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NONCLOSED SEQUENTIALLY CLOSED SUBSETS
OF LOCALLY CONVEX SPACES AND APPLICATIONS

0.G. SMOLYANOQYV
Dedicated to the memory of Professor Gottfried Kothe

This article 1s a review of some methods of constructing nonclosed sequentially closed
subsets 1n locally convex spaces (l.c.s.) as well as some applications of such subsets to prob-
lems 1n the theory of l.c.s. These subsets are collections of elements having two or more
indexes being natural numbers, as well as convex or linear envelopes of such countable sets.
As to the above-mentoned problems we regard several ones connected with the Ptak and
Krein-Smulian spaces (we recall the definitions of these spaces below), problems connected
with the tehory of differentiable funcuons on 1.c.s. and some problems posed by Dieudonné
and L. Schwartz and solved by Grothendieck (in the latter case we give solutions which differ
from the solutions of Grothendieck). In some cases we prefer not to give the most general
constructions replacing them by typical examples.

1. SOME HISTORICAL REMARKS

In 1953 V. Ptak introduced the notion of a B -completeness (independently this notion under
the name «fully completeness» was introduced by H.S. Collins) and proved the open mapping
theorem for linecar mappings from B -complete spaces. In 1958 he introduced B_ -complete
spaces and proved the closed graph theorem for linear mapping into such spaces (the latter
theorem was proved by Robertsons for B -complete spaces two years earlier). Recall some
definitions. Let E be a l.c.s. A subset A of E' is called nearly closed iff whenever V' is
neighbourhood of zero in E the set A N VY is closed in the space E equipped with the
weak topology. The space E is called B-complete (B, -complete, hypercomplete, Krein-
Smulian) space iff every nearly closed vector subspace (dense vector subspace, absolutely
convex subset, convex subset) of the space E' equipped with the weak topology is closed.
Just after the first result of V. Ptak specialists supposed that almost each «ordinary» l.c.s. of
functional analysis is B -complete. Only 1n the seventies it was proved that the situation was
completely different (see [S] -[12] and the bibliography in [4]). Namely, all «ordinary» l.c.s.,
which are not metrizable or dual-metrizable, do not belong to the class of B -complete spaces.
In particular, even the space DD has a noncomplete metrizable quotient space [6]. By the way
the first example of a complete 1.c.s. having a noncomplete quotient space is due to G. Kothe
[1]. There were some other problems concerning B -complete, B, -complete, hypercomplete
and Krein-Smulian spaces. For instance, it was unknown whether a product of two spaces
belonging to one of these classes belongs to the same class, whether these classes coincide,
whether some concrete 1.¢.s. belong to one of these classes. In the seventies almost all these
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problems were solved (now it 1s unknown only whether the classes of B-complete spaces
and hypercomplete spaces coincide); moreover, most of them were solved ([5]-[10]) by the
methods we describe in this paper. This 1s explained by the fact that in many important cases
the classes of nearly closed subscts and sequentially closed subsets coincide. It 18 necessary
to mention one exception: the strong result due to M. Valdivia [14], giving a description of
B, -complete non- B -complete 1.c.s. (the results in [11], [12] can be obtained by our method
- see¢ below). It is interesting that the same method can be used for constructing real functions
on spaces D and D' which are infinitely Fréchet differentiable but not continuous. It 18
also worth mentioning that an analogous construction can be used to prove that the so-called
Pontryagin’s duality does not hold for the pair (DD, D’), see [9]. Finally, it is curious 10 note
that the recently nearly the same method has been applied by E.T. Shavgulidze for constructing
some selfadjoint operators connected with some models in quantum field theory [15]. In this
paper we describe only the main ideas and sketch the proofs, leaving the reconstruction of the
details to the reader.

2. NOTATION

Everywhere below E, G arel.cs., T = E + G (topological direct sum), A = (a, . ' k,n €
N)Y CE,B=(b,, : kkne N) CG,C=(a,,+b,, :k,n€ N) CT, and for every
m € N.

C.=(a,,+b., k€eN;n=12,..,m);

A.=(a,,tkeN;n=12,...,m).

If V is asubset of a topological space F' then clos( V') denotes the closure of V.clos(V )¢
denotes the sequential closure of V (i.e. the intersection of all sequentially closed subsets of
F containing V') and clos( V)¢ denotes the collection of limits of sequences (z,) C V. If
X isasubsetofl.c.s. Z then M(X) and L(X) denote the linear manifold (= the plane) and
the linear subspace generated by X ; correspondingly, M_ = M(C,), M = Uclos(M,) .

3. SEQUENTIALLY CLOSED SETS

Theorem 1. Let the following conditions be fulfilled:
a) Yne Nb,, — 0(k — 00):

b) if by ky — Ol — 00), then sup n(l) # co.

Then there exists a countable set V' such that clos(V') # clos(V)¢s.

Proof. Let a € G,a# 0 be suchthat 0 ¢ (n~la+ b.r :m k€ N);then 0 € clos(V),0 ¢
clos(V)gs.



Nonclosed sequentially closed subsets of locally convex spaces and applications , 7 239

= k-~ lé{n

nk

Examplel. G = D[-1,1],b

Example 2. G = (l,,0(l,,1)),(e,) C GiVi,j € N,(e;,¢€,) =6, by = ney(n k € N)

(this example is similar to an example of von Neumann).

Theorem 2. Let the following conditions be fulfilled: (0) 0 € ANB : (1) Qo — O(n — o0)

uniformly with respect to k(€ N); (2) Whenever n € N there does not exist a converg-
ing subsequence of the sequence (a,, : kK € N), (3) Whenever n € Nb,;, — 0(k —
00) ; (4) If a sequence (b .,y * L € N) converges then supn(l)y#oo. Then C =

clos(C)g# clos(C) (0 € clos(C),0 & clos(C),) .

Example 3. E and G are the following topological vector subspacesof D'(R') : E=(f €
D'(R");sup(f) C N);G = (f € D'(R");sup(f) C (0);a4, = 8 (z —n); b, =
k=18 | Then the conditions of Theorem 2 are fulfilled.

Example 3a. Let G and b, be as in the preceding example, E = D[0,1] and a,, (€ E)
are defined as follows: a,. (t) = g(t)(k+1)7"sin kt,g# O . Thenthe conditions of Theorem
2 are fulfilled.

Example 3b. Let E and a,  be as in the preceding example. G = D[1,00) and b, =
k='p(t — n) where p € G,p# 0. Then the conditions of Theorem 2 are fulfilled.

Theorem 3. Let the conditions 1), 3) (Theorem 2) be fulfilled and let also the following
conditions be true: 2a) For all m € NO ¢ clos( M(A,),,. 4a) If the sequence of sums

E liﬂbn,: (7 € N) converges to O then there exists m € N such that iin =0 for n > m.

Then O € clos(UM,). 0 € clos(UM_),,.

Theorem 4. Let the conditions 1) and 3) (Theorem 2) be fulfilled and let also the following
conditions be true: 2) Ym0 & clos(M(A,)) ; 4b) if a sequence (m ;) C M converges then

dn € N suchthat (mj) C clos(M_) . Then M = clos(M),# clos(M)(0 € clos(M),0 ¢
clos(M),) .

Example 4. Let E and A be the same as in example 3. G = D'[—1/2,1/2],b_, = (k+

D16 (2 — k™YY then the conditions of Theorem 4 are fulfilled. To verify the hypotheses
of Theorem 4 the following lemmas are useful.

Lemma 1. Let there exist a collection K = (K, : ,2,...) of vector subspaces of

G such that I) U K, = G, H)if a generalized sequence (o, +b,):s€S

=1
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convergestoapointa € E+ K_,thenl}; — 0 forn> m+ 1 and le"nbm& — 0,
k.n

where [} = [} formn > m+ 1 and [[> = 0 for n < m. lll) if a generalized sequence
() ri.a.,) converges to a point d(€ E), then Ym the generalized sequence (> r2a,.)
(where v, = 7 jor n < m and 2 = 0 for n > m + 1) converges in E; if also

Te, — OVk, nthen d= 0. Then the space L( M) isclosedin T .

Lemma 2. Let the conditions of Lemma 1 and the condition 2b) of Theorem 4 be fulfilled
and whenever we have a converging sequence (b,) C G there exist such m € N thai
(b,) C K., . Then the condition 4) of Theorem 4 is fulfilled.

Theorem S. Let the conditions of Theorem 4 and Lemma 2 be fulfilled. Then the vector space
L(M) is closed in T and the linear functional f : L(M) — R' such that f(M) =1 is
sequentially continuous but is not continuous. The conditions of Theorem 5 are fulfilled in

examples 4-6.

Example 5. Let G and B be the same asinexampled, £ = D[0,1]),a, € E aredefinedas

follows: a, (t) = (k+ 1)~'(sinl_t) f(t) where f € D[0,1], f#0 and (I, : k,n€ N)
is a collection of natural numbers such that [, . =l . Iff ky = k, and ny = n,. Then

M = clos(M),# clos(M)(0 € clos(M),0 ¢ clos(M),) .

Example 6. Let E and a,, be as in the preceding example, G = D[1,00) and b, €

G be defined as follows: b (1) = 2-2Dg(2%(t — n)), where g € D[1,00),9#0 and
g(t) =0 fort > 2. We can conclude from the preceding results that there exist nonclosed
sequentially closed vector subspaces of the spaces D(R') and D'(R') . In fact, the space
E+ G fromexample 3 is a closed vector subspace of D'( R') , the space D[0, 1]+ D[ 1,00)
(considered in example 6) is a closed vector subspace of D(R') and these spaces (E + G
and D[0,1] + D[1,00) ) possess unclosed sequentially closed vector subspaces. Using the
method which is similar to the above-described method of constructing nonclosed sequentially
closed vector subspaces of E + G, it is possible to construct such subspaces of D( R) and
D'(R) , which are even dense in the corresponding spaces. Now we prefer not to formulate
some general theorems and restrict ourselves to examples.

Example 7. Let (r}-) be the sequence of all rational numbers and (p,7,s,) — n(p,7J,Ss)
a one to one mapping from N> to (2,3,...). Then the linear manifold F, generated in
D'(RY) by the set (rpﬁ(::—rj-)+k“16("(p'j"’)) (z—k D +8%* D (z—n(p,j,8)) :p, k,j,s €

N) is sequentially closed and dense in D'( R') , but is not closed (as O € clos(F),0 ¢ F);
consequently ' — a (where a € F')is a dense sequentially closed but nonclosed vector

subspace in D'( R') .
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Example 8. Let (k,n) — l(k,n) and (j,s) — n(j,s) be bijections from N* onto N
and ( f,) be a sequence of elements of D(R') . The following conditions have to be fulfilled:

(1) If min n(j,s) = a(j) and min, ,I(k,n(j,s)) = b(j). then f;*?(z) = 0 for z €
(0,2(b(;))~"m) ; (2) supp f; C (—o0,a()}; (3) clos ((f;)) = D(R') (the existence
of such ( f;) is a consequence of the fact that a(j) — oo and b(j) — o0). Let Fj, be

the sequentially closed linear manifold generated in D(R') by the set ( f}-(t) + f(t)(k +

1)™79) sin I(k,n(j,s)t+2 "2 g(2%(t—n(j,s)) : k,j, s € N) (here g € D(R'), suppg C
[1,00), f € D(Rl),suppf C (—o0,1), f(t) =1Vt € (0,1/2)). Then Fpn —a(a € Fp)
is a dense sequentially closed nonciosed vector subspace of D(R!) . It is possible to use in
essence the same method to construct a sequentially closed nonclosed dense vector subspace

in the space D|0,1] + D'[0,1] as well as in the space (l_,a(l_,!,) & H Pj",. where for
]=1
every j ki is a copy of the space (l,,0(l,,l,)). We shall do it in the following example.

Example 9. Let G = (l_,0(l_,1,)); E = HEj;Vn,kE“ =(8,ke€ N)el,,i_>g,
j=1

N — (—1,1),Vn k. € N,a, € R'(i=1,...,7 if > o, = 1 then card(n € N :

E&igmkl_(n) =1) = 00; a,, = (0,0,...,ke,,0,0,...)(€ E) the number of the place

occupied by an element ke, being n; b, = n(0,...,9 . (k+1),g . (k+2),..)(€ G) the
Jirst k places being occupied by 0. Then the set C is sequentially closed but nonclosed
in T = E + G and the vector subspace clos(M(C)), — a(a € M(C)) has similar
properties. It is not difficult to construct a dense vector subspace with the same proper-
ties: namely let (j,s) v n(j,s) be a bijection from N* onto N and let (c;) be a dense

subset of T' such that the following conditions are fulfilled: ¥j € N C; = c:;- + cf,r:} €
G, c;. = (h{, e hJ;,O,O, ...)(hf; are rational numbers,; of course p depends on j ), c? =
(d],...,d,..),(d € E,d = (w;,w;,...,w;;,o,o,...)) (here 1 = t(j,n)). Lel

— . ' 1 T
us assume that K = (¢, + 0poyiinranmts T Ouiok - 1ok, s € N). Then the plane

clos(M( K)), is dense sequentially close nonclosed; consequently clos( M(K)), —a(a €
M K)) isavector subspace having the same properties.

4. APPLICATIONS

If for every ncighbourhood V of zero in a l.c.s. F, its polar V° is metrizable then every
scquentially closed subset of ( F', o( F', F')) 18 ncarly closed. So if a l.c.s. F' 1s separable
(in this case the polars in F’ of neighbourhoods of zero of F' are metrizable) and the space
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(F' o( F', F)) satisfies the conditions of Theorem 4, then the space F' is not a B -complete
space. Besides it follows from some of the preceding examples that the space R™ x R{>
is not a Krein-Smulian space (because the convex envelope of the set G from example 3
is sequentially closed but nonclosed in the space E + G from the example, the latter space
being isomorphic to R® x R{> (though the latter space is hypercomplete [7])), and that

oo
the spaces D(R'), D'(R'), D[0,1) @ D'[0,1],], ® EEi (where for every ;7 € N the
j=1

space E; 1s a copy of [, ) are not B, -complete. The existence of discontinuous sequentially
continuous linear functionals 1S connected with the problem of hereditary completeness of
l.c.s. In fact, if al.c.s. F is semi-reflexive and if F) is a (closed) vector subspace, then the
space ( F!, B(F! F,)) is canonically isomorphic to the quotient space (F', B(F', F))/F}
([2]); on the other hand, a theorem of Grothendieck shows that the space (FY, B( Fy, F}))
is noncomplete iff there exists a linear discontinuous functional on /| whosc restrictions
to every bounded subset of F| is continuous. Consequently we can conclude from The-
orem 5 that if a l.c.s. F' is reflexive and separable and its strong dual satisfics the con-
ditions of Theorem 5, then there exists a noncomplete factor-space of F'. So the spacces
D(R),D'(R),D[0,1] x D'[0, 1] have such factor-spaces. Itis probably worth mentioning
that the examples of section 2 contain the answers to some questions posed long ago in [2].
We list these answers (the figures in brackets correspond to the numbers of questions in [2]).
There exists a sequentially closed non-closed vector subspace in D = D(R') (this is a con-
sequence of example 6); (2) There exists a closed vector subspace of D which 1s not a strict
inductive limit of a sequence of Fréchet spaces; in fact, in accordance with Theorem 5, the
vector subspace L( M) in example 6 has such a property because the linear functional f de-
fined in this theorem is sequentially continuous but not continuous: (3) D has a non-complete
factor space (we mentioned this above): (4) If F;, = L(M) C D where M 18 constructed
using the families a,, and b, from example 6, then there exists a compact subset in J/ F)
which is not the image of any bounded set in D (for the detailed proof see [9]); (9) The stan-
dard topology in D’ is coarser than the finest of all topologies in D' which coincide with
o(D, D) on every bounded set (indeed, the set G given by example 3 is nonclosed, but
sequentially closed). In the paper [3] Grothendieck has used special spaces to solve these
problems; for the same purpose we used here the standard spaces D and D'. Using the sets
described in examples 3-3b it is possibile to construct real functions on D(R), D'( R) , which
are infinitely differentiable everywhere but are not everywhere continuous.

Let us recall the definition of Fréchet differentiability. A mapping f form an open set V
ofal.c.s. F intoal.c.s. G is said to be (one time) Fréchet differentiable ata point ¢ € V
if there exist a linear continuous map f'(a) : B — & (called the Fréchet derivative of f at
the point a) and an «infinitesimal mapping» r : E — G with the following properties: (1)
f(a+ h) — f(a) = f'(a)h+ r(h) whenever h € E,a+ h € V,(2) for each bounded subset
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B 1n F therelation »(th) /t — 0 holds uniformly for h in B. The map f is said to be twice
Fréchet differentiable at a point a € V 1if 1t 1s Fréchet differentiable in some neighbourhood
W ofaandthemap f : W — L,(E,G),z — f'(z),is Fréchet differentiable at a point
a. It is easy to construct a (real) function on I’ which is infinitely differentiable at a given
point, but is not continuous at this point. For example, it suffices to define f as the indicator
of a set A possessing the following property: the origin belongs to the closure of A, but not
to the sequential closure of A. Then f is infinitely Fréchet differentiable at the origin but not
continuous at this point. Nevertheless there exist points whre f has not a Fréchet derivative.
The construction of a disconunuous everywhere (infinitely) differentiable function is more
complicated (by the way, it is very easy to construct such a function on the space D x D':
the mapping of evaluation has the necessary propertes).

Let, for every k,n € N,®,, and &, be functions from D possessing the following

properties:
(1) Vk,n, @0 (k') = k;
(2) supp®d,, C[-2,0;
(3) Vn€ NVr € N\{n}Vk € N, ®.(—k') = 0;
(4) Vr € NVn,k € N,if 7 < n then sup |, (2)| < 1/(n*k?);
- t

(5) Vn, k € N, tb,E:;(n) = 1;

(6) Vk,n€ N, supp®;, Cl[n—1/2,n+1/2];

(7) Vk € NVr € N\{k}Vn€ N,®(n) = 0;

(8) Vr € NVn k € N, if r < k then sup |®{"(t)]| < 1/(n*k*).
t

]

Letalso h € D,0 < h(t) < 1,h(t) = 0 if |t] > -,h(t) = 1 if |t| < 1/8. Then

the function F: D' — R, F(g) = E h((g9, Py, ) — Dh((9, P, ) — 1) is everywhere

kn=1
infintely Fréchet differentiable, all its derivatives (of order > 1) being (everywhere) contin-
uous (as mappings from D into the corr¢sponding spaces of linear mappings, equipped with
the topology of bounded convergence), but this function is discontinuous at the origin. The
detailed proof can be found in [16]; here we remark only that F' assigns the value 1 to all
elements 6™ (z + 1/k)/k + §® (z — n). So the function F is the result of «smoothing»
the above mentioned functions. I do not know whether there exists a function with similar
properties on the space D . But an infinitely Fréchet differentiable discontinuous function on
the space D exists, but in the examples which I mean, the derivatives are discontinous also.
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