \in \left[t_n\right]^* : \langle t_0, u \rangle = 0 \right\}.$$ Obviously $$\lim_{n} \langle t_n, t_m^* \rangle = 0 = \langle t_0, t_m^* \rangle, \qquad m = 1, 2, \dots$$ and $[t_n^*] \subset M$, from where it follows that M is weak-star dense in $[t_n]^*$, so t_0 can not belong to X and 1) is verified. Q.E.D. For the proof of Proposition 5 we need the following result [8]: b) Let B be the closed unit ball of a Banach space X. Let F be a subspace of finite codimension and weak-star closed in X^{**} . Then $(F \cap B)^{\sim} = F \cap \widetilde{B}$. **Proposition 5.** Let X be a Banach space with X^* separable. Let (u_n) be a sequence in X^* that converges to u for the weak-star topology. If $$\bigcap_{n=1}^{\infty} \left[u_n, u_{n+1}, \ldots \right]^{\sim} = lin\{u\}$$ there exists a subsequence (u_{n_i}) of (u_n) such that $$\left[u_{n_{j}}\right] = \left[u_{n_{j}}\right] + lin\{u\}.$$ *Proof.* Let G be the subspace of X^{**} which is orthogonal to $\{u_n\} \cup \{u\}$. Since X^* is separable, we could take a sequence (v_n) in G with $||v_n|| \le 1$, $n = 1, 2, \ldots$, so that its linear hull whould be weak-star dense in G. Let B be the closed unit ball of X. For every positive integer n, we denote by $$\{V_{mn}: m=1,2,\ldots\}$$ a fundamental system of neighbourhoods of v_n in B for the weak-star topology. We order the neighbourhoods of (4) in a sequence $$\{V_m; m=1,3,\ldots\}.$$ We write $n_1 = 1$ and we suppose that for a positive integer p we have obtained the positive integers n_1, n_2, \ldots, n_p . We put $$L_p = lin\{u_{n_1}, u_{n_2}, \dots, u_{n_p}, u\}.$$ Let H_p be the subspace orthogonal to L_p in X^{**} . We write A_{pn} to denote the subspace of X which is orthogonal to L_p in X^{**} . We write A_{pn} to denote the subspace of X which is orthogonal to $$L_p \bigcup [u_n, u_{n+1}, \ldots]^{\sim}$$. Since $$\bigcap_{n=1}^{\infty} \left(L_p \bigcup \left[u_n, u_{n+1}, \ldots \right]^{\sim} \right) = L_p \bigcup lin\{u\} = L_p$$ it follows that $\bigcup_{n=1}^{\infty} A_{pn}$ is a dense subset of $H_p \cap X$. We claim that there is a positive integer $n_{p+1} > n_p$ so that $$A_{pn_{p+1}} \cap V_p \neq \emptyset$$. Indeed, $$v_n \in H_p, n = 1, 2, \ldots,$$ and result b) assures us tht $(B \cap H_p)^{\sim} = \tilde{B} \cap H_p$, from where it follows that $$V_p \cap B \cap H_p \neq \emptyset$$ and so $$\left(\bigcup_{n=1}^{\infty} A_{pn}\right) \bigcap V_{p} \neq \emptyset,$$ therefore, the positive integer $n_{p+1} > n_p$ such that $A_{pn_{p+1}} \cap V_p \neq \emptyset$ can be found. Let x_p be a point in this non-void subset. Obviously, $$\langle x_p, u_{n_i} \rangle = 0, \quad j = 1, 2, \dots, p, \quad \langle x_p, u_n \rangle = 0, \quad n = n_{p+1}, n_{p+1} + 1, \dots$$ We are going to see now how the sequence $(u_{n_j})_{j=1}^{\infty}$ is the subsequence we are looking for. Let M be the subspace of X which is orthogonal to $[u_{n_j}]$. Since $$x_j \in M, \quad j = 1, 2, ...$$ and v_n is a weak-star cluster point in X^{**} of the sequence (x_j) , $n=1,2,\ldots$, it follows that $G\subset \widetilde{M}$, therefore $$\left[u_{n_{j}}\right]\subset\left[u_{n_{j}}\right]+lin\{u\},$$ from where the conclusion follows. **Theorem 2.** Let (x_n) be a normalized sequence in a Banach space X. If X^{**} is separable, the following conditions are equivalent; - 1) The set $\{x_n : n = 1, 2, ...\}$ is not weakly relatively compact. - 2) There is a subsequence (z_n) of (x_n) such that if (y_n) is any subsequence of (z_n) , then $[y_n]$ is a quasi-reflexive Banach space of order one. *Proof.* Let us suppose firstly that 1) holds. We could apply Proposition 4 to find a basic subsequence (t_n) of (x_n) converging to a point t_0 in $X^{**} \sim X$ in the weak-star topology and such that every subsequence of (t_n) is 1-shrinking; $[t_n^*]$ is an hyperplane of $[t_n]^*$ orthogonal to t_0 and consequently $$\bigcap_{n=1}^{\infty} \left[t_n, t_{n+1}, \ldots \right]^{\sim} = \lim \{ t_0 \} .$$ Applying now the former proposition we obtain a subsequence (z_n) of (t_n) so that $$[z_n]^{\sim} = [z_n] + lin\{t_0\}.$$ It results obvious tht if (y_n) is any subsequence of (z_n) , $[y_n]$ is a quasi-reflexive Banach space of order one. Conversely, when suppose that 2) is true, 1) also follows bearing in mind Proposition 4. Q.E.D. **Proposition 6.** Let (x_n) be a basis in a Banach space X. Let F be a subspace of X^* that contains $[x_n^*]$. If $[x_n^*]$ has finite codimension in F there is a basis (y_n) in X such that $[y_n^*] = F$. *Proof.* It is clear the only case need to show is when $[x_n^*]$ is an hyperplane of F. If we take a vector u in $F \sim [x_n^*]$ with ||u|| = 1, we can find an increasing sequence $(n_p)_{p=1}^{\infty}$ of positive integers such that if $n_0 = 0$ and $$z_p = \sum_{n=n_{p-1}+1}^{n_p} u(x_n) x_n^*$$ it follows that inf $$\{||z_p||: p=1,2,\ldots,\}>0$$. Applying now a method due to Zippin [9] (see also [7, pp. 67-68]), it is possible to obtain a basis (v_n) in $[x_n^*]$ such that $[v_n^*]$ coincides with the restriction of X on $[x_n^*]$ and $$v_{n_p} = z_p, \quad p = 1, 2, \dots$$ We define a sequence (w_n) in the following way: $$w_n = v_n$$ if $n \neq n_p$, $w_{n_p} = v_1 + v_2 + ... + v_p$, $p = 1, 2, ...$ The sequence (w_n) is a basis in $[x_n^*]$ such that $$w_n^* = v_n^*$$ if $n \neq n_p$, $w_{n_p}^* = v_p^* - v_{p+1}^*$, $p = 1, 2, ...$ Let H be the hyperplane of X orthogonal to $\{u\}$. Let y_1 be a vector in X such that $\langle y_1,u\rangle=1$. The restriction of H on $[x_n^*]$ obviously coincides with $[w_n^*]$ and therefore if y_{n+1} is the vector in X with restriction on $[x_n^*]$ equal to u_n^* , $n=1,2,\ldots$, we have the basis (y_n) in X and $$y_1^* = u$$, $y_n^* = w_{n-1}^* - \langle y_1, w_{n-1} \rangle u$, $n = 1, 2, ...$ from where the conclusion follows. Q.E.D. **Proposition 7.** Let X be a Banach space with basis. Let k be a non negative integer. The following conditions are equivalent: - 1) X is quasi-reflexive of order k. - 2) X has a k-boundedly complete basis and every basis of X is j-boundedly complete with $0 \le j \le k$. *Proof.* The implication $1) \Rightarrow 2$) is obvious. Let us now suppose that 2) holds. Let (x_n) be a k-boundedly complete basis in X. Then $X + [x_n^*]^{\perp}$ has codimension k in X^{**} , where $[x_n^*]^{\perp}$ denotes the subspace of X^{**} which is orthogonal to $[x_n^*]$. Let us suppose that X is not quasi-reflexive of order k. It follows that there is a vector v non equal to zero in $[x_n^*]^{\perp}$. Let u be a vector in X^* such that $\langle v, u \rangle \neq 0$. If F is the linear hull of $[x_n^*] \cup \{u\}$ we can apply the former proposition to F and we obtain a basis (y_n) of X such that $[y_n^*] = F$. Obviously, (y_n) is (k+1)-boundedly complete and this contradiction finishes the proof. Q.E.D. **Proposition 8.** Let (z_n) be a basis in a Banach space Z. Let G be a be a closed subspace of finite codimension in $[z_n^*]$. If G is weak-star dense in Z^* there exists a basis (t_n) in Z such that $[t_n^*] = G$. *Proof.* It is clear that the only case we need to show is when G is an hyperplane of $[z_n^*]$. Let u be a vector in \mathbb{Z}^{**} with ||u||=1 which is zero on G. Let S be the canonical mapping from \mathbb{Z}^{**} onto $\mathbb{Z}^{**}/[z_n^*]^{\perp}$, where $[z_n^*]^{\perp}$ is the orthogonal to $[z_n^*]$ in \mathbb{Z}^{**} . Then $S(\mathbb{Z})=[z_n^{**}]$. If F is the linear hull of $[z_n^{**}] \bigcup Su$, we have the hyperplane $[z_n^{**}]$ in F. Proceedin as in the proof of Proposition 6 we could obtain a basis (y_n) in the hyperplane of $[z_n^*]$ orthogonal to $\{u\}$ in such a way that, if (u_n) are the elements of $[z_n^{**}]$ verifying $$\langle u_n, y_n \rangle = 1$$, $\langle u_m, y_n \rangle = 0$, $m \neq n$, $m, n = 1, 2, \dots$ we would have $[u_n] = [z_n^{**}]$. If t_n is the vector of X such that $St_n = y_n$, $n = 1, 2, ..., (t_n)$ is a basis in Z with $[t_n^*] = G$. Q.E.D. **Proposition 9.** Let X be a Banach space with a basis. Let k be a non negative integer. The following conditions are equivalent: - 1) X is quasi-reflexive of order k. - 2) X has a k-shrinking basis and every basis of X is j-shrinking, $0 \le j \le k$. Proof. 1) \Rightarrow 2) is obvious. Let us suppose now that 2) holds. Let (x_n) be a k-shrinking basis of X. If $[x_n^*]^{\perp}$ is the subspace of X^{**} which is orthogonal to $[x_n^*]$, the dimension of $[x_n^*]^{\perp}$ is precisely k. Let us suppose that X is not quasi-reflexive of order k. We could find a vector u in $X^{**} \sim (X + [x_n^*]^{\perp})$. If F is the subspace of $[x_n^*]$ which is orthogonal to $\{u\}$, F is weakly-star dense in X^* and so, applying the former proposition, we could obtain a basis (y_n) of X such that $[y_n^*] = F$. Consequently, (y_n) would be a (k+1)-shrinking basis. This contradiction finishes the proof. **Theorem 3.** Let X be a Banach space with basis. If (y_n) is a basic sequence in X there exists a basis in X which extends some subsequence of (y_n) . **Proof.** We can suppose without any restriction that $||y_n|| = 1, n = 1, 2, \ldots$ Let (x_n) be a basis in X. If (5) $$\lim_{n} \langle y_{n}, x_{m}^{*} \rangle = 0, \quad m = 1, 2, \dots,$$ it would be enough to apply [2, Theorem 3]. Let us now suppose thay (5) does not hold. Then there is a weak-star cluster point y in $X^{**} \sim X$ of the sequence (y_n) . We put $$H = \{u \in X^* : \langle y, u \rangle = 0\}.$$ If $H \cap [x_n^*]$ is weak-star dense in X^* we could apply Proposition 8 and obtain a basis (z_n) in X such that $[z_n^*] = H \cap [x_n^*]$. In that case, we can take a subsequence (y_{n_j}) of (y_n) such that $$\lim_{j} \langle y_{n_j}, z_m^* \rangle = 0, \quad m = 1, 2, \dots,$$ and the proof is reduced to the former case. If $H \cap [x_n^*]$ is not weak-star dense in X^* there is an element x_0 in X such that $$\langle x_0, v \rangle = 0, \quad v \in \bigcap [x_n^*].$$ There exists an element u in H such that $\langle x_0, u \rangle \neq 0$. Let F be the linear hull of $[x_n^*] \bigcup \{u\}$. We could apply Proposition 6 and obtain a basis (z_n) of X such that $[z_n^*] = F$. We would have now that $H \cap F$ is weak-star dense in X^* and so, according to Proposition 8, there is a basis (w_n) in X such that $[w_n^*] = H \cap [z_n^*]$. If (y_{n_j}) is now a subsequence of (y_n) such that $$\lim_{j} \langle y_{n_j}, w_m^* \rangle = 0, \quad m = 1, 2, \dots$$ the proof is also reduced to the first case in that situation. Q.E.D. Note. The original proof of Proposition 2 was longer than the one presented here. We are grateful to Dr. V. Montesinos for providing the proof given here. ## REFERENCES C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), pp. 151-164. - [2] D.W. DEAN, I. SINGER, L. STERNBACH, On shrinking basic sequences in Banach spaces, Studia Math., 40 (1971), pp. 23-33. - [3] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. - [4] R.C. JAMES, Bases and reflexivity of Banach spaces, Ann. Math., (2) 52 (1950), pp. 518-527. - [5] W.B. JOHNSON, H.P. ROSENTHAL, On w* basic sequences and their applications to the study of Banach spaces, Studia Math., 43 (1972), pp. 77-92. - [6] I. SINGER, Bases and quasi-reflexivity of Banach spaces, Ann. Math., 153 (1964), pp. 199-209. - [7] I. SINGER, Bases in Banach spaces I, Springer-Verlag, New York-Berlin-Heidelberg, 1970. - [8] M. VALDIVIA, Banach spaces X with X** separable, Israel J. Math., 59 (1987), pp. 107-111. - [9] M. ZIPPIN, A remark on bases and reflexivity in Banach spaces, Israel J. Math., 6 (1968), pp. 74-79. Received December 31, 1990 M. Valdivia Facultad de Matemàticas Dr. Moliner, 50 Burjasot - 46100 (Valencia) Spain