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0. INTRODUCTION

The purpose of the following discussion is to obtain the classical theorem in the title of this
paper as an application of our previous considerationsin [29: (i), (ii), (iv), (v)] (an early an-
nouncement, under the same title, has been given in [29: (iii)] as well). These, including of
course the present study, concemn in effect an abstract (axiomatic) approach to the standard
differential geometry 0T C*-manifolds and/or ofcomplex (analytic) ones without empioy-
ing differentialca/culus at all. So here again one realizes, and essentially in a strengthened
way, that «certain [fundamental] quantities which a priori depend on the Jocal differential ge-
omelry are actually global topological invariants » (seee.g. [8: Introduction]). Indeed, our
treatmentis quite fopological-algebraic in nature, to the extent that this is accomplished via
sheafthwry and, in particular, through sheafcohomology. Thus, our study might also be
viewed as algebraically (viz. operalor-theoretically ) oriented. Yet, to make the exposition
more comprehensible,we do develop, more or less, the necessary framework for the treatment
of the theorem in question, material which, otherwise, is fully discussed in [31].

On the other hand, the connection of the classical Weil’s theorem {45] with the theory of
geometric quantization is standard (seee.g. [19]). So as a consequence of our study, we also
exhibit, in brief (in the final section 9), the result of a similar application of our formulation
of the latter theorem (see Theorem 7.1 in the sequel), in conjunctionwith an interpretation of
elementary (free) particles through (sections of) vector sheaves ; the latter point of view has
been essentiaily advocated by S.A. Selesnick (cf., for instance, [38]). Finally, we also give
in section 8 an outline of particular concrete cases, apart of course from that of the classical
differential geometry (real and/or complex), where the present point of view can (in part, see
e.g. (8.4) below) be applied. In this respect, it is probably worth noting too that these specific
applicationscome from abstract (commutative)harmonic analysis (cf., for instance, [35], [36]
as well as [41], [42)).

1. A-CONNECTIONS. PRELIMINARIES
To start with we first consider a given (fixed) € -algebraized space

(1.1 (X, A).

So X stands here for an arbitrary (opological space and d fora sheafofC -a/gebras over
X ; the algebras involved are, in particular, commutative associative linear algebras over the
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complexes € , having also identity elements (conceming the sheaf theory applied hereafter,
we refer for instanceto [9], [5] and/or [31)).
Our second basic assumption is that, apart from (1.1), we are also given a triplet

(1.2 (4,0,Q")

(deliberately)called a differentiakriad; here Q! stands foran A-module on X, viz. a sheaf
of A-moduies (the upper index «1» of Q will presentiy be justified below; thus, we are going
to consider a suitable finite sequence of relevant A-modules on X - cf. sections 3, 5 in the
sequel). Furthermore,

(1.3) 9:A—Q!

is a @-linear morphism of the corresponding sheaves of € -vector spaces on X ,satisfying
the foilowing (Leibniz) condition

(1.4) O(s-t) =s-0t+1-0s,

forany s,t in A(U) (viz. local sections of A over an arbitrary open set U C X). In other
words, 8 thus defines a derivation (in fact, a € -derivation) of A into Q! .
We can now establish the following fundamentai notion, for all that follows. So wc have.

Definition 1.1. Let (A ,3,Q") be agiven differential triad on a topological space X , and
& an A-module on X . Thenan A-connection of & (infact,we should callitan (A 9,Q1)-
connection) isa € -/inear morphism

(1.5) D:E-E,Q' =Q'(&)
such that (Leibniz condition)
(1.6) D(a-8)=a-Ds+ s® Oa,

forany « E A(U) and s E E(U), with U open in X

The tensor product appeared in the previous relation (1.6) is meant, of course, with respect
to A; this actually will always be the case in the sequel,even for tensor products not adomed.
So according to our hypothesis for (1.3), and since Q' (A)=A @, Q' = Q', we see

that 3 : A — Q' is, in fact, an A-connection of A . For reasons that will become clear in
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the sequel we cail it the standard flat A -connection 0fA . On the other hand, by considering
the canonical € -linear isomorphism (into)

(1.7 cS A

3

(T is viewed here as a constant sheafon X ), one gets, by virtue of (1.4),

(1.8) CcS ker 9

(i.e., @ vanisheson every constant section of A).
Furthermore, by looking at the free A-module A", one gets the following n—th (or yet
n-dimensional) extension 0f 9 (seealso (1.5))

(1.9 AT ATR, Q=0 (AN ¥ (@) = Qn,
such that

o"=06...60, n>1.
(1.10) o
n — times

One easily proves that (1.10) yields an A -connection of (the A-module) A". As a matter
of fact, (1.10) is a special case of an analogous formula entailing the induced A-conncction
fora finite Whitney sum of A-modules each endowed with an A-connection (cf. [31]: chapt.
VII; section 3]).

On the other hand, one defines the following morphism of sheaves of (abelian)groups

(1.11) 5: A" - Q!
such that
(1.12) da) =o' 8(a),

for any (local) section & E .A*( U)% (A(U))*, U openin X; here A" stands for the sheaf
of units of A, defined by the (complete) presheaf of (abelian) groupson X

(1.13) U (AU, U opcnin X,

the target of (1.13) being the (abelian) group of units of the € -algebra A(U) (according to
our hypothesis for A, see (1.2), the latter algebra is commutative and unital). Motivated by
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the classicalsituation, we call (1.11) the logarithmic derivation of A associated with 3. Now,

justifying our claim for 8 one proves that

(1.14) 8(s-t) =8(s) (1),
forany s, t in A*(U) and U openin X.

In this respect, we still note for later use that one can extend the previous situation by
taking the matrix algebra sheaf M, (A), n > 1, generated by the (complete) presheaf
(1.15) U M, (AU), U openin X,

as well as the .A-module (in fact, M, (A)-module, see also (1.18) below)

2

(1.16) M, (Q) =M A e Q' @), a>1.

S0 one can extend the operators 3 and Fl (we retain, however, the same notation), accord-
ing to the relations

(1.17) a) := (a (a,'j>> )
forany a = (a;;) E M (A)(U) = M, (A(U)), U openin X, and

(1.18) a):=al.aa),

forany @ EGL(n,A)(U)=GL(n,A(U)); here GL(n,A) denotes the sheaf of units of
M, (A), defined by the complete presheaf

(1.19) U wGL(n, A(U)) = M, (A(U))*, U openin X
So one has (see also (1.15))
(1.20) M (A)* =GL(n A), n>1,

called the general linear group sheafof A of order n (for convenience, we have not stuck
here with the bold type notation for sections of matrix sheaves, the distinction being clear,
otherwise, from the context).

Before we proceed further, we comment briefly on the following example relating the
preceding with the standard differential geometric context.
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Example 1.1. Considera (real finite dimensional) C™-manifold X and let

(1.21) A=Cy

be the sheaf of germs 0f € -valued C*-functions on X . We denote by

(1.22) Te(X) =T(X) @ €

the complexifiedtangent bundleof X and let Q) be the sheaf of germs 0fC*= — 1 -forms
on X (dual of the sheafof germs of sections of the (C*~) € -vector bundleon X (1.22)).
Thus, setting

(1.23) E=(Q),

namely, by considering now the sheaf of germs of (C*—) vector fieldson X , one gets that:

(1.24) a CZ — connection, in the sense of Definition 1.1, is a
standard (finear)C* — connection on X .

See, for instance, [33, p. 2891. Of course, one can consider, more generaily, any (fi-
nite dimensionai C*-) € -vector bundle E on X and e corresponding sheaves of germs,
as above, of |E -valued C*-sections, SO that one then gets the classical notion of a (Jinean
C*>-connection OF IE (ibid.). Now, it is a standard result that any such vector bundle on X ,
when the latter space is paracompact, admits a (linear C*—) connection (cf., for instance,
{46, p. 76, Proposition 1.111). As we note below (see Theorem 2.1) this is due to our last
hypothesis for X along with a subtle cohomologicai property of C¢ (the latter is thus a fine
sheafon X , hence acyclic; in turn, this is still the case for any C§-module on X , as for
example, for Q above. Seee.g. [5, p. 49, Theorem 9.8 and p. 50, Theorem 9.121).

On the other hand, this is not, for instance,always the case for holomorphic vector bundies
on a complex (analytic) manifold,according to a standard result of M.F. Atiyah [1]: as we
shall see, this is due again to the non-vanishing, in generai, of a certain cohomology class, the
so-cailed Atiyah (obstruction)class (of the bundle under consideration; seee.g. [20, p. 119]
or yet (2.7) below). However, we do have holomorphic connections for any (holomorphic)
vector bundle on a Steinmanifold X ;in this case the above class is zeroas a resultof Cartan’s
Theorem B in conjunction with the coherence of Q). the sheaf of germms of holomorphic
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L-forms on X (for the terminology applied cf., for example, [18, p. 230, Theorem B and p.
2741 or yet [10, p. 67, Corollary]). So we do not always have A ~connections in case of a
complex (analytic) manifold, with A = Oy the sheaf of germs of holomorphic functions on
X.

Now, as aiready said, our treatmentis quite sheaf-theoretic in character so that in piace of
vector bundles we consider (in effect, equivalently, in that case, sce ¢.g. [26, p. 406, Thcorem
1.11)the corresponding sheaves of sections. This point of view seems to be also in agreement
with recent trends in the domain of applications of differential geometry (fiber bundle theory)
in theoretical physics (elementary particle physics, gauge theories); thus cf., for example, (32,
p. 38] and/or [3].

Soas follows from the previous Example 1.1, not every vector bundle, in gencral admits
an A-connection for any A whatsoever. On the other hand, motivated by the important
particular case of a (€ —) vector bundle, we furtheradopt throughoutthe sequel the following
terminology:

Thus, given the € -algebraized space ( XA ), as above (cf. (1.1)), a locally free A-mo-
dule of finite rank over X is called a vector sheafon X . In particular, by a /ine sheafon X
we mean a locally free A-module of rank one (this terminology was inspired, in effect, by a
similar one applied by S. Lang, see {22, p. 1].

Accordingto the preceding, we thus conclude that: notevery vectorsheafon atopological
space X, as above (cf. (1.1), (1.2)), admits an A-connection, for any A in general (S0 see
the next section 2).

Now, in view of the aforementioned applications, we call a pair

(1.25) (L,D)

consisting of a line sheaf £ on X and an A-connection D of £ (see Definition 1.1), a
Maxwell field on X . As a fundamental example of (1.25) one can consider, of course, the
electromagnetic field of a (free) photon; in this respect, see also the final section 9 in the
sequel. On the other hand, a pair

(1.26) (&,D)

with £ a vector sheafon X and D an A-connection of E is called, in general, a Yang-Mills
field on X (in this concem, apart from section 9 below, see also, for instance, [32, p. 72] or
yet [6, p. 4541).

We briefly discuss in the next section conditions guaranteeing the existence of A-con-
nections that will be of use in the sequel. On the other hand, a detailed account hereby is
given in {31, chapt. VII].
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2. EXISTENCE OF A-CONNECTIONS

We explain below, in condensed form, the way one s led to the definition of the Atiyah class,
as well as to the notion of a Levi-Civita connection for a vector sheaf on X . We are going to
apply all this constantly in the ensuing discussion.

Thus, suppose we are given a vector sheaf E on X , say, of rank n; moreover, let U =
= (Uya)ae; D€ an open covering of X such that

(2.1) Ey, = Aly, @€l

within an isomorphism ofthe A\y_-modules concerned. We call suchanopcnset U, C X a
local gauge of E, whereas I/ is then called a local frame of E. Now, it is easy to see that:

the set of all local frames of a given vector sheaf E on X &
2.2) a cofinal subset in the set of all proper open coverings of X
(the latter set being directed under refincment) .

(In this respect, see also [ 14, p. 171).
Accordingly, by applying (1.9), onc gets the following commutative diagram («Levi-
Qivita diagram»)

(2.3) Me 15 ® lg
ar = al’ba
Ay, —— (@) F 404G,
in the sense that one sets
(2.4) D,:=(n;'®1g)odtomn, a€l

So, as in the classical case, we do have here too that: the local trivialization of a given
vector sheaf yields (always, due to our assumption for 3, cf. (1.3), (1.4)) a (local) Aan -con-

nection (alternatively, «Jocal A-connections a/ways exist»). Thus, the existence ofa (global)
A-connections of E depends on the following 1-cocycle (A-connection difference)

(2.5) 5((Da)) = (Dy—D,) € 2" (U, Q' (End &)
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we call (2.5) the Levi-Civita 1<cocycle OfE which is thus associated with any given local
frame U of E: indeed, setting Uy =U,NU(#9), with o, B in |, one obtains

Dy~ D, € Homy (£,E0, Q") (Uys) = (Hom 4(£,6) @, @) (U,,) =
(2.6)  =Q'(End&) (Uyg) = (Homy (A", A ©, Q") (Uyg) =

= (M, (4) @, Q) (Uaﬂ) = M,(Q)(U,p) = M, (Q‘ (Ua ))

Thus, the A-module M, (Q') (cf. (1.16)) is in our case the sheaf of A-connections
coefficients, while by virtue of (2.6) the corresponding Atiyah class 0fE is given by

2.7 D(E) = [(Dﬂ -D,)| EH' (X, M, (@) .

We employ at this place sheaf cohomology which, however, at the final stage (Weil's
theorem, seesection 7 below) can be taken as Cech cohomology, since at that point we assume
our space X to be paracompact.

Now, the fact that mostly concernsus here is the followingresult which, nevertheless for
brevity's sake, we state without proof. For a full account of it cf. instead [31, Lemma 7.1,
Theorem 9.1 and Theorem 10.21. So one gets the next.

Theorem 2.1. Let (A,8,Q') be a given differential triad on a topological space X with
Q! being, inparticular, a vector sheaf on X . Moreover, let £ be a vector sheaf on X . Then,
E admits an A-connection if, and only if, the corresponding Atiyah class of E (cf. (2.7)
above) vanishes. L]

However, we comment a bit more on the previous theorem by pointing out certain partic-
ular items of its proof that will be also of use in the sequel: thus, in establishing Theorem 2.1,
one also employs two further equivalent versions of the notion of an A-cunnection;namely,
one such equivalent interpretation of an .4 -connection is to consider it (viz. its existence) as
(equivaientto) a splitting ofthe short exact A -sequence (i.e., exact sequence of A -modules)

(2.8) 0— &nd £ — S — () —0

Here we set (Q')* = Hom (Q',A) for the dual .A-module of Q! (another vector
sheafon X ,in view of our hypothesis for Q! ; cf. Theorem 2.1). So one gets the relation

(2.9) Ex' (@), End E) = H' (X, M, (Q"))
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(within an isomorphism of (abelian) groups, cf. also, forinstance, [16, p. 352, Example 4] or
yet [31]). The last formularelates A -extensions of (R*)* by End E,as in (2.8), with (2.7),
the A-module M, (') being also the structure sheafofany A -extension of the form (2.8).

In particular, by restricting ourselves to paracompact spaces one can apply «liftable (Cech)
cohomology» (cf. section 4 below); thus, by virtue of (2.9), we relate the Atiyah class of a
given vector sheaf £ on X ,as above, with a coordinate 1-cocycle of E, say,

(2.10) (9ap) € 2" (U, GL(m, )

(sec also (1.20)), as well as with the characteristic class of (2.8), denoted by §( 1); so one gets

@11 ) _ [(Dy_D,)] = [(3(ses))] € 11" (x, M, (1))

(Details are given in [31, chapt. VII, Thcorem 9.21).
On the other hand, one can stilt considcr an .A-connection of £ as an equivalent notion
to that of a splitting of the short exact A-sequence

(2.12) 0 Q& — T(ETHE —0.
Here we denote by
(2.13) THE =TNE) =E@Q(E)

the A -module (in fact, vector sheafy on X of the corresponding jet-line sheaf (of yet jet sheaf
oforder, or | st jet sheaf) of E, whose A-module structure is given by the relation (warning!)

(2.14) a-(sOt) =as® (at+ s® da),

forany « E A(U), s EE(U) and t E Q'(&)(U) . Thus, one proves the equivalence of
the A -extensions (2.8) and (2.12), since one gets (see also (2.9))

(2.15) Exl (£,91(&) = 11" (X, M, (@) = Ext)y ((@)", &nd E)

So one concludes that:

any splitting of either one of (2.8) or (2.12)is equivalenf with the
(2.16) existence of a Levi-Civita A-connection of E, hence with the
vanishing of the Atiyah class of & in (2.7), as well .
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(in this respect, see [31, chapt. VII, Theorem 10.11). As a matter of fact, one realizes that any
splitting of (2.12), say

(2.17) D:E TN,

(viz. an A-morphism, as above, such that # o D' = 1,, with = denoting the (canonical)
d-morphism, projection of J!(E) onto E, cf. (2.12) and (2.14)) is 0fthe form

(2.18) D=1 eD=(l,D),
forsome uniguely defined d-connection D of E . (Indeed, (2.18)s a characterization of

being D’ a splitting of (2.12); ibid. Proposition 10.1). As a result (see also ibid. Theorem
10.2), one finally concludes, within the framework of the previous Theorem 2.1, that:

a given vector sheaf E on X admits an d-connection if, and only if,
(2.19) it also admits a Levi -Civita d-connection; hence (cf . (2.16) above) ,
f ,and only if , the Atiyah class of E vanishes.

The preceding constitute, in fact, the highlights of the proof of Theorem 2.1, that will be
of help below. On the other hand, concerning the classical counterpart of the above, consult,
for instance, [1], [6, p. 4381, [32, p. 36 fand p. 38, Proposition 10), {17, pp. 338, 340].

Now, another item within the previous context, which will be of use in the sequel, is
the Jocal form ofan d-connection: thus, by analogy with the classical case of Differential
Geometry, given a vector sheaf E on X and a local gauge U C X (cf. (2.1)), one concludcs
that:

any given A-connection D of E is locally (viz. its restriction to
an open set U C X, as above) uniquely determined by a matrix
(2.20) (of «I -forms» onU)
w= () E M, (QUD) = M, (@) W)
i.e., by a (local)section of the sheaf of A-connection coefficients.

Therefore, one can consider (the flat d-connection) @ in (1.3), in effectthe d-connection
(1.9), as the «origin», in order to identify further the affine space 0f.4 -connections of a given
vector sheaf E on X (in case, of course, the latter space is non-trivial), modeled on (thc
A(X)-module) Q' (End E)( X ), henceJocally on M_ (') (U) (see also (2.6)). Thus, by
considering a local gauge U of E, as above, and an A -connection D of E, one obtains (68
a local formof D ) the relation

(221) D: 8+w,

for some w, given by (2.20). In this respect, sce also [31, chapt. VII; section 4 and Lemma
1111
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3. CURVATURE

Another concept which will be of a particular concem to us in the sequel, is that of the curva-
ture of an A-connection. In this regard, we note that, by contrast with what happened before,
conceming the existence of A-connections, one can always define the curvature of a given
A-connection (even of an A-module, £, in gencral), once we have an appropnately enriched
framework than that afforded by (1.2) (see (3.7) below). Sowe presently explain this, in brief,
below contributing thus to the comprehensivenessof the later text (for more details We still
refer instead to [31, chap. VIII]).
So assume that we have a differcntial triad (A,9,€2'), as above, and let

2

(3.1) Q2 ::Q‘/\le/\ Q!
be the A-module on X ,2 nd exterior powerof Q' (thus, this now explains our index «1»
on the corresponding A-module in (1.2)).

Furthermore, assume that we are given a € -/inear morphism
(3.2) @ =3 @) — @
which first satisfies the following condition
(3.3) dla-s)=a-ds— s Jdu

for any (local) sections « E A(U) and s E Q' (V) (V stands here, as always, for an opcn
sctin X)) . Second, we still assume that the given operator d! (= d) obeys the relation

(3.4) dod=0,
viz., equivalently,
(3.5) im 3 C kerd .

(Indeed, the stronger condition of equality in (3.5) will be adopted later on; cf., for instance,
(5.5) below). Now, as a result of (3.4) and (3.3) (seealso (1.14)), we note for later use that

(3.6) dod=0
Hereafter, we assume, of course, that:

(3.6") the map @' = din (3.2) is meant along with the properries (3.3)and (3 4),
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unless otherwise specified; cf. for example (5.5) in the sequel.
The previous map (3.2) is our i St exterior derivative operator. Yet, the following finite

sequence (cf. also (3.6))
(3.7 (4,0,Q',d,Q%)

is (deliberately) called a curvature datum on X ; the terminology applied hereby is justificd
by the fact that the preceding framework will provide us with the notion of the curvature of a

given A-connection, as we shall presenty see.
Thus, given an A-module E on X endowed with an dconnection D (cf. Definition

1.1), consider the following map:

(3.8) D':QY (& — QNE =ER,Q?
given by the relation

(3.9 D'(s®t) =s®dt+ DsAt

forany s € E(U) and t € Q1(U).

Of course, one can extend by (€ -linearity the previous relation (3.9) to E @, Q! . But,
the second member of the same relation defines, in fact, a balanced map, say, p; that is, onc
has

(3.10) plas,t) = p(s,at),

forany o E A(U) and s,t as above. Therefore, one can actually extend (3.9) to the whole
of Q! (E), by «A-linearity », so that one concludes that

(3.11) D' € Homg (Q'(£),Q%(8));

hence, D' is a @ -linear morphism for the underlying structures of sheaves of € -vector
spases of the A-modules concerned).
Now, by extending the classical terminology, wecall D' the 1 st covariant exterior deriva-
tive operator (with respectto (3.7))or yet the i stprolongationof the given A -connection D .
On the other hand, the following property of the operator D' is needed right below; so
one has

(3.12) D'(a-Ds) =a-D'(Ds) —DsAda
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forany aa EA(U) and s E £E(U).

We come now to define, within the preceding framework of (3.7). the following important
operator which is associated with any given dconnection D ; it concerns, at first view a
C -lincar morphism, in fact, something much more is actuaily true, as we shall presently see.
Thus, one has the following diagram

e —L2, ol

(3.13) Dlo\JDl

Q%(&)
We call the operator
(3.14) R(D)=R:=D oD,

as defined above, the curvature of the d-connection D .
In this regard, a given dconnection D is said to be fa¢, if one has

(3.15) R(D)=R=0.
Thus, one can prove, for instance, that
(3.16) R(3) =0,

concerning the d-connection 9 : d — Q! of d considered by (1.13) (in this respect,
see also the comments after Definition 1.1 above; S0 this now justifies the terminology for 3,
adopted at the beginning).

Now, on the strength of (3.12). one further proves that

(3.17) R(a-s) = a-R(s),

forany aa E A(U) and s E E(U) . So R s, in effect, an A-morphism of the d-modules
concemed (cf. (3.13)); that is, one obtains

(3.18) R e Hom, (£,Q*(&)) = Hom , (E,Q%(&)) (X).
In particular, if E is a vector sheaf on X ,then (3.18) yields (see also, for example, (2.6))

(3.19) R€Q?(&End )(X) = 2° (U, Q%(End &) ;
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that is. one concludes that;

the curvature R of a given A-connection D of a vector sheaf & on X

3.20
( ) defines a global section (0-cocycle) of the vector sheaf Q% (End E).

The above provides now thc farniliar form one has from the classicalthcory for the cur-
vature of a conncction, in case one considers a local gauge U C X of E: namely, one thcn
obtain (see also (2.6))

o Rly € Q2(&nd &)(U) = Q*(U) ® 4y, (End E)(U) =
“ = QX(U) ® 4y M, (A)(U) = M, (Q2) (U) = M, (Q*(1))

That is, one has
/ \
(3.22) Rly = (R;) € M, (Q*(U)) = M, (%) (U),
for any U, as above. SO by rephrazing the classical fact, one infers that:

over a local gauge of a vector sheaf E, the curvature of a given
(3.23) A-connection of E is expressed as a matrix of «2-forms»
(or yet as a matrix-valued «2-forms»)

On the other hand, if w E (w;;) E M_(Q')(U) is the analogous matrix of «1-forms»
defining the given A-conncction D of E, locally on U (cf. (2.20), one obtains thc following
relation: Cartan’s structural equation

(3.24) R=dw+wAuw,

valid (locally)on any U C X ,as above (in this respect, cf. also [31, chapt. VIII; (2.8)]. Thc
particular form of (3.24) in case of line sheaves will be considered in the sequel (see (6.15)).

4. LIFTABLE (SHEAF) COHOMOLOGY

Before we proceed further to be cngaged in our rnain concern which is, of coursc, the thcorern
in the title of this paper, wc cornrnent bclow, for clarity's sake, a bit more on certain sheaf
cohomology-thcorctic concepts that we apply several times in the sequel. Indced, we usc the
fact that:

in a paracompact (#ausdorff ) space X sheaf cohomology

4.1
4.1 can be defined by means of the so-called «liftable cochains»
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Thus, consider the following short exact A -sequence on X

(4.2) 0 —rFts Y0

then, for any integer p > 0O, the corresponding sequence of p-cochains is, in generai, only
left exact. That is, one gets the exact sequence

(4 .3) 0 — CP(U, F)-2CP(U, S)-YCP(U, &),

where U stands for any (proper) open covering of X . So by taking the image of ¥ in(4.3),
say,

(4.4) im ¥ = CP(U, &) C CP(U,E)

(€ -vector space of liftable p-cochains), one obtains the following short exact sequence (of
€ -vector spaces)

(4.5) 0 — CP(U, F)-2CP(U, S) HCP(U, &) — 0.

(By an obvious abuse of notation, we use for simplicity the same symbol for the maps ¢, y,
in all the above three last relations). Thus, by setting

(4.6) HE(U,E) = ZP(U,E)[8CP~I (U, &),
One obtains
(4.7 HP(X,E) =1lim HA(U, &),

T

which explains (4.1) (in this regard, see also, for instance, [15, p. 180, Proposition 7.3.5]).
Here we consider Cech cohomology (aithough unadomed) to which, of course, any other
(sheaf) cohomology theory can (isomorphically) be reduced in case of paracompact spaces
(see e.g. [44, p. 184,Corollary] or yet [18, p. 215, Theorem 50.21).

Now, in view of (2.2), we further note that:

in case & is a vector sheaf on X ,one can consider in (4.7) the

4.8 . .
(4.8) open covering U as ranging over the (proper) local frames of &.

The previous fact has been applied, for instance, in (2.7) as a result of the calculations in
(2.6).

In this concern, wesstill note that acrucial point in obtaining (4.7) is the argumentexpressed
by the following lemma. We use it too systematically below. Sowe have:
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Lemma 4.1. Let X be aparacompact//ausdorff space, and

(4.9) 0 —rtste—o0

a short exact A-sequence. Moreover, let U = (U,),¢; be an open covering of X .Then, for
every p-cocycle

(4.10) 9 EZP(U,E), P20,

there exists a refinement V = (Vg)4; of U and a p-cochain

(4.11) h e CP(V,S)
such that
(4.12) pg = Ph

(here p : J — | denotes the refinement map ), and

(4.13) Sh=¢f
where
(4.14) fEZPY(V,F)

(The map § in (4.13) stands, of course, for the corresponding Bockstein operator).

Proof, Cf. [15,p. 180,Lemma7.3.6} or yet [12,p. 33 f, proof of Theorem 1]. -

Looking now at the corresponding cohomology classes, one obtains
(4.15) §°(lg]) =[8(M] = [67'(6(h))] =[F] € HP' (X, F),

for any [g] E HP(X £), forsome [ f1 E P! (XF) . The crucial fact at this point is
that, by virtue of (4.12), one actually has that [g] E //2(X,E), the latter space being, in cf-
fect, H?(X,E) asfollows from (4.7). Yet, 6* in (4.15) denotes the corresponding Bockstein
operator for the long exact cohomology secquence, associated with (4.9).

Finally, we still recali for latter use the following cohomological classification of vcctor
sheaves on X ; that is, one has

(4.16) QLX) = H'(X,GL(n, A)),

within a bijection. Here the first member of the last relation stands for the SCt of isomorphism
classes of vector sheaves ofrank n on X ,whcreas the sccond one denotes the usual 1 st cotio-
mology set of X with coefficients in the sheaf of (non-abelian, in generai) groups GL(n, A)
(see also (1.20). In this concern, cf., for instance [13, p. 11, Theorem 1] oryet [31, chapt. V].
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5. PRE-WEIL SPACES

In the preceding, for completeness' sake, we exhibited the necessary material which consti-
tutes the appropriate context for the rest of our discussion. Now, the spaces in the title of this
section are,as we shall presently see, the suitable framework in order to deai with a substantial
ingredient of our final target (Weil's theorem. Therefore, the employed terminology; but see
also the next section).

Thus, suppose we are given a curvature datum on a topological space X (cf. (3.7), and
also (3.61)), andlet

(5.1 Q3= A3Q!

be the d -module on X, 3 rd exterior power of Q' . Now, we further define a C -linear
morphism

(5.2) d=d: Q?— Q3
by the relation
(5.3) d*(sAt) =d'sAt—sAd't=dsAt— sAdt,

for any s,t E Q(U) : namely, in a similar manner as for the map (3.8) (see also (3.9)), one
proves that (5.3) defines a bafancedmap (see ¢.g. (3.10)); hence. one can then extend it, by
A-linearity, to the whole of Q? (by definition, 2 nd exterior power of the given .A-module
Qly,

Thus, we are now in the position to set the following

Definition 5.1. By a pre-Weil space we mean a paracompact Hausdorff space X endowed
with a curvature datum (3.7), where Q! is a vector sheaf on X . Moreover, we assume that
the previous data yield thefollowing exact sequence (of sheaves of C -vector spaces)

(5.4) 0 €A 2, 0458 q28=d102 ).

In this regard, we finally supposethatall the previous operators appearedin (5.4) commute

with the corresponding Bockstein (coboundary) operator, whenever one considers the Cech
cohomologyon X .

Accordingly, in Case ofa pre-Weil space X , we first adopt (by definition) that the pre-
ceding relation (3.5) holds, in essence, as an equality, that is, one has (by hypothesis) the
relation

(5.5) ker d' = 9(A),
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as well as the relation
(5.6) kerd®> =d' (Q') =dQ".

We come now to our first basic observation, concerning the main objective of this paper.
That is, one gets the following result (but see also Scholium 5.1 in the sequel).

Proposition 5.1. Ler X be apre-Weil space and w a closed 2-form on X ; viz. we assume
that

(57 we Q2(X) such that dw =0,

Then, one can associate with w a 2-dirnensional complex cohomology class of X, say.

(5.8) o(w) € H¥(X,C) E H*(X, T).

Proof. As a first extract from (5.4), one obtains the following short exact sequence (of
sheaves of € -vector spaces; cf. (3.2))

(5.9) 0 —5dQ' — Q% 5dQ? 0.

Therefore, by considering the corresponding /ong exacfcohomology sequence,associated
with (5.9) (cf., forinstance, {44, p. 177,(5.18); (a), (c)]), one obtains

0 —T (X,dQ") —T (X, Q%) —T (X,dQ%) —
— H' (X,dQ") — ...

(5.10)
Accordingly, in view of our hypothesis for w (sec (5.7)),

(5.11)  wE ker (I (X,Q%) — T (X,dQ%)) =T (X,dQ') = (4Q") (X);

that is, the hypothesis that w is closed entails, in fact, that

(5.12) we (dQ) (X)SQ(X).

(Indeed, under the assumption of (5.4), the previous conditions (5.7) and (5.12)are, incffect,
equivalent; cf. also the next Scholium 5.1).
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Now, by virtue of (5.4), onc further obtains the following short exact sequence

(5.13) 0-—dA— Q' -do! 0.
Thus, accordingto (5.12), one gets

(5.14) wE([@Q)(X)=T (X,dQ") % 2° (u,dQ'),

for any open covering U of X (see, for example, [12, p. 28, Lemma 4}). Therefore, on the
basis of Lemma 4.1, we can find (modulo, eventually, a refinement ¥ of U )a O -cochain (of
1-forms)

(5.15) (0, ecC® (v, Q")
such that one has

(5.16) w=d(0) =dQ0) =0

Moreover (cf. (4.13), (4.14)), onc gets
(5.17) 5(0) =50) = (0,3 —0) EZ'(V,34)
As a final extract from (5.4), one now gets the following short exact sequence

(5.18) 0—C54A—84A—0

Thus, in view of (5.17) and Lemma 4.1, we conclude (modulo, in general, a further re-
finement, say W, of V) the existenceof a 0 -cochain of A, say,

(5.19) (fus) €C'(W, ),
such that
(5.20) 5(0,) = (05— 0,) = 8 (fup) = (0£05) € 2 (W,04)

(In this respect, cf. also (5.16) for the notation applied in the last term of (5.20). Furthermore,
we should also point out at this piace the obvious abuse of notation employed above, concern-
ing, namely, the indices of the open coverings of X considered). Yet (the same lemma) one
obtains

(5.21) 6 (fug) = {Napy) €2' W, ©);
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therefore. one now sets
(5.22) &) = [(Aam” € (X, T),
which also finishes the proof. 8

The previous result could also be obtained for any closed p-fom on X, viz. for any
elementw E QP(X) (:= (A?PQ1) (X)) with dw(= dP(w)) =0, undera further suitable
extension of (5.4). However this, in conjunctionwith its application in defining Chern classes
of vector sheaveson X ,will be taken up elsewhere (sec, for instance, [31}).

Now, a closed 2-forms w (on a pre-Weil space X, cf. (5.7)) is said to be integrai,in case
one has (see also (5.22))

(5.23) c(w) E im (H*(X,2Z) — H*(X, ai)).

(The last part of the previous relation is, of course, the one derived from the canonical inclu-

sion of the corresponding constant sheaves Z < € ; cf. also, for instance, [4,p. 92, Corollaire
1] as well as (4.7) above).

Scholium5.1.  As already remarked, the exactnessof (5.4) yields the relation
(5.24) (@Q") (X3=(ad' Q') (X)= ker d* C Q*(X).

(Otherwise, this is also a consequence of the very definition of the exactnessof (5.4) at Q°;
see, for example, [9,p. 114,§ 1.6and also p. 132,§ 251). On the other hand, by looking
more closely at the proof of Proposition 5.1, we realize that (under (5.16))

one actually obtains a map

¢ (dQ) (XY H(X, ai),

whenever one has the exactness only of the two sequences
(5.13)and (5.18);

(5.25)

hence, not necessarily that of (5.9), as well. Now, this (slight) weakening of the conditions
of Proposition 5.1 might be of a particular significance for the applications, if one seeks for
the (full) exactness of (5.4). Furthermore, il is Ine map (5.25) that essentially appears when
one deals With /ine sheaves; the latter will be our main concern in the next section (see ¢.g.
(6.20), as well as the Appendix).

Now, our next objective is to characterize the situation when, in the particular case con-
sidered, a given «2-form» w on X as in (5.7) satisfies (5.23)(of course, this is actually the
content of Weil’s theorem, as well). But to this end we still need some more terminology,
which we are going thus to establish in the following section.
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6. SEMI-WEIL SPACES

We start with exhibiting the necessary complementary material to that aiready provided by the
previous Definition 5.1, in order to be able to get the desired form of Weil's theorem. Thus,
we first have the following.

Definition 6.1. Let (A ,8,Q1) be agiven differential triad on atopological space X ,A  the
sheaf of units of A and & the corresponding logarithmic derivation of A, associared with
d (cf. section 1). Now, by an exponential sheaf diagramon X , we mean thefollowing short
exact sequence of sheaves (ofabelian groups on X ) along with the associated iriangle (of
sheaf morphisms) which we also assume to be commutative

0——Z — A =55 A° — 1
Ql

So conceming the previous definition, we accept, in particular, that
(6.2) Joe=2mi-0,

where i = (=1)*. Indeed, we need below the preceding conceptcombined with that in (3.7).
Thus, we still set the next.

Definition 6.2. By a semi-Weil space we mean a paracompact Hausdorff space endowed
with a curvature datum (¢f. (3.7))and an exponential sheaf diagram, as above. Here we
still assume that the operator (exponential sheaf morphism) e commutes with the Bockstein
operator & (sothis operator too is cohomologically acceptable).

We discuss in the sequel (see thus section 8) a concrete particular case where a situation
like that described by the above definition can be occurred (for more relevant details we re-
fer, however, to [31, chapt. 6]). On the other hand, as a first consequence of the preceding
terminology, we can give now the next fundamental result. So we have.

Lemma 6.1. Let (L,D) be a Maxwell field (see (1.25)) on a semi-Weil space X . Then,
modulo an eventual translation of D by an element of Q'(&nd CY(X)x Q'(X), the
corresponding curvatureform, say R ,of the d-connection of C under consideration, yields
an integral 2-form on X ;' viz. one gets

(6.3) o(R) € H*(X,Z).
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Proof. By hypothesis £ (a /ine sheafon X ) admits an A-connection D, sothat (cf. Theorem
2.1) the corresponding Atiyah class of £ vanishes;i.e., we have

(6.4) D(L) = | (D, -D,)] = [6(05)] =0 € ' (x,0)

(see also (2.7) for n = 1). In this regard, we recall (cf. section 2) that

(6.5) (D,) € Homg (L,L®, Q")

is a O-cochain derived from a Levi-Civitadiagram for £ (cf. (2.3)), which can be associated

with any given Jocal frame, say U = (U,),,, of C. Furthermore, £ being a linc sheaf on
X ,0ne gets in particular that

(6.6) Hom, (L,L®, Q') = Hom (L, L)@,Q' =Q'(End L)=A®, Q' =Q',
since one has

(6.7) Hom (L, L) = &End L= A,

within an isomorphism of A-modules; cf., for instance, [11, p. 116;(5.4.3.17)} or yet [31,

chapt. 4]. Thus, by considering the Levi-Civita 1-cocycleof C, which corresponds to (6.5),
one obtains

(6 8) 6(D) =(D,-D,) EZ' (U, Q")
(cf. also (2.5) or yet (2.6) for n = 1). Yet by referring to (6.4)

(6.9) (gaﬂ) €z' (U,A%)

stands there for a coordinale 7-cocycic of C, associated with the given local frame U of L,

as above.
On the other hand, by virtue of (2.19) and (6.4), one infers that £ admits a Levi-Civita

A-connection, as well, say D, whose 1-cocycie ( A-connection difference) isgiven by (6.8).
Now, on the strength again of (6.4), one gets

(6.10) (Dﬂ - Da> =6(0,) € 2" (U,QY,
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for some O -cochain (of 1-forms)

(6.11) ) eCc® w.Q").

At this point we also remark (for latter use, as well) that one may still assume, in addition
to (6.10), the following relation

(6.12) 5(9ap) = 8(0,) € 2' U, "),

with (e,) given by (6.11) (in this respect, one actually proves that the two cocycles ( a( 9ap))

and 8( D) are «gauge equivalent», via the (local) «coordinatization» of C (cf. (2.3)), hence
the relation (6.12), in vicw of (6.4) and (6.10). For details see, however, (31, chapt. VII,
section 8]).

Now, the local form of D, with respect to U ,is given by the relation

(6.13) Bl, =D,=D, -8, aEl,

so that the O-cochain (6,) may be considered as the corresponding Jocal A -connection form

representing D (cf. also (2.20), (2.21)). Morcover, ihe two A-connections D and D ofC,
considered hitherto, differ by an element of Q! (&nd C)(X) = (cf. (6.6)) Q! (X), viz. one
has

(6.14) D-DeQl(x)=2z°Uu,Q")

(cf. the comments before (2.21) or yet [31, chapt. VII, Proposition4.11). This also explains

our claim in the statement of the lemma, by further considering the curvature form of D ;thus,
we have

(6.15) R(D) ER={(d¢g,).
(The last relation is a conscquence of (3.24) and our previous conclusion for the 0-cochain
(0,)).

At this point we still remark that one can also directly conclude (apart from (3.19)) that R
defines a global 2-fonnon X : namely, one gets in view of (6.12) and (3.6) (seealso (3.61)) ;

(6.16) 6(d) =d @) =d(5(gaﬂ)>=0,



190 A. Mallios

S0 that one obtains
(6.17) R=(d6,) €2°(U,dQ") = (dQ') (X)SQ(X),
as asserted.

Yet, we shall prove that R is integral, in the sense thatit provides an integral (2-dimension-
al) cohomology class of X (cf. (6.21) below; in this respect, see also the next Scholium
6.1): indeed, based now on (6.9), the short exact (exponential sheaf) sequence in (6.1) and
on Lemma 4.1, in conjunction with our hypothesis for X ,we conclude the existence of a
| -cochain

(6.18) (1) €C' (V. )

such that

(6.19) ¢ ((fas)) = (¢ (fus)) = (98)

(In (6.18) V stands for an eventual refinement of U ,while we still abuse the notation for the
indices). Furthermore (again Lemma 4.1}, one gets

(6.20) 6 (fup) = (Papy) E 22V, ker &) = 27 (V,Z)

(since, in view of (6.1), one has ker e = Z ). The previous 2-cocycle determines now the
desired 2-dimensional integralcohomologyclassofX ,which is thus provided by R = (d 0))
(cf. alsoe.g. (5.25)); i.e., we set

(6.21) o(R) := [5 (faﬁﬂ € HX(X,Z),

and this also terminates the proof of the lemma. 8
Scholium 6.1. Suppose We are given a fopological space X endowed with a curvature

datumn (cf. (3.7)) and let (£, D) be a Maxwell fieldon X .Now, if (e,) ECO(U, Q) isa

O-cochain of 1-forms of X which locally represents D (see (2.20) for n= 1 or yet (2.21)),

then the curvature of D is given by a similar relation to (6.17) (yet, within the present more
general context); viz. one has

(6.22) R(D)=R=(d9,) € (dQ") (X)SQ*(X)
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(cf. also (3.24)). On the other hand, the (global) 2-form provided by R, as before, can be
considered as a c/osed form on X , as follows: namely, by definition, this means that

(6.23) dR=0,

where d = d* : Q% — Q3 is the @ -lincar morphism defined by (5.3). So if we further
assume that

(6.24) d*od’ =0,

then, as immediately follows from (6.22), R is a closed 2-form on X .

Now, by definition,a Bianchi datum on a topological space X ,is a curvature datum (cf.
(3.7)) which is further endowed with an operator d* = d, as above, in such a way that (6.24)
be satisfied (the termilology here is due, for instance, to the fact that within the previous
framework Onecan obtain the corresponding to our case Bianchi’s identity, but in this concem,
we refer instead to [31, chapt. VIII, Theorem 3.11).

Thus, as a consequence of the preceding, one concludes that:

given a Bianchi datum on a topological space X and a Maxwell field
(6.25) (C,D) on X (cf.(1.25)), the curvature R of D yields a closed
2-form on X; viz.one has, in particular ,R € Q% (X )with dR=0.

More specifically, in case of a semi-Weil space X which is supplied, in particular, with
a Bianchi datum, we call such a space a semi- Weil-Bianchi space, one concludes (by supple-
menting thus Lemma 6.1) that:

every Maxwell field (L, D) on a semi-Weil-Bianchi space X
determines an integral closed 2-form (cf .e.g. (5.23));

this is accomplished through the curvature form of an A-connection
of C, an eventual suitable translate of the given A-connection D.

(6.26)

It is to be noted here that, as in the classical theory, the previous (integral) cohomology
class corresponds 1o a suitably defined Chern class of £, when in the particular case consid-
ered A fulfils the appropriate conditions [31).

Now, our final aim is to obtain a converse of the above Lemma 6.1 (in effect, of (6.26)
within the appropriate framework); but to this end we shall need the whole machinery pro-
vided by all the previous notions, considered so far. So we discuss it in the next section.
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7. WEIL SPACES

As already said we get in this section a converse of Lemma 6.1 (in fact, of (6.26)); thus, its
combination with the latter result will supply us with the desired form of Weil’s theorem. So,
for convenience, we first set the following.

Definition 7.1. A pre-Weil space X which is a semi-Weil space, as well, is called a Weil
space.

Thus, in a Weil space X being, by definition, a paracompact Hausdorffspace(sec Defi-
nition 5.1), one is supplied with a curvature datum (ibid.) and, in fact, with a Bianchi datum
(cf. Scholium 6.1), due to the exact sequence (5.4). Moreover, X being a semi-Weil space
one is also endowed with an exponential sheafdiagram,like (6.1).

The preceding framework is presently applied in the next result. That is, we obtain the
following.

Lemma 7.1. Let X be a Weil space and w an integralclosed 2-form on X | i.e., we assume
that

(7.1) weQ%(X) with dw=0
and such that (cf. (5.8) and (5.23))
(7.2) o(w) € HY(X,Z)

Then, there exists a Maxwell field (L, D) on X, having w as the curvatureform of ke

A-connection D.

Proof. Based on (7.1) and Proposition 5.1, we conclude that

(7.3) w=(d8,) € (dQ') (X)5Q%(X)
such that
(7.4) B EC Q).

Moreover, one has (see (5.20))
(7.5) 5(e) =(0fus) €2' (V0057 (v,Q"),
for some I-cochain

(7.6) (1.0) €C'(V. )
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such that, in view of (5.21) and (7.2), one obtains

(71.7) o(w) = [8(fap)] E X, ) S 1 (X, €)
In particular, we thus assume in virtue of (7.2) that

(7.8) 5(fup) = (Aapy) €22 (V. 2).

(In the previous argument we considered an eventual refinement Y of the open covering U
appeared in (7.4); in this respect, see also the comments after the relation (5.20) in the pre-
ceding).

Now, by applying (6.1), we set

79 () = (1)) = (- (1)) € 0.9

(see also (7.6)); but on the strength of (7.8) and since, in view of (6.1), Z = ker e, one
obtains

a1 (o) = e () =3 (1)) 1

Therefore, one has inparticular that
(7.11) (ga,s> €z'(v,4°)
So we can now define (see also (4.6) for n= 1)
(7.12) L= [(gaﬂ)] EH' (X,A) = 0L(X),

which we contend thus to be the desired Jine sheafon X :
Namely, we first prove that £ admits an A -connection. Indeed, one obtains

ar o , 13
(7.13)  §(0,) = (cf.(7.5)) (dfaﬂ> = (by (6.1) and (7.9)) 2ma<ga[,>A
Accordingly,concerning the Atiyah class of £ (see (2.7) and (2.11)), one gets

714y D) = [(Dy-D,)| = [3(9a5)] = [2m8 (0,)] =0 € 1 (x,02")
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Hence (cf. Theorem 2.1), C admits a Levi-Civita A -connection, say D. Now, modulo a
suitable change of the Levi-Civita 1-cocycle (Dg —D,) (see (2.5))and an eventual transla-

tion of the resulting .A-connection via an element of Si' (X) (cf. also the comments before
(2.21)), one may assume that D islocally given by the relation

—

D,=D, -0, «aEi

a

(7.15) Bl

a

Il

(By an obvious abuse of notation, we retained above, for simplicity, the same symbol for 12).
Thus, (6,) E C(u, Q' , as given by (7.4), may be considered as the local A-connection

I-fomrepresenting D (seee.g. (2.20), for n= 1. Yet, here again a «perturbation» as bcfore
of the A-connection involved might be in sight, conceming (2.21)). Therefore, the pair

(7.16) (L,D)

is a Maxwell fieldon X such that (Cartan's structural equation, sce (3.24)) one has
(7.17) R(D)=R=(d0,) = (by (7.3)) w,
and this terminates the proof. =

As a consequenceof the precedingtwo Lemmas 6.1 and 7.1 (cf. also (6.26)), we are now
in the position to state the following theorem. On the other hand, conceming the standard
form of this classical result, see [45, p. 90, Lemma 2] or yet [19, p. 133, Proposition 2.1.1].
So we have.

Theorem7.1. (A.Weil).Let X be a Weilspace and w a closed 2-form on X . Then, the two
following assertions are equivalent :

1)w is integrai; viz. it determines a (2-dimensional)cohomologyci/ass of X , say, c(w) E
€ HX(X,Z)SH*(X, &).

2)w IS the curvature form ofan A-connection of a line shcafon X . .

As a matter of fact, that which we actually proved above is the following more gencral
statement (see also Definition 7.1):

Every Maxwell field (C,D) on a semi-Weil-Bianchi space X

yields (through the curvature of a possible suitable translate of D)
an integral closed 2-form. In particular , if X is a Weil space
then, conversely, the above Is the only way that such forms arise.

(7.18)
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8. EXAMPLES

As alrcady said we consider below a certain particular instance, where the previous context
can be applied. Indeed, the point of view exhibited by the ensuing discussion was also the
initial motive to the abstract (axiomatic) framework, as this was presented in the preceding.
Yet, analogous considerations of S.A. Selesnick in the context of commutativeunital Banach
algebras (Seee.g. [36)) triggered off, in effect, our initial study referred to the material that
will be discussed in the sequel.

So, as we shall presently see, the spectrum ofa certain appropriate class 0f topological
algebras is a semi-Weil-Bianchi space. Now, conditions under which this could also be made
intoa Weil space are yet unclear (cf., for instance, (8.11) below). On the other hand, concern-
ing the generai terminology and results on topological a/gcbras that we apply below we refer
to [25].

Thus. suppose we have a commutative Pik regular semi-simple locally m-convex (topo-
logicai) € -algebra A ,having an identitye/ement and an equicontinuous spectrum

(8.1) M(A) =X

(ibid.); now, it has been proved in [27] (cf. also [23, p. 488, theorem 6.11) that A is a
geometric algebra, in the sense that one has

(8.2) A =T'(X,A) = A(X),

within an isomorphism 0fC -algebras. Here A stands forasuitableagebra sheaf(the Gel’fand
sheafof A )over X (indeed, A isa sheafoftopological algebrason X , viz. asheaf generated
by a topological algebra presheafon X ; cf., for instance, [27] or yet [31]).

Now, following (within the above more generai framework) the reasoning of [36] (sce also
[35]), assume further that our topological algebra A ,as above, carries a continuous involution
«*», with respectto which A is self~adjoint, by the latier term we mean that the corresponding
Gel’fand map of A isa *-morphism (sce ¢.g. [25, p. 481 ff]).

Thus, by a Seclesnick algebra we mean a commutative unital Ptk regular semi-simple
locally m-convex € -algebra A which is also sclf-adjoint with respect to a continuous in-
volution and has an equicontinuous spectrum M(A ).

Of course, the hypothesis on a Selesnick algebra implies, among other things, that its
spectrum M(A) is actually a compact (Hausdorff) space (cf. [25, p. 186, Corollary 1.51).
So a Banach algebra of the previous type is, in particular, the Fourier algebra A(G) ofa
compact abelian group G (cf. e.g. [35, p. 322, Theorem 3.31and [37, p. 704); see also, for
instance, (34, p. 1041).
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On the other hand, an important special instance of a Selesnick algebra (that cannot be a
normed one!), is the algebra

(8.3) A =C>(X),

of €-valued C*-functions on a compact (Hausdorff) 2 nd countable smoolh (viz. C>*—)
manifold X, endowed with the respective C*-topology ; thus, one gets X = M(A) , within
a homeomorphism (cf. [25, p. 227, Theorem 2.11. See also Example 1.1 in the foregoing).

Yet, another example of a Selesnic (topological, not necessarily normed) algebra from
function algebra theory, is the algebra O(K ) of T-valued «locally holomorphic» functions
on a compacl Stein set K of a Ste/n manifold X (in this regard, cf. [27); seealso [25, p. i34
££]).

Thus, in connection with our considerationsin the preceding, one can prove now the fol-
lowing.

the spectrum M (A ) of any given Selesnick algebra A is a

(8.4) semi -Weil-Bianchi space; here one employs the corresponding
Gel'-fand sheuf A of A [27] and then the de Rham — Kahler complex
(eventuaily not exact!) of A (see [28], [31]).

Namely, following [36] one proves the existence of an exponential sheaf diagram for A,
like (6.1) above. In this respect, one defines the exponential sheafmorphism e : A — A* by
the relation

(8.5) e(s) = exp 2mis,

for any (local) section s E A(U), U open in X ;we note at this point that the previous
relation makes sense, since the exponential function «operates» on any complete (in fact,
a-complete is enough) Jocally m-convex algebra with an identity element (see e.g. [24, p.
492, (5.1)], as well as [28] or yet [311]).

Now, the corresponding «differential» framework is further established by employing a
(sheaf-theoretic) Kahier Iheory ofdifferentials for A . So the point of view developed in the
preceding sections has here a special bearing; in this concern, cf. also, for instance, [28]
and/or [31]. Thus, one gets in particular that:

for any Selesnick algebra A the conclusion of (6.26) holds good

8.6
(8.6) (cf .also (7.18)), relative to its spectrum M(A).

In this regard, it is yet worth mentioning here that:

the Gel'fand sheuf A of any Prak-Silov-Q (for short, PQS—,

8.7 .
(8.7) S0 in particular of any Selesnickalgebra A (see also [25]) IS always fine
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Cf. (271,([31] or yet [35, p. 319, Proposition 2.5, iii) for p = 0). Therefore, given that
our base space X , viz. the spectrum of A (cf. (8.1)), is, as already said above, a compact
(Hausdorfl) space, A is acyclic (cf. [S, p. 49, Theorem 9.81); hence, the same holds true
for every A-module on X (ibid., p. 50, Theorem 9.12). Thus, in view of Theorem 2.1, we
further obtain that:

every vector sheaf on ihe spectrum M(A) of a PQ S -algebra (hence,
(8.8) a fortiori of any Selesnick algebra) A admiis an A-connection, with
A being the corresponding Gel'fand sheaf of A .

Of course, in case of the algebra A ,as in (8.3), the respective Gel’fand sheaf of A is the
structure sheaf C of the manifold X under consideration (seealso e.g. (1.21) above).

Scholium 8.1. Inconnection with the exact sequencein (5.4) one could consider, instead
(in fact, more naturally!), the cxaclness ofthe following sequence (of shcaves of € -vector
spaceson X )

(8.9) 0 — kerd — A-5Q'-4 02—, 40% —0

We recall that, in view of our hypothesis (cf. (1.8)), we alwayshave €5 ker 8. Thus,
one gets an analogous result to Proposition 5.1 by an obvious rephrasing of (5.8); viz. one
should then have

(8.10) c(w) E H*(X, ker 0),

forany closed 2-form on X . Now, the previous sequence (8.9) provides, of course, exactness
at A ;however,

Sfurther exactness of (8.9), without , namely, postulating ii ,
might be in close conneciion with the very structure of a given
topologicalalgebra A , whose Gel'fand sheaf is A

(take e.g. a Selesnick algebra, as above) .

(8.11)

Soin the important particular instance of the algebra (8.3), the exactness of the analogous
sequenceto (8.9) (and, in effect, to (5.4)) is, of course, a consequence of the Poincaré Lemma
(see, for example, [9, p. 133,Example 2.5.1 and p. 181,Example 4.7.3) or yet 44, p. 190, (3)
and p. 156, Corollary (a)], [43, p. 203]). Now, the latter depends on the topology of X ,i.e.,
on that of the spectrum of (the topological algebra) A ; hence, in turn (Silov, Arens-Royden
etal.), on the structure Of A .
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In this regard, an analogous study (however in case of discrete algebras) by S. Teleman
(see e.g. [41], [42]), conceming an abstract fonn of de Rham’s theorem. is here akin to the
above problematic (speculation). Thus, the Jocally acyclic algebras of Teleman might give an
example, when suitably topologized. In conclusion, we are thus in pursuit of:

topological algebras A satisfying (8.2) (viz.geometric (topological)
(8.12) algebras [23, p .487; § 6], even with acyclic Ge!/'fand sheaves), whose
spectra are Weil spaces in the modified sense of the sequence (8.9).

So for an algebra A as above, by referring, in effect, to its Gel’fand sheaf A, the fuzl]
fonn of Weil’s theorem (cf. Theorem 7.1), as modified now by the relation

(8.13) o(w) E HX(X,ZYSH*(X, ker 8),

would be in force.

Finally, within the same vein of thoughts, we further note that by considcring thc poly-
nomial algebra A = C[t,,...,t,] in n variables, one gcts an example of a (discrete)
C -algebra for which the corresponding de Rham-Kahier complex is exact. Cf. [21, p. 612,
Theorem 12.31.

9. ELEMENTARY PARTICEES. PREQUANTIZATION

As a further outcome of the preceding, we give below a breezy discussion on certain thoughts
to which we are led, in connection with a standard appiication of Weil’s integrality thcorem
to quanturm mechanics [19], [48] and an interpreiation of elcmentary particles in terms of
sections of vector sheaves. Thus, our exposition here is aiming only at an indication of the
interrelation of the above two facts, while we refer instead to [30] for further details.

S0, according to an interpretation due to S.A. Selesnick (sec e.g. [38]), free elcmen-
tary particles 0beying Bose-Einstein statistics (Or yet infegral-spin particles) may correspond
to mnk one projective A -modules, where A is given by (8.3) for a suitable (compact)
C>-manifold (representing an empty finite universe). Furthermore, similar modules of rank
greater than one may represent free particles obeying Fermi-Dirak statistics.

On the other hand, the C**-analogue of the classical Serre-Swantheorem(see, forinstance,
[23, p. 481, Theorem 4.21 for an ampie generalization of this result) identifies the previous
modules with C*=-(complex) vector bundles on X ,having the respective dimension (rank).
However, (C®-) vector bundles on X may, in tum, be iaentified with the corresponding
locally free sheaves (of their C*=-sections) , these being too of finite rank, that is with vector
sheaveson X (here the «coefficient sheaf» A is given by (1.21); in this respect, seealso e.g.
[26, p. 406, Theorem 1.1]).
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Now. it is also standard to consider (cf., for instance [38] or yet [7, pp. 364, 3751) the
field strength of a given elementary particle as represented by the curvature form of an a p
propriately defined connection form («gauge potential»; see also e.g. (2.3). We recall that
connections here always exist, yet globally, A = C¢ being a fine sheafon the cornpact X ;
cf. also, for instance, Theorem 2.1 in the preceding). Accordingly one comes to the conclu-
sion that:

everyfree boson (field) corresponds to a Maxwell field (L£,D)
on X which thus yields, through its field strength (cf . (6.26)
(9.1) or yet (7.18)), an integral cohomology class. Therefore (by
further employing a standard prequantization argument [48] one
obtains that) every such elementary particle is pre-quantizable.

Furthermore, by viewing (free) fermions as corresponding to (sectionsof) Q' (see [38], as
well as (1.23) above), one may further consider a Yang-Mills field (Q',D) (cf. also (1.26))
as representing the free fermion (field) involved. In this regard, the connection D can be

derived by theeffect on Q! of a free boson, say (C, 6) («mediating forces by Lhe exchange

of bosons); that is, mathematically speaking, we let the boson in question «act» on Q' by
tensoring, SO that one has

(9.2) Q'®,L=Q', locally (!).

Thus, the presence here of the (auxiliary) free boson C is Jocally undiscernible, its con-

tribution being that it provides us, via its force (curvature of D), with a (pre-)quantizing line
sheaf for Q! . As a matter of fact, D yiels an integrai cohomology class, as well, by pu/iing-

back that of D (see e.g. [9, p. 200], and also (7.18) above). Therefore, one again obtains
that:

everyfree fermion is pre-quantizable. Hence, by virtue of (9.1), we

5.3 conclude that the same holds good for everyfree elementary particle.

So according to the preceding one gets alrcady {rom the outset a «pre-quantizing finebun-
dle (or rather a line sheaf’)» without thus to have firstto look for the appropriate Hamiltonian
frarnework. This is, of course, in agreement with the point of view of geometric quantiza-
tion theory (see, for instance, [40]); yet, it might also be viewed as a further justification of
the claim that «quantization is provided by the physical law itselfs (cf. (47, p. 3231). Fur-
thermore, one realizes that sheaf cohomology lics at the basis of the mathematical structure
involved in field quantitics, which arc uscd to dcscribc a «geometrized field theory». In this
respect, see also {32) and/or {2}, [39).
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APPENDIX

Based on Scholium 5.1 and on the proofs of Lemmas 6.1 and 7.1, we can get the following
variant of Weil's Theorem 7.1; conceming the terminology applied below see also the previous
section 9. Thus, we have the next.

Theorem. Let X be a paracompact Hausdorff space enabwed wiih a curvature (Bianchi)

datum (cf. (6.24))
(A)ayglrdlgz) )

where Q! s a vector sheaf on X , such that thefollowing sequence is exact
0 — C-5a-5a'- 44! —o0.
Moreover, suppose that we are given the next commutative exponential sheaf diagram;

0-—Z — A =% A® — 1

SWAT
Q!

Then, the only integral (closed 2-)forms on X of the type w E Z°(Ugd Q') are field
strengths of Maxwell fields on X . s

The previous result reinforces Theorem 7.1 regarding the exact sequence (5.4), however,
this at the cost of the type of the (ciosed) 2-forms on X considered; on the other hand, the
particular type of these forms is aiways occurred in case of /ine sheaves,as a result of Cartan’s
structural equation (See (3.24)).

Remarks (added in proof). (i) By suitably modifying the proof of Theorem 2.1, we can
dispense with the hypothesis that Q! is a vector sheaf on X ;namely, it suffices t0 be just an
A-module on X, asin (A, 8,Q!).

(ii) Conceming the Theorem in the Appendix,onecan finally state the following (moreamply
realizable, see below) version of Weil’s Theorem: namely, for any semi-Wei! Bianchi space
X, for which H' (X, A) = H*(X,A) = HY(X,Q') =0, any 2 € H*(X,Z) is of the
form z = z(w), where w is the curvature form ofan A -connection ofa line sheafon X ; i.e.,
w E Q2(X), suchthatw = (do,), with(8,) E C°(U,Q"). And conversely, the curvature
form of an A-connecticn of a line sheaf on X is of the above type. As an application, one
can consider (in a canonical way) as X t#e spectrum 0fany Selesnick algebra or yet that one

ofanyself-adjoint Fréchet-Silov algebra (non-compactspectrum; See also e.g. [28]).
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