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A NOTE ON DISCRETELY COMPACT OPERATORS
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Dedicated to the memory of Professor Gottfried Kothe

1. INTRODUCTION

It is the aim of this note to prove an important result in the framework of discrete approx-
imations and discrete convergence. The underlying general perturbation theory applies to
sequences of linear and nonlinear operators and solutions of operator equations. The theory
was originally developed by Stummel [23-31] (D with contributions by Grigorieff [6-10], Ran-
nacher [18], Wolf [38, 39] and the author [19-22] {?. Similar approaches are used by Vainikko
[32-37] and, in special cases, by Anselone [1, 2], Aubin [3], Browder [4, 5], Petryshyn [15-
16].

At the time the monograph [22] appeared, the theory of discrete convergence was com-
pleted. According to the emphasis of the book [22] on nonlinear mappings and applications,
not every aspect of the theory is contained in [22], €.g. not the perturbation of eigenvalue
problems, not the perturbation of Sobolev spaces and no results on weak convergence. There
are a few newer publications known to the author which use the theory of discrete convergence
for special problem settings (see ¢.g. Niepage [13, 14]). The result of the present contribution
is not yet published; it is interesting by itself and has importance with respect to applications.

The main result of this paper, Theorem 3, states the equivalence of weak discrete com-
pactness and discrete compactness of not necessarily linear operatos in a special setung of
subspaces. Before, it is shown that discrete compactness implies weak discrete compactness
in a general setting (see Theorem 1) and boundedness properties are shown (see Theorem 2).
Compactness properties are important for the existence of solutions of operator equations and
their convergence - for examples and applications see [1, 2, 7-10, 15, 22, 23, 28, 31, 33, 34,
360].

2. NOTATIONS
Let E,F,E_,F_,n € N, bc normed lincar spaces which form discrete approximations
A(E,T],, E, lim®) and A4 (F,]], F,,lim") in the sense of [22], 5.1. Discretely con-

vergent sequences are denoted by lim® u_ = u or u, — u(n € N); analogous notations are

(1) The references mentioned are important papers of the corresponding authors but give by no means a complete
list of their works in that field. A more complete list is contained in the bibliography of [22].

(2) The author is especially grateful 10 Professor G. Kéthe who communicated his first publication [19] in a mathe-
matical journal.
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used for sequences w € F,w, € F_,n€ N. A sequence of continuous linear functionals v_
on E_ is called weakly discretely convergentto v € E' if lim (v_,u_) = (v, u) for all dis-

cretely convergent sequences u,. — u(n € IN) (compare [23],2). Wewritev, — v(n € N)
orw— limv_ = v. Asequence of elements u, € E,n€ N, 1s called discretely compact it
for every subsequence N’ C IN there exist an element u € F and a subsequence N” € N
such that the discrete convergence u, — u(n € IN") holds. A sequence of continuous linear
functionals v, € E!,n € N, is called weakly discretely compact if for every N’ C N there
existav € E'and N” C N'such thatv, — v(n€ N").

The spaces of continuous linear functionals on E will be denoted by E’; the same notation
will be used for E_, F, F, . The value of a funcuonal v at a certain element v will be denoted
by (u, v) instead of writing v(u). The definition of weakly discrete convergence and weakly
discrete compactness also applies to functionals on F._ .

Let us further consider not necessarily linearoperators K : D(K,) C £, — F_,,n€ N,
with domain of definition D( K ); the range of the operators lies in F . If the domain of
definitionis allof E_, we alsownitec K : £ — F,.

The sequence K_,n € IN, is called discretely compact if for every bounded sequence of
elements u, € E_,n € N, the sequence of images K u,, n € IN, is discretely compact.
Moreover, K_, n € IN, is called weakly discretely compact it for every weakly discretely
convergent null sequence of functionals v, € F,,n € N,ie. v, — 0(n € IN), and for
every bounded sequence u, € E_,n € N, the relation Jiﬂ{ffnun, v_) = 0 holds.

3. PROPERTIES OF DISCRETE COMPACT OPERATORS

In analogy to the case of linear operators (see [23], Thm. 3.1 (1)), the following result holds.

Theorem 1. Everydiscretely compact sequence of operators K_,n € IN |, is weakly discretely
compact.

Proof. Let us assume that a discretely compact sequence K, n € IN, is not weakly discretely
compact. Then there exist a weakly discretely convergent null sequence of functionals v, €
F/)ne N,v, — O0(n € N), and a bounded sequence u, € E,,n € IN, such that for a
positive number £, > 0 and a subsequence N’ C IN the estimates [{ K u_,v_ )| > €,,n €
N', hold. According to the assumption, there exists another subsequence N” ¢ N’ and
aw € Fsuchthat K u. — w(n € N"). Together with v, — O(n € IN), we also
have v — O(n € N"). The definition of weakly discrete convergence hence implies that
(K_u_,v, ) — 0(n— oo,n€ N") which contradicts [{K u_,v,)| > ¢&;,n€ N'. "

n n?

For a sequence of bounded linear operators K _, the weakly discrete compactness is obvi-
ously equivalent to the fact that the sequence of adjoint operators K| : F. — E ,n € N,
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satisfies || K, v || — O(n — oo) forevery discretely convergent null sequence v, — O(n €

N),v, € F'.

n

Also 1n the case of not necessarily linear operators, weakly discretely compact sequences
have the following property.

Theorem 2. For any weakly discretely compact sequence of operators K, . D(K_ ) C
E. — F_,n¢€ N, andevery bounded sequence of elements u, € E_ ,n € IN, the sequence

n

of images K_u_,n € N, is bounded.

n n!

Proof. Let us assume that the sequence of images K_u_,n &€ N, 1s not bounded. Then there

non!l

exists a subsequence N’ C N suchthat0 < a, = ||K_u_||p — oco(n € N'). According to

the theorem on the existence of sufficiently many functionals (see e.g. [11], V. 7), there exist
v, € F! ,n€ N’ such that

|vall ey = 1 and (Kptin, vg) = || Kpugllp ,m € N'.

n n? n/

The sequence u, € E_,n € N, is assumed to be bounded. We define

]
v, = —v_,n€ N’ v, =0,neN-N"

Ve,

Thenv, — O(n € IN) since

1 1

\/cTn||“n|[F; = Ja,

Hﬁn“ﬂ:g “*O(HENIF): l|ﬁn||ﬂ=0,nEN——N’.

Furthermore the convergence

1
(Knu’niﬁn> = a"——<‘;(nu‘nivn) = V&, DC?(TIE NI)
V%

holds which contradicts the weakly discrete compactness of K ,ne€ IN. n

4. THE EQUIVALENCE THEOREM

It will now be our aim to prove the converse of Theorem 1. For this purpose, certain require-
ments have to be posed for the spaces F, F_,n € IN. We assume in the following that F
and F_,n € IN, are subspaces of a separable Banach space N which form a metric discrete
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approximation 4 ( F, ], F, lim ¥y with the norm convergence in N as the discrete conver-
gence. The existence of such a discrete approximation is equivalent to the fact that (see [23],

5.1)

(1) w, F,| = inf |lw—ylly = 0(n—00), wEF

Using the notatuons of [27], 4., relation (1) 1s further equivalent to

(2) F C lim inf F,.
—  nEeN

At this place it should be mentioned that in a discrete approximation of a separable normed
space bounded sequences of functionals are always weakly discretely compact (see [23], Thm.
2.3 (1)). Moreover, discrete approximauons of separable normed spaces fulfil Property (A4)
of [23], 2.1, which means that discrete convergent null sequences can be characterized by
the fact that their images under every weakly discretely convergent sequence of functionals

converge to zero.
The proof of the equivalence of weakly discrete compactness of a sequence of operators
and discrete compactness itself uses the following Isometry Theorem of Banach-Mazur (cf.

e.g. [12], 21.3).

Lemma 1. Each separable normed linear space M is linearly isometric to a linear subset of
the space C[0, 1] of continuous functions.

Denoting the isometry by G then G( M) is closed in C[ 0, 1] provided that M is complete
1in addition,

By means of the isometry GG, of the Banach space N, G, : N — C[0, 1], we definc
mappings H, H_ by restricuons of G, to F' and F,, respectively,

(3) H=Gy|F, H,=Gy|F,, neN.

Obviously, one obtains |Gy |l = ||H|| = ||H,]| = 1,n € N, for the norms of the mappings.
Hence, the sequence of mappings H_, n € N, 1s stable and inversely stable (s. [23], 1.2, 1.3).
Furthermore, according to (1) the sequence H, H_,n € IN, is consistent.

In addition to the condition (1) required for the subspaces F, F_, we assume that ¢very
limit of a convergent subsequence of elements y,. € F_,n€ IN' C N, lies in F', which can
be wrilten as

(4) lim sup F, C F.
neN

Using the closedness of F' as a subspace of N, it is not difficult to see that in the present setting
of subspaces condition (4) 1s equivalent to

(3) lv., F| 5 0(n— oco,ne N')

for every convergent subsequence of elementsy, € F,,n€ N’ C N.
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To be prepared for the equivalence theorcm we prove an additional lemma.

Lemma 2. Let the mappings H,H_,n € IN, be defined by (3) and let the assumptions
(2), (4) hold. Then for every subsequence N' C N and arbitrary sequences of scalars

(o, )pen' s (Bpuen: from [0, 1] fulfilling o, — B.| — O(n— oo, n € N'), the sequence of
functionals v, € F, ,n€ N, defined by

(6) (w ,v,)=H w(a)—Hw(B)w € F,ne N

n' n

is a weakly discretely convergent null sequence, v, — 0(ne N').

Proof. Let N’ be an arbitrary subset of infinitely many integers of IN . The functionals defined
In (6) are obviously lincar, and they are bounded because of the estimates

KUnlwn)I g IHnwn(ﬂn)l M Ihrnwn(-ﬁn)l g ZHwnHN?wn € FH’HE N,'

For any discretely convergent sequence w, — w(n € N),w € F,w, € F_,n € N’, the
following estimates hold,

lfinwn(&n) o JHr;';""'.""frl.(ﬁ*ﬂ.)| i I‘{{nwn(&n) o }Iw(ﬂﬂ)l-'-
+ |[Hw(a,) — Hw(B,) |+ |Hw(B,) — H,w,(8,)]
<2||Hw— Hwyllgro + [Hw(e,) — Hw(B,)|,n € N’

Since the sequence w, — w(n € IN') converges, and consistency together with stability of
H,H_,n € N, hold, the discrcte convergence /{, — H(n € N') follows. In this special
sctung, this 1s equivalent to

”H‘w — }YﬂwﬂHC[ﬂ,l] — 0(71 — DCJ,?IE Nf)
Using the uniform continuity of //w( -), one additionally has
|Hw(a ) — Hw(B,)| — 0(n — co,n€ N'),

which proves |[(w_,v_ )} = 0(ne€ N') andv, — O(n € N'). .

We are now in the position to prove the equivalence theorem already mentioned.
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Theorem 3. A discretely compact sequence of operators K_ . D(K ) CE — F_,ne N,
is necessarily weakly discretely compact. Conversely, if the F| F_ . n € N, are subspaces of
a separable Banach space N and fulfill the condition

(7) F=1limF,, ie F=Iliminf F, =limsupF,,
neN

nc N neN
then the weakly discrete compactness of ( K, ) is also sufficient for its discrete compaciness.

Proof. (a) The necessity is already proven in Theorem 1.

(b) Sufficiency. Letu, € E_,n € N, be a bounded sequence. Using lim inf F C
lim sup F, condition (2) together with (4) is obviously equivalent to (7). A metric dis-
crete approximation 8 ( F, ], F,.lim ") thus exists and it remains to show that the sequence
K_u_,n € IN,is compact in N with cluster points in F'. According to Theorem 2, (K u,)
1s bounded.

By means of the theorem of Arzela and Ascoli, we now prove that the sequence ¢, =
H_K_u_,n € N,of continuous functions is compact in C{0, 1}. The boundedness of (¢ )
follows from the boundedness of (K, u,) and ||H || = 1. Let us assume that the functions
v,,n € N, are not equicontinuous. Then there exists a number €, > 0 such that for every
null sequence of positive numbers e_,n € IN,andanyn € N anindex v = v, € N and

numbers «_, 8. € [0, 1] exist such that
la, — B.| < g, |H K u(a)—HKu(B) >¢.

The set {v_, n € N } may consist of finitcly many indices or, otherwise, it contains infinitcly
many pairwise distinct positive intcgers. In the first case, there exists an index y, € N
and a subset of countably many integers / C IN such that v, = y,,n € I. According 10
la, — B,] — O(n — oo,n € I) and the uniform continuity of o, = H, K, u,, the

convergence
o, (an) — o, (B)] — 0(n— oco,n € I)

holds in contraction to the inequality above. In the alternating case, there exist a subset [’ of
countably many integers such that N' = {v_,n € I'} is a subset of infinitely many elements
of N. Setting o, = o, ,8, = B, ,n € I, then Lemma 2 assurcs that the sequence of

functionals v, € F}, k € N', defined by
(w,,v,)= Hw(a,) — Hw(B,), k€N

is a weakly discretely convergent null sequence, v, — 0(k € IN'). Using the assumption of
discrete compactness of ( K ), the convergence (K, u,,v.) — 0(k € IN') holds. Finally, by
the definition of v, , this means that

[(Kiug, vi)| = [HeKpup(oy) — HeKu (B — 0(k — 00,k € NY)
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contracung the inequality
|Hy Kyup(og) — H Kpu (B > g,k € N,

and thus proving the equicontinuity of p, = H_K u_,n€ IN.

The compactness of (p,) in C[0,1] is therefore assured. Using the completeness of
N,Gy(N) 1s a closed subspace of C[0, 1] and the cluster points of (. ) necessarily lic
in &, (N). Hence, also K u,,n € N, is a compact sequence in N. The cluster points

n n'

of (K u,) belong to F as a consequence of (4) which completes the proof of the discrete
compactness of (K ). 5
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