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1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The first
and second Zagreb indices of G are defined as M1(G) =

∑

v∈V (G) d
2(v) and

M2(G) =
∑

e=uv∈E(G) d(u)d(v), respectively, where d(u) is the vertex degree of
u [8]. During the last decades, a lot of work was done on this topic. For more
results concerning Zagreb group indices see [1, 2, 3, 10, 14]. In [7], a history of
these graph parameters as well as their mathematical properties are presented.

If G is a connected graph having n vertices and m edges, then c = m−n+1
is called the cyclomatic number of G and conventionally, G is said to be cyclic
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if c > 0. In particular, if c = 1, 2, 3 then we call G to be uni-cyclic, bi-cyclic
and tri-cyclic graph, respectively. In some research papers [12, 16], the extremal
properties of these graph invariants on the set of all bicyclic graphs with a fixed
number of pendant vertices and bicyclic graphs with a given matching number
are investigated. Finally, in [13, 15], some extremal graphs for Zagreb indices
were obtained in the classes of all quasi-tree graphs and polyominochains. We
encourage the interested reader to consult [4, 5, 6, 9, 17, 18, 19] and references
therein for more information on this topic.

The aim of this paper is to determine the first and second maximum values
of M1 and M2 in the class of all tri-cyclic graphs with n ≥ 6 vertices. To do
this, we introduce the following notations:

(1) A simple graph G with V (G) = {v1, . . . , v5} and E(G) = {v1vi, v2vj |2 ≤
i ≤ 5, 3 ≤ j ≤ 5} is denoted by q3,3,3. Figure 1(a).

(2) The qn(n1, n2, n3, n4, n5) is resulting graph from q3,3,3 by adding ni − 1
pendant vertices to vertex vi, 1 ≤ i ≤ n such that n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5
and ni ≥ 1, see Figure 1(b).

v4

v1 v2

v5

v3

(a) The q3,3,3 graph.

v1 v2

v4

v3

v5

(b) The qn(n1, n2, n3, n4, n5) graph.

Figure 1. a) The q3,3,3 graph. b) The qn(n1, n2, n3, n4, n5) graph.

(3) Consider the cycle graph C5 with V (C5) = {v1, v2, v3, v4, v5}. Connect
v1 to vertices v2 and v3. This graph is denoted by g5. We now add ni −
1 pendant vertices to vertex vi, 1 ≤ i ≤ 5, such that ni ≥ 1, n1 ≥
n2 ≥ n3 ≥ n4 ≥ n5 and

∑5
i=1 ni = n. The resulting graph is denoted by

gn(n1, n2, n3, n4, n5), Figure 2. We denote the set of all such graphs by gn.

(4) The Kn(n1, n2, n3, n4) is a graph obtained from K4 by adding ni − 1
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Figure 2. The gn(n1, n2, n3, n4, n5) graph.

pendant vertices to vertex vi, 1 ≤ i ≤ 4, such that ni ≥ 1 and
n1 = max{n1, n2, n3, n4}, Figure 3.

(5) The graph E is constructed from K4− e and K3 by identifying one vertex
of degree three in K4 − e and one vertex of K3. We label the graph E
as Figure 4. Also, we assume that En(n1, n2, n3, n4, n5, n6) is the graph
formed from E by attaching ni−1 pendant vertices to the vertex vi, where
ni ≥ 1, i = 1, · · · , 6, n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5 ≥ n6 and

∑6
i=1 ni = n.

(6) Let F be the resulting graph from K4 − e and K3 by identifying one
vertex of degree two in each graph. Label the vertices of F as in Figure
5(a). Also, we assume that Fn(n1, n2, n3, n4, n5, n6) is the graph formed
F by attaching ni − 1 pendant vertices to vi, where ni ≥ 1, i = 1, · · · , 6,
n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5 ≥ n6 and

∑6
i=1 ni = n, Fig. 5(b).

A graph G is called a cactus graph if blocks of G are either edges or cycles.
The set of cacti of order n with k pendant vertices is denoted byGn,k. The graphs
with the largest values of M1 and M2 in the class of Gn,k, are determined by Li
et al. [11]. For the sake of completeness we mention here the main result of this
paper.

Lemma 1. Let G be a graph in Gn,k. Then the following statements are
satisfied:

(i). If n− k ≡ 1 (mod 2), then M2(G) ≤ 2n2 − (k + 2)n− k, with equality if
and only if G ∼= C1(n, k), where C1(n, k) is depicted in Fig. 6(a).

(ii). If n − k ≡ 0 (mod 2), then M2(G) ≤ 2n2 − (k + 5)n + 4, with equality if
and only if G ∼= C2(n, k), where C2(n, k) is depicted in Fig. 6(b).
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Figure 3. The Kn(n1, n2, n3, n4) graph.

(iii). If n−k ≡ 1 (mod 2), then M1(G) ≤ n2 + 2n−3k−3, with equality if and
only if G ∼= C1(n, k), where C1(n, k) is depicted in Fig.6(a).

(iv). If n − k ≡ 0 (mod 2), then M1(G) ≤ n2 − 3k, with equality if and only
if G ∼= C2(n, k) or C3(n, k), where C2(n, k) and C3(n, k) are depicted in
Fig. 6.

Throughout this paper Kn, Cn and Pn denote the complete, cycle and path
graphs on n vertices, respectively. The set of neighbors of a vertex v in a graph
G is denoted by NG(v). Rn is the set of all tri-cyclic graphs with n vertices
and its subset containing tri-cyclic graphs with p pendant vertices is denoted
by Rn,p. Our other notations are standard and taken from the standard book
on graph theory.

2 Main Results

In this section, the tri-cyclic n−vertex graphs, n ≥ 5, with the first and
second Zagreb indices are determined. Suppose that G is a simple n−vertex
tri-cyclic graph containing p ≥ 0 pendant vertices. Choose a non-pendant edge
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Figure 4. En(n1, n2, n3, n4, n5, n6) .

e = uv that does not belong to a cycle of length 3. Suppose A is a graph
constructed from G by contraction and then deleting the edge e = uv, and H is
another graph constructed from A by adding a new vertex to H and connecting
it to the contracted vertices u and v. The resulting graph G′ is a simple tri-cyclic
n−vertex graph containing p+ 1 pendant vertices.

It should be noted that this procedure is decreasing the length of at least one
cycle. In what follows, we prove that M1(G) < M1(G

′) and M2(G) < M2(G
′). To

prove the statement, we assume that d(u) = s ≥ 2, d(v) = r ≥ 2, NG(u)−{v} =
{x1, · · · , xs−1} and NG(v)− {u} = {y1, · · · , yr−1}. Therefore,

M1(G)−M1(G
′) = r2 + s2 − (r + s− 1)2 − 1

= −2rs− 2 + 2r + 2s < 0 ,

and so M1(G) < M1(G
′). On the other hand,

M2(G) − M2(G
′) =

s−1
∑

i=1

sd(xi) +

r−1
∑

i=1

rd(yi)

+ rs−
( s−1
∑

i=1

(r + s− 1)d(xi) +
r−1
∑

i=1

(r + s− 1)d(yi) + (r + s− 1)

)

= −
s−1
∑

i=1

(r − 1)d(xi)−
r−1
∑

i=1

(s− 1)d(yi)

− (r + s− 1) + rs < 0.
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Figure 5. Fn(n1, n2, n3, n4, n5, n6)

.

Therefore, we conclude that if the number of non-pendant vertices decreases
then the first and second Zagreb indices of the graph under consideration will
increase. This implies that the maximum of Zagreb indices among all tri-cyclic
graphs will be occurred in graphs with a few number of non-pendant vertices.
Therefore, the maximum of Zagreb indices will occur when each chordless cycle
has length 3. The set of all tri-cyclic cactus graphs is denoted by Λ. We have
following simple and useful Lemma:

Lemma 2. Let G be a graph in Λ.

(i). If n−k ≡ 1 (mod 2), then M1(G) ≤ n2−n+ 18, with equality if and only
if G ∼= B1(n, k), where B1(n, k) is depicted in Fig. 7(a).

k

(n− k − 1)/2

(a) C1(n, k)

(n− k)/2− 1

k − 1

(b) C2(n, k)

(n− k)/2− 2

k

(c) C3(n, k)

Figure 6. The graphs C1(n, k), C2(n, k) and C3(n, k).
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(ii). If n − k ≡ 0 (mod 2), then M1(G) ≤ n2 − 3n + 24, with equality if and
only if G ∼= B2(n, k) where B2(n, k) is depicted in Fig. 7(b).

(iii). If n − k ≡ 0 (mod 2), then M1(G) ≤ n2 − 3n + 24, with equality if and
only if G ∼= B3(n, k) where B3(n, k) is depicted in Fig. 7(c).

(iv). If n−k ≡ 1 (mod 2), then M2(G) ≤ n2 + 4n+ 7, with equality if and only
if G ∼= B1(n, k), where B1(n, k) is depicted in Fig. 7(a).

(v). If n−k ≡ 0 (mod 2), then M2(G) ≤ n2 + 3n+ 4, with equality if and only
if G ∼= B2(n, k), where B2(n, k) is depicted in Fig. 7(b).

Proof. We can demonstrate the proof by putting k = n−7 and n−8 in Lemma
1. QED

Lemma 3. If G = Kn(n1, n2, n3, n4) with ni ≥ nj ≥ 2, 1 ≤ i 6= j ≤ 4 and
b is a pendant vertex of vj. Then

M1(G− vjb+ vib) > M1(G) and M2(G− vjb+ vib) > M2(G) .

Proof. Without loss of generality, we can assume that i = 1 and j = 2. Then

M1(G− v2b+ v1b)−M1(G) = n1 + (n1 + 3)2 + (n2 − 2) + (n2 + 1)2

−(n1 − 1)− (n1 + 2)2 − (n2 − 1)− (n2 + 2)2

= 2n1 − 2n2 + 2 > 0 .

Also, we have :

M2(G− v2b+ v1b)−M2(G) = [n1(n1 + 3)− (n1 − 1)(n1 + 2)]

+[(n2 − 2)(n2 + 1)− (n2 − 1)(n2 + 2)]

k

(a) B1(n, k)

k

(b) B2(n, k)

k

(c) B3(n, k)

Figure 7. The graphs B1(n, k), B2(n, k) and B3(n, k).
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+[(n2 + 1)(n1 + 3)− (n1 + 2)(n2 + 2)]

= n1 − n2 + 1 > 0 ,

which completes the proof. QED

Lemma 4. Let G = Kn(n1, n2, n3, n4), where n1, n2 ≥ 2. Then

a) M1(G) ≤M1(Kn(n− 3, 1, 1, 1)) ,

b) M2(G) ≤M2(Kn(n− 3, 1, 1, 1)) .

Proof. Without loss of generality let n1 ≥ . . . ≥ n4. By Lemma 3 and putting
n3 = n4 = 1, one can see that with deletion of any pendant edge from the
vertex v2 and adding it to vertex v1, the first and second Zagreb indices will
be increased. Therefore, applying Lemma 3, n2 + n3 + n4 − 3 times in a row
we find Mi(Kn(n1, n2, n3, n4)) ≤ Mi(Kn(n1 + n2 + n3 + n4 − 3, 1, 1, 1)), for
i = 1, 2. QED

Theorem 1. Suppose G ∈ Rn,n−4 with n ≥ 4. Then

a) M1(G) ≤ n2 − n+ 24 ,

b) M2(G) ≤ n2 + 4n+ 22 .

The equalities hold if and only if G ∼= Kn(n− 3, 1, 1, 1).

Proof. a) Suppose G ∈ Rn,n−4 has maximum of first Zagreb index. By Lemma
3, one can find another graph H in Rn such that M1(H) > M1(G). Without
loss of generality, we assume that G = Kn(n1, n2, 1, 1). Then by Lemma 4,
G = Kn(n1 +n2− 1, 1, 1, 1). Equality holds if and only if G ∼= Kn(n− 3, 1, 1, 1).
The proof of b) is similar. QED

Lemma 5. Let G = qn(n1, n2, n3, n4, n5), 1 ≤ i ≤ 5, ni ≥ 2 . Then

1) M1(G) < M1(qn(n1 + 1, n2 − 1, n3, n4, n5)),

2) M2(G) < M2(qn(n1 + 1, n2 − 1, n3, n4, n5)),

3) M1(G) < M1(qn(n1, n2, n3 + 1, n4 − 1, n5)),

4) M2(G) < M2(qn(n1, n2, n3 + 1, n4 − 1, n5)),

5) M1(G) < M1(qn(n1, n2, n3 + 1, n4, n5 − 1)),

6) M2(G) < M2(qn(n1, n2, n3 + 1, n4, n5 − 1)),

7) M1(G) < M1(qn(n1 + 1, n2, n3 − 1, n4, n5)),

8) M2(G) < M2(qn(n1 + 1, n2, n3 − 1, n4, n5)).
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Proof. Suppose G1 = qn(n1 + 1, n2 − 1, n3, n4, n5). Then

M1(G1)−M1(G) = n1 + (n1 + 4)2 + (n2 + 2)2 + (n2 − 2)− (n1 − 1)

− (n1 + 3)2 − (n2 + 3)2 − (n2 − 1)

= 2n1 − 2n2 + 2 > 0.

Also,

M2(G1)−M2(G) = [n1(n1 + 4)− (n1 − 1)(n1 + 3)]

+ [(n2 − 2)(n2 + 2)− (n2 − 1)(n2 + 3)]

+ [(n2 + 2)(n1 + 4)− (n2 + 3)(n1 + 3)]

= n1 − n2 + 1 > 0.

Other cases are similar and so they are omitted. QED

Lemma 6. Let G = qn(n1, n2, 1, 1, 1) with n1, n2 ≥ 2. Then

a) M1(G) < M1(qn(n1 + n2 − 1, 1, 1, 1)),

b) M2(G) < M2(qn(n1 + n2 − 1, 1, 1, 1)).

Proof. Suppose G1 = qn(n1 + n2 − 1, 1, 1, 1), where n1, n2 ≥ 2. Then

M1(G1)−M1(G) = n1 + n2 − 2 + (n1 + n2 + 2)2 + 28

− (n1 − 1)− (n2 − 1)− (n1 + 3)2 − (n2 + 3)2 − 12

= 2n1n2 + 2− 2n1 − 2n2 > 0,

which completes the proof of part (a). To prove (b), we notice that

M2(G1)−M2(G) = (n1 + n2 − 2)(n1 + n2 + 2) + 6(n1 + n2 + 2) + 24

+ 4(n2 + n1 + 2)− (n1 − 1)(n1 + 3)− (n2 − 1)(n2 + 3)

− 6(n2 + 3)− 6(n1 + 3) + (n2 + 3)(n1 + 3)

= n1n2 + 1− n1 − n2 > 0 .

Hence the result follows. QED
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Lemma 7. Suppose G = gn(n1, n2, n3, n4, n5), where ni ≥ 2, 1 ≤ i ≤ 5.
Then we have:

1) M1(G) < M1(gn(n1 + 1, n2 − 1, n3, n4, n5)),

2) M2(G) < M2(gn(n1 + 1, n2 − 1, n3, n4, n5)),

3) M1(G) < M1(gn(n1 + 1, n2, n3 − 1, n4, n5)),

4) M2(G) < M2(gn(n1 + 1, n2, n3 − 1, n4, n5)),

5) M1(G) < M1(gn(n1 + 1, n2, n3, n4 − 1, n5)),

6) M2(G) < M2(gn(n1 + 1, n2, n3, n4 − 1, n5)),

7) M1(G) < M1(gn(n1 + 1, n2, n3, n4, n5 − 1)),

8) M2(G) < M2(gn(n1 + 1, n2, n3, n4, n5 − 1)).

Proof. Suppose G1 = gn(n1 + 1, n2 − 1, n3, n4, n5). Then,

M1(G1)−M1(G) = n1 + (n1 + 4)2 + (n2 − 2) + (n2 + 1)2

− (n1 − 1)− (n1 + 3)2 − (n2 + 2)2 − (n2 − 1)

= 2n1 + 4− 2n2 > 0.

which completes the proof of part (1). To prove (2), we notice that

M2(G1)−M2(G) = [n1(n1 + 4)− (n1 − 1)(n1 + 3)]

+ [(n2 − 2)(n2 + 1)− (n2 − 1)(n2 + 2)]

+ [(n2 + 1)(n1 + 4)− (n2 + 2)(n1 + 3)]

+ [(n1 + 4)(n4 + 1)− (n1 + 3)(n4 + 1)]

+ [(n5 + 1)(n1 + 4)− (n5 + 1)(n1 + 3)]

+ [(n1 + 4)(n3 + 2)− (n1 + 3)(n3 + 2)]

+ [(n2 + 1)(n3 + 2)− (n2 + 2)(n3 + 2)]

+ [(n2 + 1)(n5 + 1)− (n2 + 2)(n5 + 1)]

= n1 + n2 + 2 > 0.

Other cases are similar. QED

Lemma 8. Suppose G = gn(n1, n2, 1, 1, 1), where n1 ≥ n2 ≥ 2. Then

M1(G) < M1(gn(n1+n2−1, 1, 1, 1, 1)), M2(G) < M2(gn(n1+n2−1, 1, 1, 1, 1)) .

Proof. By Lemma 7 and putting n3 = n4 = n5 = 1, one can see that by
removing any pendant edge from vertex v2 and adding it to the vertex v1, the
first Zagreb index will increase. Therefore,

M1(gn(n1, n2, 1, 1, 1)) < M1(gn((n1 + 1, n2 − 1, 1, 1, 1))
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< · · ·
< M1(gn(n1 + n2 − 2, 2, 1, 1, 1))

< M1(gn(n1 + n2 − 1, 1, 1, 1, 1)) .

The second part is similar and so omitted. QED

Theorem 2. Suppose G ∈ gn where n ≥ 5. Then

M1(G) ≤ n2 − n+ 22, M2(G) ≤ n2 + 4n+ 16 .

The equality holds if and only if G ∼= gn(n− 4, 1, 1, 1, 1).

Proof. Suppose H = gn(n1, n2, n3, n4, n5) ∈ gn has maximum of the first Zagreb
index. By Lemma 7 one can find another graph in Rn with greater first Zagreb
index. Suppose G = gn(n1, n2, 1, 1, 1). Then by Lemma 8, we get M1(G) ≤
M1(gn(n1+n2−1, 1, 1, 1, 1)). Equality holds if and only if G ∼= gn(n−4, 1, 1, 1, 1).
The proof of the second part is similar. QED

Consider the complete graph K4 with vertex set {v1, v2, v3, v4}. Insert a
vertex v5 into an edge of K4 and name the resulting graph Y5. Define the graph
Y5(n1, n2, n3, n4, n5) to be constructed from Y5 by attaching ni edges to the
vertex vi, 1 ≤ i ≤ 5. It is not so difficult to prove that Y5(n1, n2, n3, n4, n5) is
tri-cyclic such that its Zagreb indices are less than gn(n1, n2, n3, n4, n5).

Theorem 3. Suppose G ∈ Rn,n−5 and n ≥ 5. Then

a) M1(G) ≤ n2 − n+ 24 ,

b) M2(G) ≤ n2 + 4n+ 19 .

The equality is satisfied if and only if G ∼= qn(n− 4, 1, 1, 1, 1).

Proof. By Lemma 6 and Theorem 2, the maximum of the first and second Zagreb
indices are occurred in qn(n − 4, 1, 1, 1, 1) and gn(n − 4, 1, 1, 1, 1), respectively.
So,

M1(gn(n− 4, 1, 1, 1, 1)) < M1(qn(n− 4, 1, 1, 1, 1)),

M2(gn(n− 4, 1, 1, 1, 1)) < M2(qn(n− 4, 1, 1, 1, 1)),

which completes our argument. QED
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Lemma 9. Suppose G = En(n1, n2, n3, n4, n5, n6), where ni ≥ 2 for 1 ≤
i ≤ 6. Then

1) M1(G) < M1(En(n1 + 1, n2 − 1, n3, n4, n5, n6)),

2) M2(G) < M2(En(n1 + 1, n2 − 1, n3, n4, n5, n6)),

3) M1(G) < M1(En(n1 + 1, n2, n3 − 1, n4, n5, n6)),

4) M2(G) < M2(En(n1 + 1, n2, n3 − 1, n4, n5, n6)),

5) M1(G) < M1(En(n1 + 1, n2, n3, n4 − 1, n5, n6)),

6) M2(G) < M2(En(n1 + 1, n2, n3, n4 − 1, n5, n6)).

7) M1(G) < M1(En(n1 + 1, n2, n3, n4, n5 − 1, n6)),

8) M2(G) < M2(En(n1 + 1, n2, n3, n4, n5 − 1, n6)),

9) M1(G) < M1(En(n1 + 1, n2, n3, n4, n5, n6 − 1)),

10) M2(G) < M2(En(n1 + 1, n2, n3, n4, n5, n6 − 1)).

Proof. Suppose G1 = En(n1 + 1, n2 − 1, n3, n4, n5, n6). Then

M1(G1)−M1(G) = n1 + (n1 + 5)2 + (n2 − 2) + (n2 + 1)2

− (n1 − 1)− (n1 + 4)2 − (n2 + 2)2 − (n2 − 1)

= 2n1 − 2n2 + 6 > 0.

On the other hand,

M2(G1)−M2(G) = [n1(n1 + 5)− (n1 − 1)(n1 + 4)]

+ [(n2 − 2)(n2 + 1)− (n2 − 1)(n2 + 2)]

+ [(n2 + 1)(n1 + 5)− (n2 + 2)(n1 + 4)]

+ [(n1 + 5)(n3 + 1)− (n1 + 4)(n3 + 1)]

+ [(n4 + 1)(n1 + 5)− (n4 + 1)(n1 + 4)]

+ [(n1 + 5)(n5 + 1)− (n1 + 4)(n5 + 1)]

+ [(n1 + 5)(n6 + 1)− (n1 + 4)(n6 + 1)]

+ [(n2 + 1)(n5 + 1)− (n2 + 2)(n5 + 1)]

+ [(n2 + 1)(n6 + 1)− (n2 + 2)(n6 + 1)]

= n1 + n2 + n3 + n4 + 3 > 0.

Other cases are similar. QED

Lemma 10. Suppose G = En(n1, n2, 1, 1, 1, 1), where n1 ≥ n2 ≥ 2. Then

M1(G) < M1(En(n1 + n2 − 1, 1, 1, 1, 1, 1)),

M2(G) < M2(En(n1 + n2 − 1, 1, 1, 1, 1, 1)).
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Lemma 11. Suppose G = Fn(n1, n2, n3, n4, n5, n6), where ni ≥ 2 for 1 ≤
i ≤ 6. Then

1) M1(G) < M1(Fn(n1 + 1, n2 − 1, n3, n4, n5, n6)),

2) M2(G) < M2(Fn(n1 + 1, n2 − 1, n3, n4, n5, n6)),

3) M1(G) < M1(Fn(n1 + 1, n2, n3 − 1, n4, n5, n6)),

4) M2(G) < M2(Fn(n1 + 1, n2, n3 − 1, n4, n5, n6)),

5) M1(G) < M1(Fn(n1 + 1, n2, n3, n4 − 1, n5, n6)),

6) M2(G) < M2(Fn(n1 + 1, n2, n3, n4 − 1, n5, n6)).

7) M1(G) < M1(Fn(n1 + 1, n2, n3, n4, n5 − 1, n6)),

8) M2(G) < M2(Fn(n1 + 1, n2, n3, n4, n5 − 1, n6)),

9) M1(G) < M1(Fn(n1 + 1, n2, n3, n4, n5, n6 − 1)),

10) M2(G) < M2(Fn(n1 + 1, n2, n3, n4, n5, n6 − 1)).

Proof. Suppose G1 = Fn(n1 + 1, n2 − 1, n3, n4, n5, n6). Then

M1(G1)−M1(G) = n1 + (n1 + 4)2 + (n2 − 2) + (n2 + 1)2

− (n1 − 1)− (n1 + 3)2 − (n2 + 2)2 − (n2 − 1)

= 2n1 − 2n2 + 4 > 0.

On the other hand,

M2(G1)−M2(G) = [n1(n1 + 4)− (n1 − 1)(n1 + 3)]

+ [(n2 − 2)(n2 + 1)− (n2 − 1)(n2 + 2)]

+ [(n2 + 1)(n1 + 4)− (n2 + 2)(n1 + 3)]

+ [(n1 + 4)(n3 + 2)− (n1 + 3)(n3 + 2)]

+ [(n1 + 4)(n5 + 1)− (n1 + 3)(n5 + 1)]

+ [(n1 + 4)(n6 + 1)− (n1 + 3)(n6 + 1)]

+ [(n2 + 1)(n3 + 2)− (n2 + 2)(n3 + 2)]

+ [(n2 + 1)(n4 + 1)− (n2 + 2)(n4 + 1)]

= n1 + n5 + n6 − n4 + 2 > 0.

Other cases are similar. QED

Lemma 12. Suppose G = Fn(n1, n2, 1, 1, 1, 1), where n1 ≥ n2 ≥ 2. Then

M1(G) < M1(Fn(n1 + n2 − 1, 1, 1, 1, 1, 1)),

M2(G) < M2(Fn(n1 + n2 − 1, 1, 1, 1, 1, 1)).
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No. Graph M1 M2 n

1 Kn(n− 3, 1, 1, 1) n2 − n+ 24 n2 + 4n+ 22 n ≥ 5

2 Kn(n− 4, 2, 1, 1) n2 − 3n+ 34 n2 + 3n+ 27 n ≥ 6

3 qn(n− 4, 1, 1, 1, 1) n2 − n+ 24 n2 + 4n+ 19 n ≥ 5

4 qn(n− 5, 2, 1, 1, 1) n2 − 3n+ 36 n2 + 3n+ 25 n ≥ 7

5 gn(n− 4, 1, 1, 1, 1) n2 − n+ 22 n2 + 4n+ 16 n ≥ 5

6 En(n− 5, 1, 1, 1, 1, 1) n2 − n+ 20 n2 + 4n+ 11 n ≥ 6

7 Fn(n− 5, 1, 1, 1, 1, 1) n2 − 3n+ 28 n2 + 2n+ 17 n ≥ 6

8 B1(n, k) n2 − n+ 18 n2 + 4n+ 7 n ≥ 7

9 B2(n, k) n2 − 3n+ 24 n2 + 3n+ 4 n ≥ 9

10 B3(n, k) n2 − 3n+ 24 n2 + 2n+ 8 n ≥ 8

Table 1. The First and Second Maximum of M1 and M2 in the Class of
Tri−Cyclic Graphs.

Proof. The proof is similar to Lemma 4 and so it is omitted. QED

Theorem 4. Among all graphs in Rn with n ≥ 5 vertices,

1. Kn(n− 3, 1, 1, 1) and qn(n− 4, 1, 1, 1, 1) have the maximum values of first
Zagreb index.

2. If n = 6, 7 then K6(2, 2, 1, 1) and q7(2, 2, 1, 1, 1) have second maximum of
the first Zagreb index, respectively. If n ≥ 5 then gn(n − 4, 1, 1, 1, 1) have
second maximum of the first Zagreb index.

3. The graph Kn(n−3, 1, 1, 1) has maximum value of the second Zagreb index.

4. For n = 6, 7, 8, the graph Kn(n− 4, 2, 1, 1) and for cases n = 5 and n ≥ 9
the graph qn(n − 4, 1, 1, 1, 1) have second maximum of the second Zagreb
index.

Proof. We record in Table 1, the maximum values of the first Zagreb index
among of tri−cyclic graphs. The result follows easily from this table. QED
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