Duals of curves in Hyperbolic space

Ryota HAYASHI
Department of Mathematics, Hokkaido University, Sapporo 060-0810,Japan
dooh67@gmail.com

Shyuichi IZUMIYA

Department of Mathematics, Hokkaido University, Sapporo 060-0810,Japan
izumiya@math.sci.hokudai.ac.jp
Takami SATO
Department of Mathematics, Hokkaido University, Sapporo 060-0810,Japan
takami.s1218@gmail.com

Received: 13.3.2013; accepted: 9.8.2013.

Abstract

We define two kinds of duals of a curve in Hyperbolic space and investigate the singularities and the relationship from the view point of Legendrian dualities.

Keywords: Hyperbolic space, Legendrian dualities, curves
MSC 2010 classification: Primary 53A35, Secondary 58C27

1 Introduction

In this paper we investigate curves in Hyperbolic 3-space from the view point of dual relations. For a curve in Hyperbolic space with non-zero hyperbolic curvature, we define a de Sitter dual surface of the curve in de Sitter space which is the natural analogue of the dual surface of a curve in Euclidean 3sphere. We give a classification of the singularities of de Sitter dual surface (§4) and investigate the geometric meanings (§5). On the other hand, there exists another dual surface in the lightcone which is called a horospherical surface of the curve [2]. In $\S 3$ we give a relationship between those dual surfaces of the curve from the view point of Legendrian dualities which were introduced in [3].

2 Basic notions and results

We adopt the model of the hyperbolic 3 -space in the Lorentz-Minkowski space-time. Let $\mathbb{R}^{4}=\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mid x_{i} \in \mathbb{R}(i=0,1,2,3)\right\}$ be a 4-dimensional vector space. For any $\boldsymbol{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right), \boldsymbol{y}=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{4}$, the pseudo scalar product of \boldsymbol{x} and \boldsymbol{y} is defined by $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=-x_{0} y_{0}+\sum_{i=1}^{3} x_{i} y_{i}$. We call

[^0]$\left(\mathbb{R}^{4},\langle\rangle,\right)$ Lorentz-Minkowski space-time. We denote \mathbb{R}_{1}^{4} instead of $\left(\mathbb{R}^{4},\langle\rangle,\right)$. We say that a non-zero vector $\boldsymbol{x} \in \mathbb{R}_{1}^{4}$ is spacelike, lightlike or timelike if $\langle\boldsymbol{x}, \boldsymbol{x}\rangle>0$, $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0$ or $\langle\boldsymbol{x}, \boldsymbol{x}\rangle<0$ respectively. For a vector $\boldsymbol{v} \in \mathbb{R}_{1}^{4}$ and a real number c, we define the hyperplane with pseudo normal \boldsymbol{v} by $H P(\boldsymbol{v}, c)=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid\langle\boldsymbol{x}, \boldsymbol{v}\rangle=\right.$ $c\}$. We call $H P(\boldsymbol{v}, c)$ a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if \boldsymbol{v} is timelike, spacelike or lightlike respectively.

We now define Hyperbolic 3-space by

$$
H_{+}^{3}(-1)=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0} \geq 1\right\}
$$

de Sitter 3-space by

$$
S_{1}^{3}=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\}
$$

and a closed lightcone with the vertex \boldsymbol{a} by

$$
L C_{a}=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{4} \mid\langle\boldsymbol{x}-\boldsymbol{a}, \boldsymbol{x}-\boldsymbol{a}\rangle=0\right\} .
$$

We denote that $L C_{+}^{*}=\left\{\boldsymbol{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in L C_{0} \mid x_{0}>0\right\}$ and we call it the future lightcone at the origin. For any $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3} \in \mathbb{R}_{1}^{4}$, we define a vector $x_{1} \wedge \boldsymbol{x}_{2} \wedge \boldsymbol{x}_{3}$ by

$$
\boldsymbol{x}_{1} \wedge \boldsymbol{x}_{2} \wedge \boldsymbol{x}_{3}=\left|\begin{array}{cccc}
-\boldsymbol{e}_{0} & \boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
x_{0}^{1} & x_{1}^{1} & x_{2}^{1} & x_{3}^{1} \\
x_{0}^{2} & x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \\
x_{0}^{3} & x_{1}^{3} & x_{2}^{3} & x_{3}^{3}
\end{array}\right|
$$

where $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ is the canonical basis of \mathbb{R}_{1}^{4}. We have three kinds of surfaces in $H_{+}^{3}(-1)$ which are given by intersections of $H_{+}^{3}(-1)$ and hyperplanes in \mathbb{R}_{1}^{4}. A surface $H_{+}^{3}(-1) \cap H P(\boldsymbol{v}, c)$ is called a sphere, an equidistant surface or a horosphere if $H(\boldsymbol{v}, c)$ is spacelike, timelike or lightlike respectively. We write $S P^{2}(\boldsymbol{v}, c)$ as a sphere and $E S^{2}(\boldsymbol{v}, c)$ as an equidistant surface. Especially, $E S^{2}(\boldsymbol{v}, 0)$ is called a hyperbolic plane.

We now construct the explicit differential geometry on curves in $H_{+}^{3}(-1)$. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a regular curve. Since $H_{+}^{3}(-1)$ is a Riemannian manifold, we can reparametrise $\boldsymbol{\gamma}$ by the arc-length. Hence, we may assume that $\gamma(s)$ is a unit speed curve. So we have the tangent vector $\boldsymbol{t}(s)=\boldsymbol{\gamma}^{\prime}(s)$ with $\|\boldsymbol{t}(s)\|=1$, where $\|\boldsymbol{v}\|=\sqrt{|\langle\boldsymbol{v}, \boldsymbol{v}\rangle|}$. In the case when $\left\langle\boldsymbol{t}^{\prime}(s), \boldsymbol{t}^{\prime}(s)\right\rangle \neq-1$, then we have a unit vector $\boldsymbol{n}(s)=\frac{\boldsymbol{t}^{\prime}(s)-\gamma(s)}{\left\|\boldsymbol{t}^{\prime}(s)-\gamma(s)\right\|}$. Moreover, define $\boldsymbol{e}(s)=\gamma(s) \wedge \boldsymbol{t}(s) \wedge \boldsymbol{n}(s)$, then we have a pseudo orthonormal frame $\{\boldsymbol{\gamma}(s), \boldsymbol{t}(s), \boldsymbol{n}(s), \boldsymbol{e}(s)\}$ of \mathbb{R}_{1}^{4} along $\boldsymbol{\gamma}$. By standard arguments, under the assumption that $\left\langle\boldsymbol{t}^{\prime}(s), \boldsymbol{t}^{\prime}(s)\right\rangle \neq-1$, we have the
following Frenet-Serret type formula:

$$
\left\{\begin{aligned}
\gamma^{\prime}(s) & =\boldsymbol{t}(s) \\
\boldsymbol{t}^{\prime}(s) & =\kappa_{h}(s) \boldsymbol{n}(s)+\gamma(s) \\
\boldsymbol{n}^{\prime}(s) & =-\kappa_{h}(s) \boldsymbol{t}(s)+\tau_{h}(s) \boldsymbol{e}(s) \\
\boldsymbol{e}^{\prime}(s) & =-\tau_{h}(s) \boldsymbol{n}(s)
\end{aligned}\right.
$$

where $\kappa_{h}(s)=\left\|\boldsymbol{t}^{\prime}(s)-\gamma(s)\right\|$ and $\tau_{h}(s)=-\frac{\operatorname{det}\left(\gamma(s), \gamma^{\prime}(s), \gamma^{\prime \prime}(s), \gamma^{\prime \prime \prime}(s)\right)}{\left(\kappa_{h}(s)\right)^{2}}$.
Since $\left\langle\boldsymbol{t}^{\prime}(s)-\gamma(s), \boldsymbol{t}^{\prime}(s)-\gamma(s)\right\rangle=\left\langle\boldsymbol{t}^{\prime}(s), \boldsymbol{t}^{\prime}(s)\right\rangle+1$, the condition $\left\langle\boldsymbol{t}^{\prime}(s), \boldsymbol{t}^{\prime}(s)\right\rangle \neq$ -1 is equivalent to the condition $\kappa_{h}(s) \neq 0$. We can study all properties of hyperbolic space curves by using this natural equation.

Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. We define a map as follows:

$$
D D_{\gamma}: I \times J \longrightarrow S_{1}^{3} ; D D_{\gamma}(s, \theta)=\cos \theta \boldsymbol{n}(s)+\sin \theta \boldsymbol{e}(s)
$$

where $0 \leq \theta<2 \pi$, which is called a de Sitter dual surface of γ,
In this paper we give a classification of the singularities of this surface.
Theorem 1. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. Then we have the following:
(1) The de Sitter dual surface $D D_{\gamma}$ of γ is singular at a point $\left(s_{0}, \theta_{0}\right)$ if and only if $\theta_{0}=\pi / 2$ or $\theta_{0}=3 \pi / 2$.
(2) The de Sitter dual surface $D D_{\gamma}$ of γ is locally diffeomorphic to the cuspidal edge $C \times \mathbb{R}$ at $\left(s_{0}, \theta_{0}\right)$ if $\theta_{0}=\pi / 2$ or $\theta_{0}=3 \pi / 2$ and $\tau_{h}\left(s_{0}\right) \neq 0$.
(3) The de Sitter dual surface $D D_{\gamma}$ of γ is locally diffeomorphic to the swallow tail $S W$ at $\left(s_{0}, \theta_{0}\right)$ if $\theta_{0}=\pi / 2$ or $\theta_{0}=3 \pi / 2, \tau_{h}\left(s_{0}\right)=0$ and $\tau_{h}^{\prime}\left(s_{0}\right) \neq 0$.

Here, $C \times \mathbb{R}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}=x_{2}{ }^{3}\right\}$ is the cuspidal edge (cf. Fig.1) and $S W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=3 u^{4}+u^{2} v, x_{2}=4 u^{3}+2 u v, x_{3}=v\right\}$ is the swallow tail (cf. Fig.2).

cuspidaledge
Fig.1.

swallowtail
Fig. 2.

The geometric meanings of the singularities of $D D_{\gamma}$ and τ_{h} are gvien in $\S 5$.

On the other hand, the horospherical surface of γ is defined as follows [2]:

$$
H S_{\gamma}: I \times J \longrightarrow L C^{*} ; H S_{\gamma}(s, \theta)=\gamma(s)+\cos \theta \boldsymbol{n}(s)+\sin \theta \boldsymbol{e}(s) .
$$

In order to characterize the singularities of horospherical surface, a hyperbolic invariant $\sigma_{h}(s)$ is defined to be

$$
\sigma_{h}(s)=\left(\left(\kappa_{h}^{\prime}\right)^{2}-\left(\kappa_{h}\right)^{2}\left(\tau_{h}\right)^{2}\left(\left(\kappa_{h}\right)^{2}-1\right)\right)(s)
$$

The singularities of the horospherical surfaces are classified into the following theorem.

Theorem 2. [[2]] Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. Then we have the following:
(1) The horospherical surface $H S_{\gamma}$ of $\boldsymbol{\gamma}$ is singular at a point $\left(s_{0}, \theta_{0}\right)$ if and only if $\cos \theta_{0}=1 / \kappa_{h}\left(s_{0}\right)$.
(2) The horospherical surface $H S_{\gamma}$ of γ is locally diffeomorphic the cuspidal edge $C \times \mathbb{R}$ at $\left(s_{0}, \theta_{0}\right)$ if $\cos \theta_{0}=1 / \kappa_{h}\left(s_{0}\right)$ and $\sigma_{h}\left(s_{0}\right) \neq 0$.
(3) The horospherical surface $H S_{\gamma}$ of γ is locally diffeomorphic to the swallow tail $S W$ at $\left(s_{0}, \theta_{0}\right)$ if $\cos \theta_{0}=1 / \kappa_{h}\left(s_{0}\right), \sigma_{h}\left(s_{0}\right)=0$ and $\sigma_{h}^{\prime}\left(s_{0}\right) \neq 0$.

3 Legendrian dualities

In [3] the second author introduced the Legendrian dualities between pseudospheres in Lorentz-Minkowski space. We require some properties of contact manifolds and Legendrian submanifolds for the duality results in this paper. Let N be a $(2 n+1)$-dimensional smooth manifold and K be a field of tangent hyperplanes on N. Such a field is locally defined by a 1 -form α. The tangent hyperplane field K is said to be non-degenerate if $\alpha \wedge(d \alpha)^{n} \neq 0$ at any point on N. The pair (N, K) is a contact manifold if K is a non-degenerate hyperplane field. In this case K is called a contact structure and α a contact form. A submanifold $i: L \subset N$ of a contact manifold (N, K) is said to be Legendrian if $\operatorname{dim} L=n$ and $d i_{x}\left(T_{x} L\right) \subset K_{i(x)}$ at any $x \in L$. A smooth fibre bundle $\pi: E \rightarrow M$ is called a Legendrian fibration if its total space E is furnished with a contact structure and the fibers of π are Legendrian submanifolds. Let $\pi: E \rightarrow M$ be a Legendrian fibration. For a Legendrian submanifold $i: L \subset E, \pi \circ i: L \rightarrow M$ is called a Legendrian map. The image of the Legendrian map $\pi \circ i$ is called a wavefront set of i and is denoted by $W(i)$.

The duality concepts we use in this paper are those introduced in [3], where four Legendrian double fibrations are considered on the subsets $\Delta_{i}, i=1, \ldots, 4$ of the product of two of the pseudo spheres $H^{n}(-1), S_{1}^{n}$ and $L C^{*}$. In this paper we need the following three Legendrian double fibrations:
(1) (a) $H^{3}(-1) \times S_{1}^{3} \supset \Delta_{1}=\{(v, w) \mid\langle v, w\rangle=0\}$,
(b) $\pi_{11}: \Delta_{1} \rightarrow H^{3}(-1), \quad \pi_{12}: \Delta_{1} \rightarrow S_{1}^{3}$,
(c) $\theta_{11}=\langle d v, w\rangle\left|\Delta_{1}, \theta_{12}=\langle v, d w\rangle\right| \Delta_{1}$.
(2) (a) $H^{3}(-1) \times L C^{*} \supset \Delta_{2}=\{(v, w) \mid\langle v, w\rangle=-1\}$,
(b) $\pi_{21}: \Delta_{2} \rightarrow H^{3}(-1), \pi_{22}: \Delta_{2} \rightarrow L C^{*}$,
(c) $\theta_{21}=\langle d v, w\rangle\left|\Delta_{2}, \theta_{22}=\langle v, d w\rangle\right| \Delta_{2}$.
(3) (a) $L C^{*} \times S_{1}^{3} \supset \Delta_{3}=\{(v, w) \mid\langle v, w\rangle=1\}$,
(b) $\pi_{31}: \Delta_{3} \rightarrow L C^{*}, \pi_{32}: \Delta_{3} \rightarrow S_{1}^{3}$,
(c) $\theta_{31}=\langle d v, w\rangle\left|\Delta_{3}, \theta_{32}=\langle v, d w\rangle\right| \Delta_{3}$.

Above, $\pi_{i 1}(v, w)=v$ and $\pi_{i 2}(v, w)=w$ for $i=1,2,3,\langle d v, w\rangle=-w_{0} d v_{0}+$ $\sum_{i=1}^{3} w_{i} d v_{i}$ and $\langle v, d w\rangle=-v_{0} d w_{0}+\sum_{i=1}^{3} v_{i} d w_{i}$. The 1 -forms $\theta_{i 1}$ and $\theta_{i 2}, i=$ $1,2,3$, define the same tangent hyperplane field over Δ_{i} which is denoted by K_{i}. We have the following duality theorem on the above spaces.

Theorem 3. [[3]] The pairs $\left(\Delta_{i}, K_{i}\right), i=1,2,3$, are contact manifolds and $\pi_{i 1}$ and $\pi_{i 2}$ are Legendrian fibrations.

Given a Legendrian submanifold $i: L \rightarrow \Delta_{i}, i=1,2,3$, We say that $\pi_{i 1}(i(L))$ is the Δ_{i}-dual of $\pi_{i 2}(i(L))$ and vice-versa. Then we have the following dual relations on de Sitter duals and horospherical surfaces.

Theorem 4. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. Then we have the following:
(1) γ is the Δ_{1}-dual of $D D_{\gamma}$.
(2) γ is the Δ_{2}-dual of $H S_{\gamma}$.
(3) $H S_{\gamma}$ is the Δ_{3}-dual of $D D_{\gamma}$.

Proof. (1) Consider a mapping $\mathcal{L}_{1}: I \times J \longrightarrow \Delta_{1}$ defined by $\mathcal{L}_{1}(s, \theta)=$ $\left(\gamma(s), D D_{\gamma}(s, \theta)\right)$. Then we have $\left\langle\gamma(s), D D_{\gamma}(s, \theta)\right\rangle=0$, so that the mapping is well-defined. Since we have

$$
\frac{\partial \mathcal{L}_{1}}{\partial s}(s, \theta)=\left(\boldsymbol{t}(s), \cos \theta \boldsymbol{n}^{\prime}(s)+\sin \theta \boldsymbol{e}^{\prime}(s)\right), \frac{\partial \mathcal{L}_{1}}{\partial \theta}(s, \theta)=(\mathbf{0},-\sin \theta \boldsymbol{n}(s)+\cos \theta \boldsymbol{e}(s)),
$$

\mathcal{L}_{1} is an immersion. Moreover, we have $\mathcal{L}_{1}^{*} \theta_{11}=\langle\boldsymbol{t}(s), \cos \theta \boldsymbol{n}(s)+\sin \theta \boldsymbol{e}(s)\rangle=0$. Therefore, $\mathcal{L}_{1}(I \times J)$ is a Legendrian submanifold in Δ_{1}.
(2) We define a mapping $\mathcal{L}_{2}: I \times J \longrightarrow \Delta_{2}$ by $\mathcal{L}_{2}(s, \theta)=\left(\gamma(s), H S_{\gamma}(s, \theta)\right)$. We also define a mapping $\Psi_{12}: \Delta_{1} \longrightarrow \Delta_{2}$ by $\Psi_{12}(\boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{v}, \boldsymbol{v}+\boldsymbol{w})$. We can easily show that this mapping is well-defined. Moreover, we have $\left(\Psi_{12}\right)^{*} \theta_{21}=$ $\langle d \boldsymbol{v}, \boldsymbol{v}+\boldsymbol{w}\rangle=\langle d \boldsymbol{v}, \boldsymbol{w}\rangle=\theta_{11}$. We have the inverse mapping $\Psi_{21}: \Delta_{3} \longrightarrow \Delta_{1}$ defined by $\Psi_{21}(\boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{v}, \boldsymbol{w}-\boldsymbol{v})$. Thus, Ψ_{12} is a contact diffeomorphism from
Δ_{1} to Δ_{2}. By definition, we have $\Psi_{12} \circ \mathcal{L}_{1}=\mathcal{L}_{2}$, so that $\mathcal{L}_{2}(I \times J)$ is a Legendrian submanifold in Δ_{2}.
(3) We define a mapping $\Psi_{13}: \Delta_{1} \longrightarrow \Delta_{3}$ by $\Psi_{13}(\boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{v}+\boldsymbol{w}, \boldsymbol{w})$. By the similar calculation to the case (2), we can show that Ψ_{13} is a contact diffeomorphism from Δ_{1} to Δ_{3}. By definition, we have $\Psi_{13} \circ \mathcal{L}_{1}=\left(H S_{\gamma}, D D_{\gamma}\right)$, so that $\left(H S_{\gamma}, D D_{\gamma}\right)(I \times J)$ is a Legendrian submanifold in Δ_{3}. This completes the proof.

4 De Sitter height functions

In this section we introduce a family of functions on a curve which is useful for the study of invariants of hyperbolic space curves. For a hyperbolic space curve $\gamma: I \longrightarrow H_{+}^{3}(-1)$, we define a function $D: I \times S_{1}^{3} \longrightarrow \mathbb{R}$ by $D(s, \boldsymbol{v})=$ $\langle\gamma(s), \boldsymbol{v}\rangle$. We call D a de Sitter height function on γ. We denote that $d_{v_{0}}(s)=$ $D\left(s, \boldsymbol{v}_{0}\right)$ for any $\boldsymbol{v}_{0} \in S_{1}^{3}$. Then we have the following proposition.

Proposition 1. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. Then we have the following:
(1) $d_{v_{0}}\left(s_{0}\right)=0$ if and only if there exist $\lambda, \mu, \nu \in \mathbb{R}$ such that $\boldsymbol{v}_{\mathbf{0}}=\lambda \boldsymbol{t}\left(s_{0}\right)+$ $\mu \boldsymbol{n}\left(s_{0}\right)+\nu \boldsymbol{e}\left(s_{0}\right)$.
(2) $d_{v_{0}}\left(s_{0}\right)=d_{v_{0}}^{\prime}\left(s_{0}\right)=0$ if and only if $\boldsymbol{v}_{\mathbf{0}}=\cos \theta \boldsymbol{n}\left(s_{0}\right)+\sin \theta \boldsymbol{e}\left(s_{0}\right)$, where $\theta \in[0,2 \pi)$.
(3) $d_{v_{0}}\left(s_{0}\right)=d_{v_{0}}^{\prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime}\left(s_{0}\right)=0$ if and only if $\boldsymbol{v}_{\mathbf{0}}= \pm \boldsymbol{e}\left(s_{0}\right)$.
(4) $d_{v_{0}}\left(s_{0}\right)=d_{v_{0}}^{\prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime}\left(s_{0}\right)=d^{\prime \prime \prime}\left(s_{0}\right)=0$ if and only if $\tau_{h}\left(s_{0}\right)=0$ and $\boldsymbol{v}_{\mathbf{0}}=$ $\pm \boldsymbol{e}\left(s_{0}\right)$.
(5) $d_{v_{0}}\left(s_{0}\right)=d_{v_{0}}^{\prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime \prime}\left(s_{0}\right)=d_{v_{0}}^{(4)}\left(s_{0}\right)=0$ if and only if $\tau_{h}\left(s_{0}\right)=$ $\tau_{h}^{\prime}\left(s_{0}\right)=0$ and $\boldsymbol{v}_{\mathbf{0}}= \pm \boldsymbol{e}\left(s_{0}\right)$.

Proof. Since $d_{v_{0}}(s)=\left\langle\gamma(s), \boldsymbol{v}_{0}\right\rangle$, we have the following calculations:
(a) $d_{v_{0}}^{\prime}(s)=\left\langle\boldsymbol{t}(s), \boldsymbol{v}_{0}\right\rangle$,
(b) $d_{v_{0}}^{\prime \prime}(s)=\left\langle\kappa_{h}(s) \boldsymbol{n}(s)+\gamma(s), \boldsymbol{v}_{0}\right\rangle$,
(c) $d_{v_{0}}^{\prime \prime \prime}(s)=\left\langle\left(1-\left(\kappa_{h}\right)^{2}(s)\right) \boldsymbol{t}(s)+\kappa_{h}^{\prime}(s) \boldsymbol{n}(s)+\kappa_{h}(s) \tau_{h}(s) \boldsymbol{e}(s), \boldsymbol{v}_{0}\right\rangle$,
(d) $d_{v_{0}}^{(4)}(s)=\left\langle\left(1-\left(\kappa_{h}\right)^{2}(s)\right) \gamma(s)-3 \kappa_{h}(s) \kappa_{h}^{\prime}(s) \boldsymbol{t}(s)+\left(\kappa_{h}(s)-\kappa_{h}^{3}(s)\right.\right.$

$$
\left.-\kappa_{h}(s)\left(\tau_{h}\right)^{2}(s)+\kappa_{h}^{\prime \prime}(s)\right) \boldsymbol{n}(s)+\left(2 \kappa_{h}^{\prime}(s) \tau_{h}(s)+\kappa_{h}(s) \tau_{h}^{\prime}(s) \boldsymbol{e}(s), \boldsymbol{v}_{0}\right\rangle
$$

By the definition of the de Sitter height function, the assertion (1) follows. By the formula (a), $d_{v_{0}}(s)=d_{v_{0}}^{\prime}\left(s_{0}\right)=0$ if and only if and $\mu^{2}+\nu^{2}=1$. It follows that $\mu=\cos \theta, \nu=\sin \theta$, where $0 \leq \theta<2 \pi$. Therefore the assertion (2) holds. By the formula (b), $d_{v_{0}}\left(s_{0}\right)=d_{v_{0}}^{\prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime}\left(s_{0}\right)=0$ if and only if
$\kappa_{h}(s) \cos \theta=0$. Since $\kappa_{h}\left(s_{0}\right) \neq 0$, we have $\theta=\pi / 2,3 \pi / 2$. We have the assertion (3). By the formula (c), $d_{v_{0}}(s)=d_{v_{0}}^{\prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime}\left(s_{0}\right)=d_{v_{0}}^{\prime \prime \prime}\left(s_{0}\right)=0$ if and only if $\tau_{h}(s)=0$ and $\boldsymbol{v}_{\mathbf{0}}= \pm \boldsymbol{e}\left(s_{0}\right)$. This means that the assertion (4) holds. By the similar arguments to the above, we can show the assertion (5). This completes the proof.

In order to prove Theorem 1, we use some general results on the singularity theory for families of function germs. Detailed descriptions are found in the book [1]. Let $F:\left(\mathbb{R} \times \mathbb{R}^{r},\left(s_{0}, x_{0}\right)\right) \rightarrow \mathbb{R}$ be a function germ. We call F an r-parameter unfolding of f, where $f(s)=F_{x_{0}}\left(s, x_{0}\right)$. We say that f has an A_{k}-singularity at s_{0} if $f^{(p)}\left(s_{0}\right)=0$ for all $1 \leq p \leq k$, and $f^{(k+1)}\left(s_{0}\right) \neq 0$. We also say that f has an $A_{\geq k}$-singularity at s_{0} if $f^{(p)}\left(s_{0}\right)=0$ for all $1 \leq p \leq k$. Let F be an unfolding of f and $f(s)$ has an A_{k}-singularity $(k \geq 1)$ at s_{0}. We denote the $(k-1)$-jet of the partial derivative $\partial F / \partial x_{i}$ at s_{0} by $j^{(k-1)}\left(\partial F / \partial x_{i}\left(s, x_{0}\right)\right)\left(s_{0}\right)=\sum_{j=0}^{k-1} \alpha_{j i}\left(s-s_{0}\right)^{j}$ for $i=1, \ldots, r$. Then F is called a versal unfolding if the $k \times r$ matrix of coefficients ($\alpha_{j i}$) has rank $k(k \leq r)$.

We now introduce an important set concerning the unfoldings relative to the above notions. The discriminant set of F is the set

$$
\mathcal{D}_{F}=\left\{x \in \mathbb{R}^{r} \mid \text { there exists } s \text { with } F=\frac{\partial F}{\partial s}=0 \text { at }(s, x)\right\} .
$$

Then we have the following well-known result (cf., [1]).
Theorem 5. Let $F:\left(\mathbb{R} \times \mathbb{R}^{r},\left(s_{0}, x_{0}\right)\right) \rightarrow \mathbb{R}$ be an r-parameter unfolding of $f(s)$ which has an A_{k} singularity at s_{0}. Suppose that F is a versal unfolding.
(1) If $k=2$, then \mathcal{D}_{F} is locally diffeomorphic to $C \times \mathbb{R}^{r-2}$.
(2) If $k=3$, then \mathcal{D}_{F} is locally diffeomorphic to $S W \times \mathbb{R}^{r-3}$.

For the proof of Theorem 1, we have the following proposition.
Proposition 2. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$ and $D: I \times S_{1}^{3} \longrightarrow \mathbb{R}$ be the de Sitter height function on $\gamma(s)$. If $d_{v_{0}}$ has an A_{k}-singularity $(k=2,3)$ at s_{0}, then D is a versal unfolding of $d_{v_{0}}$.

Proof. Let us consider the pseudo orthonormal basis $\boldsymbol{e}_{0}=\gamma\left(s_{0}\right), \boldsymbol{e}_{1}=\boldsymbol{t}\left(s_{0}\right)$, $\boldsymbol{e}_{2}=\boldsymbol{n}\left(s_{0}\right)$ and $\boldsymbol{e}_{3}=\boldsymbol{e}\left(s_{0}\right)$ instead of the canonical basis of \mathbb{R}_{1}^{4}. Then

$$
D(s, \boldsymbol{v})=-v_{0} x_{0}(s)+v_{1} x_{1}(s)+v_{2} x_{2}(s)+v_{3} x_{3}(s),
$$

where v_{i} and $x_{i}(s)$ denote respectively the coordinates of \boldsymbol{v} and $\boldsymbol{\gamma}(s)$ with respect
to this basis. Since $v_{3}=\sqrt{v_{0}^{2}-v_{1}^{2}-v_{2}^{2}+1}$, we have

$$
\begin{aligned}
& \frac{\partial D}{\partial v_{0}}(s, \boldsymbol{v})=-x_{0}(s)+\frac{v_{0}}{v_{3}} x_{3}(s), \frac{\partial^{2} D}{\partial s \partial v_{0}}(s, \boldsymbol{v})=-x_{0}^{\prime}(s)+\frac{v_{0}}{v_{3}} x_{3}^{\prime}(s) \\
& \frac{\partial^{3} D}{\partial s^{2} \partial v_{0}}(s, \boldsymbol{v})=-x_{0}^{\prime \prime}(s)+\frac{v_{0}}{v_{3}} x_{3}^{\prime \prime}(s) \\
& \frac{\partial D}{\partial v_{i}}(s, \boldsymbol{v})=x_{i}(s)-\frac{v_{i}}{v_{3}} x_{3}(s), \frac{\partial^{2} D}{\partial s \partial v_{i}}(s, \boldsymbol{v})=x_{i}^{\prime}(s)-\frac{v_{i}}{v_{3}} x_{3}^{\prime}(s) \\
& \frac{\partial^{3} D}{\partial^{2} s \partial v_{i}}(s, \boldsymbol{v})=x_{i}^{\prime \prime}(s)-\frac{v_{i}}{v_{3}} x_{3}^{\prime \prime}(s), \quad(i=1,2)
\end{aligned}
$$

so that we consider the following matrix:

$$
A=\left(\begin{array}{ccc}
-x_{0}\left(s_{0}\right)+\frac{v_{0}}{v_{3}} x_{3}\left(s_{0}\right) & x_{1}\left(s_{0}\right)-\frac{v_{1}}{v_{3}} x_{3}\left(s_{0}\right) & x_{2}\left(s_{0}\right)-\frac{v_{2}}{v_{3}} x_{3}\left(s_{0}\right) \\
-x_{0}^{\prime}\left(s_{0}\right)+\frac{v_{0}}{v_{3}} x_{3}^{\prime}\left(s_{0}\right) & x_{1}^{\prime}\left(s_{0}\right)-\frac{v_{1}}{v_{3}} x_{3}^{\prime}\left(s_{0}\right) & x_{2}^{\prime}\left(s_{0}\right)-\frac{v_{2}}{v_{3}} x_{3}^{\prime}\left(s_{0}\right) \\
-x_{0}^{\prime \prime}\left(s_{0}\right)+\frac{v_{0}}{v_{3}} x_{3}^{\prime \prime}\left(s_{0}\right) & x_{1}^{\prime \prime}\left(s_{0}\right)-\frac{v_{1}}{v_{3}} x_{3}^{\prime \prime}\left(s_{0}\right) & x_{2}^{\prime \prime}\left(s_{0}\right)-\frac{v_{2}}{v_{3}} x_{3}^{\prime \prime}\left(s_{0}\right)
\end{array}\right) .
$$

We denote that

$$
\boldsymbol{a}_{i}=\left(\begin{array}{c}
x_{i}\left(s_{0}\right) \\
x_{i}^{\prime}\left(s_{0}\right) \\
x_{i}^{\prime \prime}\left(s_{0}\right)
\end{array}\right),(i=0,1,2,3)
$$

Then we have
$\operatorname{det} A=\frac{v_{0}}{v_{3}} \operatorname{det}\left(\boldsymbol{a}_{3} \boldsymbol{a}_{1} \boldsymbol{a}_{2}\right)+\frac{v_{1}}{v_{3}} \operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{3} \boldsymbol{a}_{2}\right)+\frac{v_{2}}{v_{3}} \operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{1} \boldsymbol{a}_{3}\right)-\frac{v_{3}}{v_{3}} \operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{1} \boldsymbol{a}_{2}\right)$

$$
=\frac{v_{0}}{v_{3}} \operatorname{det}\left(\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right)-\frac{v_{1}}{v_{3}} \operatorname{det}\left(\begin{array}{lll}
\boldsymbol{a}_{0} & a_{2} & \boldsymbol{a}_{3}
\end{array}\right)+\frac{v_{2}}{v_{3}} \operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{1} \boldsymbol{a}_{3}\right)-\frac{v_{3}}{v_{3}} \operatorname{det}\left(\begin{array}{ll}
\boldsymbol{a}_{0} & \boldsymbol{a}_{1}
\end{array} \boldsymbol{a}_{2}\right)
$$

Since we have
$\boldsymbol{\gamma} \wedge \boldsymbol{\gamma}^{\prime} \wedge \boldsymbol{\gamma}^{\prime \prime}=\left(-\operatorname{det}\left(\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right),-\operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right),+\operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{1} \boldsymbol{a}_{3}\right),-\operatorname{det}\left(\boldsymbol{a}_{0} \boldsymbol{a}_{1} \boldsymbol{a}_{2}\right)\right)$ at $s=s_{0}, \operatorname{det} A=\left\langle\left(\frac{v_{0}}{v_{3}}, \frac{v_{1}}{v_{3}}, \frac{v_{2}}{v_{3}}, \frac{v_{3}}{v_{3}}\right),\left(\gamma^{\prime} \wedge \gamma^{\prime \prime} \wedge \gamma^{\prime \prime \prime}\right)\right\rangle=\left\langle\frac{1}{v_{3}} \boldsymbol{e}\left(s_{0}\right), \kappa_{h}\left(s_{0}\right) \boldsymbol{e}\left(s_{0}\right)\right\rangle=$ $\frac{\kappa_{h}\left(s_{0}\right)}{v_{3}} \neq 0$. Thus, we have rank, $A=3$.

$$
B=\left(\begin{array}{ccc}
-x_{0}\left(s_{0}\right)+\frac{v_{0}}{v_{3}} x_{3}\left(s_{0}\right) & x_{1}\left(s_{0}\right)-\frac{v_{1}}{v_{3}} x_{3}\left(s_{0}\right) & x_{2}\left(s_{0}\right)-\frac{v_{2}}{v_{3}} x_{3}\left(s_{0}\right) \\
-x_{0}^{\prime}\left(s_{0}\right)+\frac{v_{0}}{v_{3}} x_{3}^{\prime}\left(s_{0}\right) & x_{1}^{\prime}\left(s_{0}\right)-\frac{v_{1}}{v_{3}} x_{3}^{\prime}\left(s_{0}\right) & x_{2}^{\prime}\left(s_{0}\right)-\frac{v_{2}}{v_{3}} x_{3}^{\prime}\left(s_{0}\right)
\end{array}\right)
$$

this consists of the first and the second columns of the matrix A, so that the rank of B is two. If $d_{v_{0}}$ has an A_{k}-singularity $(\mathrm{k}=2,3)$ at s_{0}, then D is a versal unfolding of $d_{v_{0}}$. This completes the proof.

Proof. (Proof of Theorem 1.) By Proposition 1, (2), the discriminant set \mathcal{D}_{D} of the de Sitter height function D of γ is the image of the de Sitter dual surface of γ. The singularities of the discriminant set are corresponding to the points of Proposition 1, (3), so that the assertion (1) holds. It also follows from Proposition $1,(4)$ and (5), that $d_{v_{0}}$ has the A_{2}-type singularity (respectively, the A_{3}-type singularity) at $s=s_{0}$ if and only if $\theta_{0}=2 / \pi, 3 \pi / 2$ and $\tau_{h}\left(s_{0}\right) \neq 0$.(respectively, $\theta_{0}=\pi / 2,3 \pi / 2$ and $\left.\tau_{h}\left(s_{0}\right)=0, \tau_{h}^{\prime}\left(s_{0}\right) \neq 0\right)$. By Theorem 5 and Proposition 2, we have the assertions (2) and (3). This completes the proof.

5 Invariants of hyperbolic space curves

In this section we investigate the geometric properties of the singularities of $D D_{\gamma}$ by using the invariant τ_{h} of γ. At first, we consider the case when $\tau_{h} \equiv 0$.

Proposition 3. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. For the de Sitter dual suface $D D_{\gamma}(s, \theta)=\cos \theta \boldsymbol{n}(s)+\sin \theta \boldsymbol{e}(s)$ of γ and $\theta_{0}=\pi / 2,3 \pi / 2$, the following conditions are equivalent:
(a) $D D_{\gamma}\left(s, \theta_{0}\right)$ is a constant vector,
(b) $\tau_{h}(s) \equiv 0$,
(c) $\operatorname{Im}(\gamma) \subset E S^{2}(\boldsymbol{v}, 0)$ for a spacelike vector \boldsymbol{v}.

Proof. Suppose that $\theta_{0}=\pi / 2,3 \pi / 2$. Then we have $D D_{\gamma}\left(s, \theta_{0}\right)= \pm \boldsymbol{e}(s)$ and $\frac{\partial D D_{\gamma}\left(s, \theta_{0}\right)}{\partial s}=\mp \tau_{h}(s) \boldsymbol{e}(s)$, so that $\frac{d D D_{\gamma}\left(s, \theta_{0}\right)}{d s}(s) \equiv 0$ if and only if $\tau_{h}(s) \equiv 0$. This means that the condition (a) is equivalent to the condition (b). Suppose that $\tau_{h}(s) \equiv 0$. Then $D D_{\gamma}\left(s, \theta_{0}\right)= \pm \boldsymbol{e}(s)= \pm \boldsymbol{v}$ are constant. Since $\langle\gamma(s), \pm \boldsymbol{e}(s)\rangle=0, \operatorname{Im}(\gamma) \subset H_{+}^{3}(-1) \cap H P(\boldsymbol{v}, 0)$. Here, $\boldsymbol{e}(s)=\boldsymbol{v}$ is spacelike, so that $H P(\boldsymbol{v}, 0)$ is timelike.

On the other hand, suppose that $\operatorname{Im}(\gamma) \subset H_{+}^{3}(-1) \cap H P(\boldsymbol{v}, 0)$ and \boldsymbol{v} is spacelike. Then we have $h_{v}(s)=\langle\gamma(s), \boldsymbol{v}\rangle=0$. By Proposition 1, (4), $\tau_{h}(s) \equiv 0$. This completes the proof

The above proposition asserts that the degeneracy of singularities of $D D_{\gamma}$ might relates how the curve contact with a hyperbolic plane. Let F : $H_{+}^{3}(-1) \longrightarrow \mathbb{R}$ be a submersion and $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a spacelike curve. We say that γ has k-point contact with $F^{-1}(0)$ at $t=t_{0}$ if the function $g(t)=F \circ \gamma(t)$ satisfies $g\left(t_{0}\right)=g^{\prime}\left(t_{0}\right)=\cdots=g^{(k-1)}\left(t_{0}\right)=0, g^{(k)}\left(t_{0}\right) \neq 0$. We also say that γ has at least k-point contact with $F^{-1}(0)$ at $t=t_{0}$ if the function $g(t)=F \circ \gamma(t)$ satisfies $g\left(t_{0}\right)=g^{\prime}\left(t_{0}\right)=\cdots=g^{(k-1)}\left(t_{0}\right)=0$. We now consider a function $\mathcal{D}: H_{+}^{3}(-1) \times S_{1}^{3} \longrightarrow \mathbb{R}$ defined by $\mathcal{D}(\boldsymbol{x}, \boldsymbol{v})=\langle\boldsymbol{x}, \boldsymbol{v}\rangle$. Then we have
$D(s, \boldsymbol{v})=\mathcal{D} \circ\left(\gamma \times 1_{S_{1}^{3}}\right)$. Thus, we have the following proposition as a corollary of Proposition 1.

Proposition 4. For $\boldsymbol{v}_{0}=D D_{\gamma}\left(s_{0}, \theta_{0}\right)$, we have the following:
(1) γ has at least 2-point contact with $E S\left(\boldsymbol{v}_{0}, 0\right)$ at s_{0} if and only if $\theta_{0}=\pi / 2$ or $3 \pi / 2$.
(2) γ has 3-point contact with $E S\left(\boldsymbol{v}_{0}, 0\right)$ at s_{0} if and only if $\theta_{0}=\pi / 2$ or $3 \pi / 2$ and $\tau_{h}\left(s_{0}\right) \neq 0$.
(3) γ has 4-point contact with $E S\left(\boldsymbol{v}_{0}, 0\right)$ at s_{0} if and only if $\theta_{0}=\pi / 2$ or $3 \pi / 2$, $\tau_{h}\left(s_{0}\right)=0$ and $\tau_{h}^{\prime}\left(s_{0}\right) \neq 0$.

By Theorem 1, we have the following geometric characterization of the singularities of $D D_{\gamma}$ as follows:

Theorem 6. Let $\gamma: I \longrightarrow H_{+}^{3}(-1)$ be a unit speed hyperbolic space curve with $\kappa_{h} \neq 0$. For $\boldsymbol{v}_{0}=D D_{\gamma}\left(s_{0}, \theta_{0}\right)$, we have the following:
(1) The de Sitter dual surface $D D_{\gamma}$ is singular at a point $\left(s_{0}, \theta_{0}\right)$ if and only if γ has at least 2-point contact with $E S\left(\boldsymbol{v}_{0}, 0\right)$ at s_{0}.
(2) The de Sitter dual surface $D D_{\gamma}$ of γ is locally diffeomorphic to the cuspidal edge $C \times \mathbb{R}$ at $\left(s_{0}, \theta_{0}\right)$ if γ has 3 -point contact with $E S\left(\boldsymbol{v}_{0}, 0\right)$ at s_{0}.
(3) The de Sitter dual surface $D D_{\gamma}$ of γ is locally diffeomorphic to the swallow tail $S W$ at $\left(s_{0}, \theta_{0}\right)$ if γ has 4-point contact with $E S\left(\boldsymbol{v}_{0}, 0\right)$ at s_{0}.

References

[1] J. W. Bruce and P. J. Giblin: Curves and singularities (second edition), Cambridge University press, 1992
[2] S. Izumiya, D.-H. Pei and T. Sano: Horospherical surfaces of curves in hyperbolic space, Publ. Math. Debrecen, 64 (2004), 1-13.
[3] S. Izumiya: Legendrian dualities and spacelike hypersurfaces in the lightcone, Moscow Mathematical Journal, 9 (2009), 325-357.

[^0]: http://siba-ese.unisalento.it/ © 2013 Università del Salento

