On the Dooley-Rice contraction of the principal series

Benjamin Cahen
Université de Metz, UFR-MIM, Département de mathématiques, LMMAS, ISGMP-Bât. A, Ile du Saulcy 57045, Metz cedex 01, France cahen@univ-metz.fr

Received: 19.6.2013; accepted: 24.7.2013.

Abstract

In [A. H. Dooley and J. W. Rice: On contractions of semisimple Lie groups, Trans. Am. Math. Soc., 289 (1985), 185-202], Dooley and Rice introduced a contraction of the principal series representations of a non-compact semi-simple Lie group to the unitary irreducible representations of its Cartan motion group. We study here this contraction by using non-compact realizations of these representations.

Keywords: Contraction of Lie groups; contraction of representations; semi-simple Lie group; semi-direct product; Cartan motion group; unitary representation; principal series; coadjoint orbit.

MSC 2010 classification: primary 22E46, secondary 22E45, 22E70, 22E15

Introduction

Since the pioneering paper of Inönü and Wigner [19], the contractions of Lie group representations have been studied by many authors, see in particular [27], [24], [14], [11] and [12].

In [16], Dooley and Rice introduced an important contraction of the principal series of a non-compact semi-simple Lie group to the unitary irreducible representations of its Cartan motion group which recovered many known examples and also illustrated the Mackey Analogy between semi-simple Lie groups and semi-direct products [23].

In [15], Dooley suggested interpreting contractions of representations in the setting of the Kirillov-Kostant method of orbits [20], [22] and, in [13], Cotton and Dooley showed how to recover contraction results by using the Weyl correspondence. In this spirit, we established in [7] a contraction of the discrete series of a non-compact semi-simple Lie group to the unitary irreducible representations of a Heisenberg group (see also [26], [3], [6] and [4]) and, in [10], we study the Dooley-Rice contraction of the principal series at the infinitesimal

[^0]level. We also refer the reader to [17] for recent developpements on contractions of representations.

Let G be a non-compact semi-simple Lie group with finite center and let K be a maximal compact subgroup of G. The corresponding Cartan motion group G_{0} is the semi-direct product $V \rtimes K$, where V is the orthogonal complement of the Lie algebra of K in the Lie algebra of G with respect to the Killing form. In [16], the Dooley-Rice contraction of the principal series was established by using the compact picture for the principal series representations [21], p. 169. Here, we present the analogous contraction results in the non-compact picture.

This note is organized as follows. In Section 1 and Section 2, we introduce the non-compact realizations of the representations of the principal series of G and of the generic unitary irreducible representations of G_{0}, following [9] and [10]. In Section 3, we study the Dooley-Rice contraction of the principal series in the non-compact picture. Our main result is then Proposition 4 which is analogous to Theorem 1 in [16]. Finally, in Section 4, we establish similar results for the corresponding derived representations.

1 Principal series representations

In this section, we introduce the non-compact realization of a principal series representation. We follow the exposition of [9] and [10] which is mainly based on [21], Chapter 7, [30], Chapter 8 and [18], Chapter VI. We use standard notation.

Let G be a connected non-compact semi-simple real Lie group with finite center. Let \mathfrak{g} be the Lie algebra of G. We can identify G-equivariantly \mathfrak{g} to its dual space \mathfrak{g}^{*} by using the Killing form β of \mathfrak{g} defined by $\beta(X, Y)=\operatorname{Tr}(\operatorname{ad} X \operatorname{ad} Y)$ for X and Y in \mathfrak{g}. Let θ be a Cartan involution of \mathfrak{g} and let $\mathfrak{g}=\mathfrak{k} \oplus V$ be the corresponding Cartan decomposition of \mathfrak{g}. Let K be the connected compact (maximal) subgroup of G with Lie algebra \mathfrak{k}. Let \mathfrak{a} be a maximal abelian subalgebra of V and let M be the centralizer of \mathfrak{a} in K. Let \mathfrak{m} denote the Lie algebra of M. We can decompose \mathfrak{g} under the adjoint action of \mathfrak{a} :

$$
\mathfrak{g}=\mathfrak{a} \oplus \mathfrak{m} \oplus \sum_{\lambda \in \Delta} \mathfrak{g}_{\lambda}
$$

where Δ is the set of restricted roots. We fix a Weyl chamber in \mathfrak{a} and we denote by Δ^{+}the corresponding set of positive roots. We set $\mathfrak{n}=\sum_{\lambda \in \Delta^{+}} \mathfrak{g}_{\lambda}$ and $\overline{\mathfrak{n}}=\sum_{\lambda \in \Delta^{+}} \mathfrak{g}_{-\lambda}$. Then $\overline{\mathfrak{n}}=\theta(\mathfrak{n})$. Let A, N and \bar{N} denote the analytic subgroups of G with algebras $\mathfrak{a}, \mathfrak{n}$ and $\overline{\mathfrak{n}}$. We fix a regular element ξ_{1} in \mathfrak{a}, that is, $\lambda\left(\xi_{1}\right) \neq 0$ for each $\lambda \in \Delta$ and an element ξ_{2} in \mathfrak{m}. Let $\xi_{0}=\xi_{1}+\xi_{2}$. Denote by $O\left(\xi_{0}\right)$ the orbit of ξ_{0} in $\mathfrak{g}^{*} \simeq \mathfrak{g}$ under the (co)adjoint action of G and by $o\left(\xi_{2}\right)$ the orbit of ξ_{2} in \mathfrak{m} under the adjoint action of M.

Consider a unitary irreducible representation σ of M on a complex (finitedimensional) vector space E. Henceforth we assume that σ is associated with the orbit $o\left(\xi_{2}\right)$ in the following sense, see [31], Section 4. For a maximal torus T of M with Lie algebra $\mathfrak{t}, i \beta\left(\xi_{2}, \cdot\right) \in i \mathfrak{t}^{*}$ is a highest weight for σ.

Now we consider the unitarily induced representation

$$
\hat{\pi}=\operatorname{Ind}_{\mathrm{MAN}}^{\mathrm{G}}\left(\sigma \otimes \exp (\mathrm{i} \nu) \otimes 1_{\mathrm{N}}\right)
$$

where $\nu=\beta\left(\xi_{1}, \cdot\right) \in \mathfrak{a}^{*}$. The representation $\hat{\pi}$ lies in the unitary principal series of G and is usually realized on the space $L^{2}(\bar{N}, E)$ which is the Hilbert space completion of the space $C_{0}^{\infty}(\bar{N}, E)$ of compactly supported smooth functions $\phi: \bar{N} \rightarrow E$ with respect to the norm defined by

$$
\|\phi\|^{2}=\int_{\bar{N}}\langle\phi(y), \phi(y)\rangle_{E} d y
$$

where $d y$ is the Haar measure on \bar{N} normalized as follows. Let $\left(E_{i}\right)_{1 \leq i \leq n}$ be an orthonormal basis for $\overline{\mathfrak{n}}$ with respect to the scalar product defined by $(Y, Z):=$ $-\beta(Y, \theta(Z))$. Denote by $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ the coordinates of $Y \in \overline{\mathfrak{n}}$ in this basis and let $d Y=d Y_{1} d Y_{2} \ldots d Y_{n}$ be the Euclidean measure on $\overline{\mathfrak{n}}$. The exponential map exp is a diffeomorphism from $\overline{\mathfrak{n}}$ onto \bar{N} and we set $d y=\log ^{*}(d Y)$ where $\log =\exp ^{-1}$.

Note that $\hat{\pi}$ is associated with $O\left(\xi_{0}\right)$ by the method of orbits, see [2] and [5].
Recall that $\bar{N} M A N$ is a open subset of G whose complement has Haar measure zero. We denote by $g=\bar{n}(g) m(g) a(g) n(g)$ the decomposition of $g \in$ $\bar{N} M A N$. For $g \in G$ the action of the operator $\hat{\pi}(g)$ is given by

$$
\begin{equation*}
(\hat{\pi}(g) \phi)(y)=e^{-(\rho+i \nu) \log a\left(g^{-1} y\right)} \sigma\left(m\left(g^{-1} y\right)\right)^{-1} \phi\left(\bar{n}\left(g^{-1} y\right)\right) \tag{1.1}
\end{equation*}
$$

where $\rho(H):=\frac{1}{2} \operatorname{Tr}_{\bar{n}}(\operatorname{ad} H)=\frac{1}{2} \sum_{\lambda \in \Delta^{+}} \lambda$.
Recall that we have the Iwasawa decomposition $G=K A N$. We denote by $g=\tilde{k}(g) \tilde{a}(g) \tilde{n}(g)$ the decomposition of $g \in G$.

In order to simplify the study of the contraction, we slightly modify the preceding realization of $\hat{\pi}$ as follows. Let I be the unitary isomorphism of $L^{2}(\bar{N}, E)$ defined by

$$
(I \phi)(y)=e^{-i \nu(\log \tilde{a}(y))} \phi(y) .
$$

Then we introduce the realization π of $\hat{\pi}$ defined by $\pi(g):=I^{-1} \hat{\pi}(g) I$ for each $g \in G$. We immediately obtain

$$
\begin{gather*}
(\pi(g) \phi)(y)=e^{i \nu\left(\log \tilde{a}(y)-\log \tilde{a}\left(\bar{n}\left(g^{-1} y\right)\right)\right.} e^{-(\rho+i \nu) \log a\left(g^{-1} y\right)} \sigma\left(m\left(g^{-1} y\right)\right)^{-1} \tag{1.2}\\
\phi\left(\bar{n}\left(g^{-1} y\right)\right)
\end{gather*}
$$

For $g \in G$ and $y \in \bar{N}$, we have

$$
\begin{aligned}
& g^{-1} y=\bar{n}\left(g^{-1} y\right) m\left(g^{-1} y\right) a\left(g^{-1} y\right) n\left(g^{-1} y\right) \\
& =\tilde{k}\left(\bar{n}\left(g^{-1} y\right)\right) \tilde{a}\left(\bar{n}\left(g^{-1} y\right)\right) \tilde{n}\left(\bar{n}\left(g^{-1} y\right)\right) m\left(g^{-1} y\right) a\left(g^{-1} y\right) n\left(g^{-1} y\right)
\end{aligned}
$$

Then we get

$$
\tilde{a}\left(g^{-1} y\right)=\tilde{a}\left(\bar{n}\left(g^{-1} y\right)\right) a\left(g^{-1} y\right)
$$

Hence we obtain

$$
\begin{gather*}
(\pi(g) \phi)(y)=e^{i \nu\left(\log \tilde{a}(y)-\log \tilde{a}\left(g^{-1} y\right)\right)} e^{-\rho\left(\log a\left(g^{-1} y\right)\right)} \sigma\left(m\left(g^{-1} y\right)\right)^{-1} \tag{1.3}\\
\phi\left(\bar{n}\left(g^{-1} y\right)\right)
\end{gather*}
$$

Now, we compute the derived representation $d \pi$. We introduce some additional notation. If H is a Lie group and X is an element of the Lie algebra of H then we denote by X^{+}the right-invariant vector field generated by X, that is, $X^{+}(h)=\left.\frac{d}{d t}(\exp (t X)) h\right|_{t=0}$ for $h \in H$. We denote by $p_{\mathfrak{a}}, p_{\mathfrak{m}}$ and $p_{\overline{\mathfrak{n}}}$ the projection operators of \mathfrak{g} on $\mathfrak{a}, \mathfrak{m}$ and $\overline{\mathfrak{n}}$ associated with the decomposition $\mathfrak{g}=\overline{\mathfrak{n}} \oplus \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Moreover, we also denote by $\tilde{p}_{\mathfrak{a}}$ the projection operator of \mathfrak{g} on \mathfrak{a} associated with the decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. By differentiating the multiplication map $\bar{N} \times M \times A \times N \rightarrow \bar{N} M A N$, we easily get the following lemma, see [5].

Lemma 1. 1) For each $X \in \mathfrak{g}$ and each $y \in \bar{N}$, we have

$$
\begin{aligned}
\left.\frac{d}{d t} a(\exp (t X) y)\right|_{t=0} & =p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right) \\
\left.\frac{d}{d t} m(\exp (t X) y)\right|_{t=0} & =p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right) \\
\left.\frac{d}{d t} \bar{n}(\exp (t X) y)\right|_{t=0} & =\left(\operatorname{Ad}(y) p_{\bar{n}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)^{+}(y)
\end{aligned}
$$

2) For each $X \in \mathfrak{g}$ and each $g \in G$, we have

$$
\left.\frac{d}{d t} \tilde{a}(\exp (t X) g)\right|_{t=0}=\left(\tilde{p}_{\mathfrak{a}}\left(\operatorname{Ad}\left(\tilde{k}(g)^{-1}\right) X\right)\right)^{+}(\tilde{a}(g))
$$

From this lemma, we easily obtain the following proposition.

Proposition 1. For $X \in \mathfrak{g}, \phi \in C^{\infty}(\bar{N}, E)$ and $y \in \bar{N}$, we have

$$
\begin{aligned}
& (d \pi(X) \phi)(y)=i \nu\left(\tilde{p}_{\mathfrak{a}}\left(\operatorname{Ad}\left(\tilde{k}(y)^{-1}\right) X\right)\right) \phi(y) \\
& \quad+\rho\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) \phi(y)+d \sigma\left(p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right) \phi(y) \\
& \quad-d \phi(y)\left(\operatorname{Ad}(y) p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) X\right)\right)^{+}(y) .
\end{aligned}
$$

2 Generic representations of the Cartan motion group

In this section we review some results from [9] and [10]. Recall that we have the Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus V$ where V is the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Killing form β. We denote by $p_{\mathfrak{k}}^{c}$ and p_{V}^{c} the projections of \mathfrak{g} on \mathfrak{k} and V associated with the Cartan decomposition.

We can form the semi-direct product $G_{0}:=V \rtimes K$. The multiplication of G_{0} is given by

$$
(v, k) \cdot\left(v^{\prime}, k^{\prime}\right)=\left(v+\operatorname{Ad}(k) v^{\prime}, k k^{\prime}\right)
$$

for v, v^{\prime} in V and k, k^{\prime} in K. The Lie algebra \mathfrak{g}_{0} of G_{0} is the space $V \times \mathfrak{k}$ endowed with the Lie bracket

$$
\left[(w, U),\left(w^{\prime}, U^{\prime}\right)\right]_{0}=\left(\left[U, w^{\prime}\right]-\left[U^{\prime}, w\right],\left[U, U^{\prime}\right]\right)
$$

for w, w^{\prime} in V and U, U^{\prime} in \mathfrak{k}.
Recall that β is positive definite on V and negative definite on $\mathfrak{k}[18]$, p. 184 . Then, by using β, we can identify V^{*} to V and \mathfrak{k}^{*} to \mathfrak{k}, hence $\mathfrak{g}_{0}^{*} \simeq V^{*} \times \mathfrak{k}^{*}$ to $V \times \mathfrak{k}$. Under this identification, the coadjoint action of G_{0} on $\mathfrak{g}_{0}^{*} \simeq V \times \mathfrak{k}$ is then given by

$$
(v, k) \cdot(w, U)=(\operatorname{Ad}(k) w, \operatorname{Ad}(k) U+[v, \operatorname{Ad}(k) w])
$$

for v, w in V, k in K and U in \mathfrak{k}, see [25].
The coadjoint orbits of the semi-direct product of a Lie group by a vector space were described by Rawnsley in [25]. For each $(w, U) \in \mathfrak{g}_{0}^{*} \simeq \mathfrak{g}_{0}$, we denote by $O(w, U)$ the orbit of (w, U) under the coadjoint action of G_{0}. In [9], we proved the following lemma.

Lemma 2. 1) Let \mathcal{O} be a coadjoint orbit for the coadjoint action of G_{0} on $\mathfrak{g}_{0}^{*} \simeq \mathfrak{g}_{0}$. Then there exists an element of \mathcal{O} of the form $\left(\xi_{1}, U\right)$ with $\xi_{1} \in \mathfrak{a}$. Moreover, if ξ_{1} is regular then there exists $\xi_{2} \in \mathfrak{m}$ such that $\left(\xi_{1}, \xi_{2}\right) \in \mathcal{O}$.
2) Let ξ_{1} be a regular element of \mathfrak{a}. Then M is the stabilizer of ξ_{1} in K.

In the rest of this note, we consider the orbit $O\left(\xi_{1}, \xi_{2}\right)$ of $\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{a} \times \mathfrak{m} \subset$ $\mathfrak{g}_{0}^{*} \simeq \mathfrak{g}_{0}$ under the coadjoint action of G_{0}. As in Section 1, we assume that ξ_{1} is a regular element of \mathfrak{a} and that the adjoint orbit $o\left(\xi_{2}\right)$ of ξ_{2} in \mathfrak{m} is associated with a unitary irreducible representation σ of M which is realized on a (finitedimensional) Hilbert space E. Then $O\left(\xi_{1}, \xi_{2}\right)$ is associated with the unitarily induced representation

$$
\hat{\pi}_{0}=\operatorname{Ind}_{\mathrm{V} \times \mathrm{M}}^{\mathrm{G}_{0}}\left(\mathrm{e}^{\mathrm{i} \nu} \otimes \sigma\right)
$$

where $\nu=\beta\left(\xi_{1}, \cdot\right) \in \mathfrak{a}^{*}$ (see [22] and [25]). By a result of Mackey, $\hat{\pi}_{0}$ is irreducible since σ is irreducible [29]. We say that the orbit $O\left(\xi_{1}, \xi_{2}\right)$ is generic and that the associated representation $\hat{\pi}_{0}$ is generic.

Let $O_{V}\left(\xi_{1}\right)$ be the orbit of ξ_{1} in V under the action of K. We denote by μ the K-invariant measure on $O_{V}\left(\xi_{1}\right) \simeq K / M$. We denote by $\tilde{\pi}_{0}$ the usual realization of $\hat{\pi}_{0}$ on the space of square-integrable sections of a Hermitian vector bundle over $O_{V}\left(\xi_{1}\right)$ [22], [28], [25]. Let us briefly describe the construction of $\tilde{\pi}_{0}$. We introduce the Hilbert G_{0}-bundle $L:=G_{0} \times_{e^{i \nu} \otimes \sigma} E$ over $O_{V}\left(\xi_{1}\right) \simeq K / M$. Recall that an element of L is an equivalence class

$$
[g, u]=\left\{\left(g \cdot(v, m), e^{-i \nu(v)} \sigma(m)^{-1} u\right) \mid v \in V, m \in M\right\}
$$

where $g \in G_{0}, u \in E$ and that G_{0} acts on L by left translations: $g\left[g^{\prime}, u\right]:=$ [$g g^{\prime}, u$]. The action of G_{0} on $O_{V}\left(\xi_{1}\right) \simeq K / M$ being given by $(v, k) \cdot \xi=\operatorname{Ad}(k) \xi$, the projection map $[(v, k), u] \rightarrow \operatorname{Ad}(k) \xi_{1}$ is G_{0}-equivariant. The G_{0}-invariant Hermitian structure on L is given by

$$
\left\langle[g, u],\left[g, u^{\prime}\right]\right\rangle=\left\langle u, u^{\prime}\right\rangle_{E}
$$

where $g \in G_{0}$ and $u, u^{\prime} \in E$. Let \mathcal{H}_{0} be the space of sections s of L which are square-integrable with respect to the measure μ, that is,

$$
\|s\|_{\mathcal{H}_{0}}^{2}=\int_{O_{V}\left(\xi_{1}\right)}\langle s(\xi), s(\xi)\rangle d \mu(\xi)<+\infty
$$

Then $\tilde{\pi}_{0}$ is the action of G_{0} on \mathcal{H}_{0} defined by

$$
\left(\tilde{\pi}_{0}(g) s\right)(\xi)=g s\left(g^{-1} \cdot \xi\right)
$$

Now we introduce a non-compact realization of $\hat{\pi}_{0}$. We consider the map $\tau: y \rightarrow \operatorname{Ad}(\tilde{k}(y)) \xi_{1}$ which is a diffeomorphism from \bar{N} onto a dense open subset of $O_{V}\left(\xi_{1}\right)$ [30], Lemma 7.6.8. We denote by $k \cdot y$ the action of $k \in K$ on $y \in \bar{N}$ defined by $\tau(k \cdot y)=\operatorname{Ad}(k) \tau(y)$ or, equivalently, by $k \cdot y=\bar{n}(k y)$. Then the K-invariant measure on \bar{N} is given by $\left(\tau^{-1}\right)^{*}(\mu)=e^{-2 \rho(\log \tilde{a}(y))} d y$ [30], Lemma 7.6.8. We associate with each $s \in \mathcal{H}_{0}$ the function $\phi_{s}: \bar{N} \rightarrow E$ defined by

$$
s(\tau(y))=\left[(0, \tilde{k}(y)), e^{\rho(\log \tilde{a}(y))} \phi_{s}(y)\right]
$$

We can easily verify that $J: s \rightarrow \phi_{s}$ is a unitary operator from \mathcal{H}_{0} to $L^{2}(\bar{N}, E)$ and we set $\pi_{0}(v, k):=J \tilde{\pi}_{0}(v, k) J^{-1}$ for $(v, k) \in G_{0}$. Then we obtain

$$
\begin{equation*}
\left(\pi_{0}(v, k) \phi\right)(y)=e^{-\rho\left(\log a\left(k^{-1} y\right)\right)+i \beta\left(\operatorname{Ad}(\tilde{k}(y)) \xi_{1}, v\right)} \sigma\left(m\left(k^{-1} y\right)\right)^{-1} \phi\left(\bar{n}\left(k^{-1} y\right)\right), \tag{2.1}
\end{equation*}
$$

see [10].
The computation of $d \pi_{0}$ is similar to that of $d \pi$. By using Lemma 1 , we obtain the following proposition.

Proposition 2. For $(v, U) \in \mathfrak{g}_{0}, \phi \in C^{\infty}(\bar{N}, E)$ and $y \in \bar{N}$, we have

$$
\begin{aligned}
& \left(d \pi_{0}(v, U) \phi\right)(y)=i \beta\left(\operatorname{Ad}(\tilde{k}(y)) \xi_{1}, v\right) \phi(y) \\
& \quad+\rho\left(p_{\mathfrak{a}}\left(\operatorname{Ad}\left(y^{-1}\right) U\right)\right) \phi(y)+d \sigma\left(p_{\mathfrak{m}}\left(\operatorname{Ad}\left(y^{-1}\right) U\right)\right) \phi(y) \\
& \quad-d \phi(y)\left(\operatorname{Ad}(y) p_{\overline{\mathfrak{n}}}\left(\operatorname{Ad}\left(y^{-1}\right) U\right)\right)^{+}(y) .
\end{aligned}
$$

3 Contraction of group representations

Let us consider the family of maps $c_{r}: G_{0} \rightarrow G$ defined by

$$
c_{r}(v, k)=\exp (r v) k
$$

for $v \in V, k \in K$ and indexed by $r \in] 0,1]$. One can easily show that

$$
\lim _{r \rightarrow 0} c_{r}^{-1}\left(c_{r}(g) c_{r}\left(g^{\prime}\right)\right)=g g^{\prime}
$$

for each g, g^{\prime} in G_{0}. Then the family $\left(c_{r}\right)$ is a group contraction of G to G_{0} in the sense of [24].

Let $\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{g}_{0}$ as in Section 2. Recall that π_{0} is a unitary irreducible representation of G_{0} associated with $\left(\xi_{1}, \xi_{2}\right)$. For each $\left.\left.r \in\right] 0,1\right]$, we set $\xi_{r}:=$ $(1 / r) \xi_{1}+\xi_{2}$ and we denote by π_{r} the principal series representation of G corresponding to $O\left(\xi_{r}\right)$.

We have to take into account some technicalities due to the fact that the projection maps a, m and \bar{n} are not defined on G but just on $\bar{N} M A N$. We begin by the following lemma.

Lemma 3. For each $k \in K$, the set $U_{k}:=\left\{y \in \bar{N} \mid k^{-1} y \in \bar{N} M A N\right\}$ is an open subset of \bar{N} whose complement in \bar{N} has measure zero.

Proof. For each $k \in K$, we set $V_{k}:=\bar{N} M A N \cap k \bar{N} M A N$. Note that $G \backslash V_{k}=$ $(G \backslash \bar{N} M A N) \cup(G \backslash k \bar{N} M A N)$ has Haar measure zero. On the other hand, we
have $V_{k}=U_{k} M A N$ hence $G \backslash V_{k}=(G \backslash \bar{N} M A N) \cup\left(\bar{N} \backslash U_{k}\right) M A N$. Thus we see that $\left(\bar{N} \backslash U_{k}\right) M A N$ also has Haar measure zero. Since the restriction of the Haar measure $d g$ on G to $\bar{N} M A N$ is $e^{2 \rho(\log a)} d y d a d m d n$ where $d y, d a, d m$ and $d n$ are Haar measures on \bar{N}, A, M and $N[30]$, p. 179, we conclude that $\bar{N} \backslash U_{k}$ has measure zero.

We denote by $C_{0}(\bar{N}, E)$ the space of compactly supported continuous functions $\phi: \bar{N} \rightarrow E$ and by $C_{0}^{\infty}(\bar{N}, E)$ the space of compactly supported smooth functions $\phi: \bar{N} \rightarrow E$. We have the following proposition.

Proposition 3. For each $(v, k) \in G_{0}, \phi \in C_{0}(\bar{N}, E)$ and $y \in U_{k}$, we have

$$
\lim _{r \rightarrow 0} \pi_{r}\left(c_{r}(v, k)\right) \phi(y)=\pi_{0}(v, k) \phi(y) .
$$

Proof. By using the expressions for π_{r} and π_{0} given in Section 1 and Section 2, we have just to verify that

$$
\lim _{r \rightarrow 0} \frac{1}{r} \beta\left(\xi_{1}, \log \tilde{a}(y)-\log \tilde{a}\left(k^{-1} \exp (-r v) y\right)\right)=\beta\left(\operatorname{Ad}(\tilde{k}(y)) \xi_{1}, v\right) .
$$

But we have

$$
\begin{aligned}
& \tilde{a}\left(k^{-1} \exp (-r v) y\right)=\tilde{a}(\exp (-r v) y)=\tilde{a}(\exp (-r v) \tilde{k}(y) \tilde{a}(y) \tilde{n}(y)) \\
& \quad=\tilde{a}\left(\exp \left(-r \operatorname{Ad}\left(\tilde{k}(y)^{-1}\right) v\right)\right) \tilde{a}(y) .
\end{aligned}
$$

Then we get

$$
\tilde{a}(y) \tilde{a}\left(k^{-1} \exp (-r v) y\right)^{-1}=\tilde{a}\left(\exp \left(-r \operatorname{Ad}\left(\tilde{k}(y)^{-1}\right) v\right)\right)^{-1} .
$$

Thus, by using Lemma 1, we have

$$
\left.\frac{d}{d r} \log \tilde{a}(y) \tilde{a}\left(k^{-1} \exp (-r v) y\right)^{-1}\right|_{r=0}=p_{\tilde{a}}\left(\operatorname{Ad}\left(\tilde{k}(y)^{-1}\right) v\right) .
$$

Hence the result follows.
In order to establish the L^{2}-convergence, we need the following lemma.
Lemma 4. Let U be an open subset of \bar{N} such that $\bar{N} \backslash U$ has measure zero. Then, for each $\phi \in C_{0}(\bar{N}, E)$ and each $\varepsilon>0$, there exists $\psi \in C_{0}(\bar{N}, E)$ such that $\operatorname{supp} \psi \subset U$ and $\|\psi-\phi\| \leq \varepsilon$.

Proof. Let $|\cdot|$ denote the Euclidean norm on $\overline{\mathfrak{n}}$ (see Section 1). We endow \bar{N} with the distance d defined by $d\left(y, y^{\prime}\right)=\left|\log y-\log y^{\prime}\right|$. Let $\phi \in C_{0}(\bar{N}, E)$ and $\varepsilon>0$. Let C be a compact subset of \bar{N} such that $C \subset U \cap \operatorname{supp} \phi$ and

$$
\int_{(U \cap \operatorname{supp} \phi) \backslash C} d y \leq\left(1+4 \sup _{y \in \bar{N}}\|\phi(y)\|_{E}^{2}\right)^{-1} \varepsilon .
$$

In particular, we have $\delta:=d(C, \bar{N} \backslash U)>0$. Let $V:=\{y \in \bar{N}: d(y, C)<\delta / 2\}$. Then V is an open set such that $C \subset V \subset \bar{V} \subset U$. Consider now the function $\psi: \bar{N} \rightarrow E$ defined by

$$
\psi(y)=\frac{d(y, \bar{N} \backslash V)}{d(y, C)+d(y, \bar{N} \backslash V)} \phi(y)
$$

Note that ψ is well-defined since the intersection of C with the adherence of $\bar{N} \backslash V$ in \bar{N} is empty. Moreover, we have the following properties
(1) $\operatorname{supp} \psi \subset \bar{V} \subset U$ and $\operatorname{supp} \psi \subset \operatorname{supp} \phi$;
(2) $\sup _{y \in \bar{N}}\|\psi(y)\|_{E} \leq \sup _{y \in \bar{N}}\|\phi(y)\|_{E}$;
(3) $\psi(y)=\phi(y)$ for each $y \in C$.

This implies that

$$
\begin{aligned}
\int_{\bar{N}}\|\psi(y)-\phi(y)\|_{E}^{2} d y & =\int_{U \cap \operatorname{supp} \phi}\|\psi(y)-\phi(y)\|_{E}^{2} d y \\
& =\int_{(U \cap \operatorname{supp} \phi) \backslash C}\|\psi(y)-\phi(y)\|_{E}^{2} d y \\
& \leq 4 \sup _{y \in \bar{N}}\|\phi(y)\|_{E}^{2} \int_{(U \cap \operatorname{supp} \phi) \backslash C} d y \\
& \leq \varepsilon .
\end{aligned}
$$

Proposition 4. 1) Let ϕ, ψ in $L^{2}(\bar{N}, E)$ and $(v, k) \in G_{0}$. Then we have

$$
\lim _{r \rightarrow 0}\left\langle\pi_{r}\left(c_{r}(v, k)\right) \phi, \psi\right\rangle=\left\langle\pi_{0}(v, k) \phi, \psi\right\rangle .
$$

2) Let $\phi \in L^{2}(\bar{N}, E)$ and $(v, k) \in G_{0}$. Then we have

$$
\lim _{r \rightarrow 0}\left\|\pi_{r}\left(c_{r}(v, k)\right) \phi-\pi_{0}(v, k) \phi\right\|=0
$$

Proof. 1) We can assume without loss of generality that $\phi, \psi \in C_{0}(\bar{N}, E)$. Moreover, by Lemma 4 , we can also assume that $\operatorname{supp} \phi \subset U_{k}$. We have

$$
\left\langle\pi_{r}\left(c_{r}(v, k)\right) \phi, \psi\right\rangle=\int_{\operatorname{supp} \psi}\left\langle\pi_{r}\left(c_{r}(v, k)\right) \phi(y), \psi(y)\right\rangle_{E} d y .
$$

By Proposition 3, for each $y \in \operatorname{supp} \psi$, the integrand

$$
I_{r}(y):=\left\langle\pi_{r}\left(c_{r}(v, k)\right) \phi(y), \psi(y)\right\rangle_{E}
$$

converges to $\left\langle\pi_{0}(v, k) \phi(y), \psi(y)\right\rangle_{E}$ when $r \rightarrow 0$. In order to obtain the desired result, it suffices to verify that the dominated convergence theorem can be applied. This can be done as follows.

First we claim that there exists $r_{0}>0$ such that for each $r \in\left[0, r_{0}\right]$ and each $y \in \operatorname{supp} \psi$, we have $k^{-1} \exp (-r v) y \in \bar{N} M A N$. Indeed, if this is not the case, then there exists a sequence $r_{n}>0$ converging to 0 and a sequence $y_{n} \in \operatorname{supp} \psi$ such that $k^{-1} \exp \left(-r_{n} v\right) y_{n} \in G \backslash \bar{N} M A N$ for each n. Since $\operatorname{supp} \psi$ is compact, we can also assume that y_{n} converges to an element $y \in \operatorname{supp} \psi$. Then we get $k^{-1} y \in G \backslash \bar{N} M A N$. This a contradiction.

Since the projection maps a and \bar{n} are continuous on $\bar{N} M A N$, there exists $c>0$ such that, for each $r<r_{0}$ and each $y \in \operatorname{supp} \psi$, we have

$$
e^{-\rho\left(\log a\left(k^{-1} \exp (-r v) y\right)\right)} \leq c
$$

Then, by taking into account the expression for $\pi_{r}\left(c_{r}(v, k)\right)$, we get

$$
\left|I_{r}(y)\right| \leq c \cdot \sup _{z \in \bar{N}}\|\phi(z)\|_{E} \cdot\|\psi(y)\|_{E}
$$

for each $r<r_{0}$ and each $y \in \operatorname{supp} \psi$, hence the result.
2) Since π and π_{0} are unitary, for each $\phi \in L^{2}(\bar{N}, E)$ we have

$$
\left\|\pi_{r}\left(c_{r}(v, k)\right) \phi-\pi_{0}(v, k) \phi\right\|^{2}=2\|\phi\|^{2}-2 \operatorname{Re}\left\langle\pi_{r}\left(c_{r}(v, k)\right) \phi, \pi_{0}(v, k) \phi\right\rangle
$$

which converges to $2\|\phi\|^{2}-2 \operatorname{Re}\left\langle\pi_{0}(v, k) \phi, \pi_{0}(v, k) \phi\right\rangle$ when $r \rightarrow 0$ by 1$)$. [QED
Remarks (1) In fact, 2) of Proposition 4 asserts that π_{0} is a contraction of $\left(\pi_{r}\right)$ in the sense of [24] (see also [8]).
(2) By using the Bruhat decomposition $G=\bigcup_{w \in W} M A N w M A N$ where W is the Weyl group, it is easy to see that $\bigcap_{k \in K} k \bar{N} M A N=\emptyset$ then the set of all elements $y \in \bar{N}$ such that $k^{-1} y \in \bar{N} M A N$ for each $k \in K$ is also empty. Hence, it seems to be difficult to get uniform convergence on the compact sets of G_{0} in Proposition 4 as in Theorem 1 of [16].

4 Contraction of derived representations

In this section, we give similar contraction results for the derived representations.

For each $r \in] 0,1]$, we denote by C_{r} the differential of c_{r}. Then the family $\left(C_{r}\right)$ is a contraction of Lie algebras from \mathfrak{g} onto \mathfrak{g}_{0}, that is,

$$
\lim _{r \rightarrow 0} C_{r}^{-1}\left(\left[C_{r}(X), C_{r}(Y)\right]\right)=[X, Y]_{0}
$$

for each $X, Y \in \mathfrak{g}_{0}$. We also denote by $C_{r}^{*}: \mathfrak{g}^{*} \simeq \mathfrak{g} \rightarrow \mathfrak{g}_{0}^{*} \simeq \mathfrak{g}_{0}$ the dual map of C_{r}. Then we note that $\lim _{r \rightarrow 0} C_{r}^{*}\left(\xi_{r}\right)=\left(\xi_{1}, \xi_{2}\right)$.

Proposition 5. 1) For each $(v, U) \in \mathfrak{g}_{0}, \phi \in C^{\infty}(\bar{N}, E)$ and $y \in \bar{N}$, we have

$$
\lim _{r \rightarrow 0} d \pi_{r}\left(C_{r}(v, U)\right) \phi(y)=d \pi_{0}(v, U) \phi(y)
$$

2) For each $(v, U) \in \mathfrak{g}_{0}$ and $\phi, \psi \in C_{0}^{\infty}(\bar{N}, E)$, we have

$$
\lim _{r \rightarrow 0}\left\langle d \pi_{r}\left(C_{r}(v, U)\right) \phi, \psi\right\rangle=\left\langle d \pi_{0}(v, U) \phi, \psi\right\rangle
$$

3) For each $(v, U) \in \mathfrak{g}_{0}$ and $\phi \in C_{0}^{\infty}(\bar{N}, E)$, we have

$$
\lim _{r \rightarrow 0}\left\|d \pi_{r}\left(C_{r}(v, U)\right) \phi-d \pi_{0}(v, U) \phi\right\|=0
$$

Proof. We immediately deduce 1) from Proposition 1 and Proposition 2. Note that another proof of 1) by the Berezin-Weyl calculus can be found in [10]. Moreover, by using Proposition 1 and Proposition 2 again, we see that if $\phi \in$ $C_{0}^{\infty}(\bar{N}, E)$ then $d \pi_{r}\left(C_{r}(v, U)\right) \phi, d \pi_{0}(v, U) \phi \in C_{0}^{\infty}(\bar{N}, E) \subset L^{2}(\bar{N}, E)$. Hence the expressions $\left\langle d \pi_{r}\left(C_{r}(v, U)\right) \phi, \psi\right\rangle$ and $\left\langle d \pi_{0}(v, U) \phi, \psi\right\rangle$ make sense for ϕ, ψ in $C_{0}^{\infty}(\bar{N}, E)$ and we easily obtain 2$)$. Finally, to prove 3), we write

$$
\begin{aligned}
\left\|d \pi_{r}\left(C_{r}(v, U)\right) \phi-d \pi_{0}(v, U) \phi\right\|^{2} & =\left\|d \pi_{r}\left(C_{r}(v, U)\right) \phi\right\|^{2}+\left\|d \pi_{0}(v, U) \phi\right\|^{2} \\
- & 2 \operatorname{Re}\left\langle d \pi_{r}\left(C_{r}(v, U)\right) \phi, d \pi_{0}(v, U)\right\rangle
\end{aligned}
$$

By 2), we see that

$$
\lim _{r \rightarrow 0}\left\langle d \pi_{r}\left(C_{r}(v, U)\right) \phi, d \pi_{0}(v, U) \phi\right\rangle=\left\langle d \pi_{0}(v, U) \phi, d \pi_{0}(v, U) \phi\right\rangle
$$

By the same arguments, we verify that

$$
\lim _{r \rightarrow 0}\left\|d \pi_{r}\left(C_{r}(v, U)\right) \phi\right\|^{2}=\left\|d \pi_{0}(v, U) \phi\right\|^{2}
$$

Then the result follows.

References

[1] F. A. Berezin: Quantization, Math. USSR Izv., 8, n. 5, (1974), 1109-1165.
[2] B. Cahen: Deformation Program for Principal Series Representations, Lett. Math. Phys., 36 (1996), 65-75.
[3] B. CAHEN: Quantification d'orbites coadjointes et théorie des contractions, J. Lie Theory, 11 (2001), 257-272.
[4] B. Cahen: Contractions of $S U(1, n)$ and $S U(n+1)$ via Berezin quantization, J. Anal. Math., 97 (2005), 83-102.
[5] B. Cahen: Weyl quantization for principal series, Beiträge Algebra Geom., 48 (2007), 175-190.
[6] B. CAHEN: Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math., 53, n. 1, (2009), 265-288.
[7] B. Cahen: Contraction of Discrete Series via Berezin Quantization, J. Lie Theory, 19 (2009), 291-310.
[8] B. Cahen: Some Remarks on the Notion of Contraction of Lie Group Representations, Math. Moravica, 14 (2010), 35-46.
[9] B. Cahen: Berezin-Weyl quantization for the Cartan motion groups, Comment. Math. Univ. Carolin., 52, n. 1, (2011), 127-137.
[10] B. Cahen: Contraction of the principal series by Berezin-Weyl quantization, Rocky Mountain J. Math., 43, n. 2, (2013), 417-441.
[11] U. Cattaneo and W. F. Wreszinski: Trotter limits of Lie algebra representations and coherent states, Helv. Phys. Acta, 52 (1979), 313-329.
[12] U. Cattaneo and W. F. Wreszinski: Contractions of Lie algebra representations, Rev. Math. Phys., 11 (1999), 1179-1207.
[13] P. Cotton and A. H. Dooley: Contraction of an Adapted Functional Calculus, J. Lie Theory, 7, (1997), 147-164.
[14] E. Celeghini and M. Tarlini: Contractions of Group Representations-I, Nuovo Cimento B, 31 (1981), 265-277.
[15] A. H. Dooley: Contractions of Lie groups and applications to analysis, In Topics in Modern Harmonic Analysis, Proc. Semin., Torino and Milano 1982, Vol. I , Ist. di Alta Mat, Rome, 1983, pp. 483-515.
[16] A. H. Dooley and J. W. Rice: On contractions of semisimple Lie groups, Trans. Am. Math. Soc., 289 (1985), 185-202.
[17] A. H. Dooley: Intertwining operators, The Cayley transform and the contraction of K to $N M$, Contemp. Math., 544, (2011), 101-108.
[18] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island 2001.
[19] E. Inönü , E. P. Wigner: On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA, 39 (1953), 510-524.
[20] A. A. Kirillov: Lectures on the Orbit Method, Graduate Studies in Mathematics Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004.
[21] A. W. Knapp: Representation theory of semisimple groups. An overview based on examples, Princeton Math. Series t. 36, 1986.
[22] B. Kostant: Quantization and unitary representations, in: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New-York, 1970, pp. 87-207.
[23] G. MaCkEY: On the analogy between semisimple Lie groups and certain related semidirect product groups, in Lie groups and their representations, I. M. Gelfand Ed., Hilger, London, 1975.
[24] J. Mickelsson and J. Niederle: Contractions of Representations of de Sitter Groups, Commun. Math. Phys., 27 (1972), 167-180.
[25] J. H. Rawnsley: Representations of a semi direct product by quantization, Math. Proc. Camb. Phil. Soc., 78 (1975), 345-350.
[26] F. Ricci: A Contraction of $S U(2)$ to the Heisenberg Group, Monatsh. Math., 101, (1986), 211-225.
[27] E. J. Saletan: Contraction of Lie groups, J. Math. Phys., 2 (1961), 1-21.
[28] D. J. Simms: Lie Groups and Quantum Mechanics, Lecture Notes in Mathematics 52, Springer-Verlag, Berlin, Heidelberg, New-York, 1968.
[29] M. E. Taylor: Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, Vol. 22, American Mathematical Society, Providence, Rhode Island 1986.
[30] N. R. Wallach: Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, Vol. 19, Marcel Dekker, New-York 1973.
[31] N. J. Wildberger: On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc. A, 56 (1994), 64-116.

[^0]: http://siba-ese.unisalento.it/ © 2013 Università del Salento

