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Introduction

Since the pioneering paper of Inönü and Wigner [19], the contractions of Lie
group representations have been studied by many authors, see in particular [27],
[24], [14], [11] and [12].

In [16], Dooley and Rice introduced an important contraction of the prin-
cipal series of a non-compact semi-simple Lie group to the unitary irreducible
representations of its Cartan motion group which recovered many known exam-
ples and also illustrated the Mackey Analogy between semi-simple Lie groups
and semi-direct products [23].

In [15], Dooley suggested interpreting contractions of representations in the
setting of the Kirillov-Kostant method of orbits [20], [22] and, in [13], Cotton
and Dooley showed how to recover contraction results by using the Weyl cor-
respondence. In this spirit, we established in [7] a contraction of the discrete
series of a non-compact semi-simple Lie group to the unitary irreducible rep-
resentations of a Heisenberg group (see also [26], [3], [6] and [4]) and, in [10],
we study the Dooley-Rice contraction of the principal series at the infinitesimal
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level. We also refer the reader to [17] for recent developpements on contractions
of representations.

Let G be a non-compact semi-simple Lie group with finite center and let K
be a maximal compact subgroup of G. The corresponding Cartan motion group
G0 is the semi-direct product V ⋊K, where V is the orthogonal complement of
the Lie algebra of K in the Lie algebra of G with respect to the Killing form.
In [16], the Dooley-Rice contraction of the principal series was established by
using the compact picture for the principal series representations [21], p. 169.
Here, we present the analogous contraction results in the non-compact picture.

This note is organized as follows. In Section 1 and Section 2, we introduce the
non-compact realizations of the representations of the principal series of G and
of the generic unitary irreducible representations of G0, following [9] and [10].
In Section 3, we study the Dooley-Rice contraction of the principal series in the
non-compact picture. Our main result is then Proposition 4 which is analogous
to Theorem 1 in [16]. Finally, in Section 4, we establish similar results for the
corresponding derived representations.

1 Principal series representations

In this section, we introduce the non-compact realization of a principal series
representation. We follow the exposition of [9] and [10] which is mainly based on
[21], Chapter 7, [30], Chapter 8 and [18], Chapter VI. We use standard notation.

LetG be a connected non-compact semi-simple real Lie group with finite cen-
ter. Let g be the Lie algebra of G. We can identify G-equivariantly g to its dual
space g∗ by using the Killing form β of g defined by β(X,Y ) = Tr(adX adY )
for X and Y in g. Let θ be a Cartan involution of g and let g = k ⊕ V be
the corresponding Cartan decomposition of g. Let K be the connected compact
(maximal) subgroup of G with Lie algebra k. Let a be a maximal abelian subal-
gebra of V and let M be the centralizer of a in K. Let m denote the Lie algebra
of M . We can decompose g under the adjoint action of a:

g = a⊕m⊕
∑

λ∈∆

gλ

where ∆ is the set of restricted roots. We fix a Weyl chamber in a and we
denote by ∆+ the corresponding set of positive roots. We set n =

∑

λ∈∆+ gλ
and n̄ =

∑

λ∈∆+ g−λ. Then n̄ = θ(n). Let A, N and N̄ denote the analytic
subgroups of G with algebras a, n and n̄. We fix a regular element ξ1 in a, that
is, λ(ξ1) 6= 0 for each λ ∈ ∆ and an element ξ2 in m. Let ξ0 = ξ1 + ξ2. Denote by
O(ξ0) the orbit of ξ0 in g∗ ≃ g under the (co)adjoint action of G and by o(ξ2)
the orbit of ξ2 in m under the adjoint action of M .
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Consider a unitary irreducible representation σ of M on a complex (finite-
dimensional) vector space E. Henceforth we assume that σ is associated with
the orbit o(ξ2) in the following sense, see [31], Section 4. For a maximal torus
T of M with Lie algebra t, iβ(ξ2, ·) ∈ it∗ is a highest weight for σ.

Now we consider the unitarily induced representation

π̂ = IndG
MAN (σ ⊗ exp(iν)⊗ 1N)

where ν = β(ξ1, ·) ∈ a∗. The representation π̂ lies in the unitary principal series
of G and is usually realized on the space L2(N̄ , E) which is the Hilbert space
completion of the space C∞

0 (N̄ , E) of compactly supported smooth functions
φ : N̄ → E with respect to the norm defined by

‖φ‖2 =

∫

N̄
〈φ (y), φ(y)〉E dy

where dy is the Haar measure on N̄ normalized as follows. Let (Ei)1≤i≤n be an
orthonormal basis for n̄ with respect to the scalar product defined by (Y, Z ) :=
−β(Y, θ(Z)). Denote by (Y1, Y2, . . . , Yn) the coordinates of Y ∈ n̄ in this basis
and let dY = dY1dY2 . . . dYn be the Euclidean measure on n̄. The exponential
map exp is a diffeomorphism from n̄ onto N̄ and we set dy = log∗(dY ) where
log = exp−1.

Note that π̂ is associated with O(ξ0) by the method of orbits, see [2] and [5].

Recall that N̄MAN is a open subset of G whose complement has Haar
measure zero. We denote by g = n̄(g)m(g)a(g)n(g) the decomposition of g ∈
N̄MAN . For g ∈ G the action of the operator π̂(g) is given by

(

π̂(g)φ
)

(y) = e−(ρ+iν) log a(g−1y)σ
(

m(g−1y)
)−1

φ
(

n̄(g−1y)
)

(1.1)

where ρ(H) := 1
2 Trn̄(adH) = 1

2

∑

λ∈∆+ λ.

Recall that we have the Iwasawa decomposition G = KAN . We denote by
g = k̃(g)ã(g)ñ(g) the decomposition of g ∈ G.

In order to simplify the study of the contraction, we slightly modify the pre-
ceding realization of π̂ as follows. Let I be the unitary isomorphism of L2(N̄ , E)
defined by

(Iφ)(y) = e−iν(log ã(y))φ(y).

Then we introduce the realization π of π̂ defined by π(g) := I−1π̂(g)I for each
g ∈ G. We immediately obtain

(

π(g)φ
)

(y) = eiν(log ã(y)−log ã(n̄(g−1y))e−(ρ+iν) log a(g−1y)σ
(

m(g−1y)
)−1

(1.2)

φ
(

n̄(g−1y)
)

.
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For g ∈ G and y ∈ N̄ , we have

g−1y = n̄(g−1y)m(g−1y)a(g−1y)n(g−1y)

= k̃(n̄(g−1y))ã(n̄(g−1y))ñ(n̄(g−1y))m(g−1y)a(g−1y)n(g−1y).

Then we get

ã(g−1y) = ã(n̄(g−1y))a(g−1y).

Hence we obtain

(

π(g)φ
)

(y) = eiν(log ã(y)−log ã(g−1y))e−ρ(log a(g
−1y))σ

(

m(g−1y)
)−1

(1.3)

φ
(

n̄(g−1y)
)

.

Now, we compute the derived representation dπ. We introduce some addi-
tional notation. If H is a Lie group and X is an element of the Lie algebra
of H then we denote by X+ the right-invariant vector field generated by X,
that is, X+(h) = d

dt (exp(tX))h|t=0 for h ∈ H. We denote by pa, pm and pn̄
the projection operators of g on a, m and n̄ associated with the decomposition
g = n̄ ⊕ m ⊕ a ⊕ n. Moreover, we also denote by p̃a the projection operator of
g on a associated with the decomposition g = k ⊕ a ⊕ n. By differentiating the
multiplication map N̄ ×M × A × N → N̄MAN , we easily get the following
lemma, see [5].

Lemma 1. 1) For each X ∈ g and each y ∈ N̄ , we have

d

dt
a(exp(tX)y)|t=0 = pa(Ad(y−1)X)

d

dt
m(exp(tX)y)|t=0 = pm(Ad(y−1)X)

d

dt
n̄(exp(tX)y)|t=0 =

(

Ad(y) pn̄(Ad(y−1)X)
)+

(y).

2) For each X ∈ g and each g ∈ G, we have

d

dt
ã(exp(tX)g)|t=0 =

(

p̃a
(

Ad(k̃(g)−1)X
)

)+
(ã(g)).

From this lemma, we easily obtain the following proposition.
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Proposition 1. For X ∈ g, φ ∈ C∞(N̄ , E) and y ∈ N̄ , we have

(dπ(X)φ)(y) = iν
(

p̃a
(

Ad(k̃(y)−1)X
)

)

φ(y)

+ ρ
(

pa(Ad(y−1)X)
)

φ(y) + dσ
(

pm(Ad(y−1)X)
)

φ(y)

− dφ(y)
(

Ad(y) pn̄(Ad(y−1)X)
)+

(y).

2 Generic representations of the Cartan motion
group

In this section we review some results from [9] and [10]. Recall that we have
the Cartan decomposition g = k⊕V where V is the orthogonal complement of k
in g with respect to the Killing form β. We denote by pck and pcV the projections
of g on k and V associated with the Cartan decomposition.

We can form the semi-direct product G0 := V ⋊ K. The multiplication of
G0 is given by

(v, k).(v′, k′) = (v + Ad(k)v′, kk′)

for v, v′ in V and k, k′ in K. The Lie algebra g0 of G0 is the space V ×k endowed
with the Lie bracket

[(w,U), (w′, U ′)]0 = ([U,w′]− [U ′, w], [U,U ′])

for w, w′ in V and U , U ′ in k.

Recall that β is positive definite on V and negative definite on k [18], p. 184.
Then, by using β, we can identify V ∗ to V and k∗ to k, hence g∗0 ≃ V ∗ × k∗ to
V × k. Under this identification, the coadjoint action of G0 on g∗0 ≃ V × k is then
given by

(v, k) · (w,U) = (Ad(k)w,Ad(k)U + [v,Ad(k)w])

for v, w in V , k in K and U in k, see [25].

The coadjoint orbits of the semi-direct product of a Lie group by a vector
space were described by Rawnsley in [25]. For each (w,U) ∈ g∗0 ≃ g0, we denote
by O(w,U) the orbit of (w,U) under the coadjoint action of G0. In [9], we
proved the following lemma.

Lemma 2. 1) Let O be a coadjoint orbit for the coadjoint action of G0 on
g∗0 ≃ g0. Then there exists an element of O of the form (ξ1, U) with ξ1 ∈ a.
Moreover, if ξ1 is regular then there exists ξ2 ∈ m such that (ξ1, ξ2) ∈ O.

2) Let ξ1 be a regular element of a. Then M is the stabilizer of ξ1 in K.
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In the rest of this note, we consider the orbit O(ξ1, ξ2) of (ξ1, ξ2) ∈ a×m ⊂
g∗0 ≃ g0 under the coadjoint action of G0. As in Section 1, we assume that ξ1 is
a regular element of a and that the adjoint orbit o(ξ2) of ξ2 in m is associated
with a unitary irreducible representation σ of M which is realized on a (finite-
dimensional) Hilbert space E. Then O(ξ1, ξ2) is associated with the unitarily
induced representation

π̂0 = IndG0
V×M

(

eiν ⊗ σ
)

where ν = β(ξ1, ·) ∈ a∗ (see [22] and [25]). By a result of Mackey, π̂0 is irreducible
since σ is irreducible [29]. We say that the orbit O(ξ1, ξ2) is generic and that
the associated representation π̂0 is generic.

Let OV (ξ1) be the orbit of ξ1 in V under the action of K. We denote by µ the
K-invariant measure on OV (ξ1) ≃ K/M . We denote by π̃0 the usual realization
of π̂0 on the space of square-integrable sections of a Hermitian vector bundle
over OV (ξ1) [22], [28], [25]. Let us briefly describe the construction of π̃0. We
introduce the Hilbert G0-bundle L := G0×eiν⊗σ E over OV (ξ1) ≃ K/M . Recall
that an element of L is an equivalence class

[g, u] = {( g.(v,m), e−iν(v)σ(m)−1u) | v ∈ V, m ∈M }

where g ∈ G0, u ∈ E and that G0 acts on L by left translations: g [g′, u] :=
[gg′, u]. The action of G0 on OV (ξ1) ≃ K/M being given by (v, k).ξ = Ad(k)ξ,
the projection map [(v, k), u] → Ad(k)ξ1 is G0-equivariant. The G0-invariant
Hermitian structure on L is given by

〈[g, u], [g, u′]〉 = 〈u, u′〉E
where g ∈ G0 and u, u′ ∈ E. Let H0 be the space of sections s of L which are
square-integrable with respect to the measure µ, that is,

‖s‖2H0
=

∫

OV (ξ1)
〈s(ξ) , s(ξ)〉 dµ(ξ) < +∞.

Then π̃0 is the action of G0 on H0 defined by

(π̃0(g) s)(ξ) = g s(g−1.ξ).

Now we introduce a non-compact realization of π̂0. We consider the map
τ : y → Ad(k̃(y))ξ1 which is a diffeomorphism from N̄ onto a dense open subset
of OV (ξ1) [30], Lemma 7.6.8. We denote by k · y the action of k ∈ K on y ∈ N̄
defined by τ(k · y) = Ad(k)τ(y) or, equivalently, by k · y = n̄(ky). Then the
K-invariant measure on N̄ is given by (τ−1)∗(µ) = e−2ρ(log ã(y))dy [30], Lemma
7.6.8. We associate with each s ∈ H0 the function φs : N̄ → E defined by

s(τ(y)) = [(0, k̃(y)) , eρ(log ã(y))φs(y)].



On the Dooley-Rice contraction 89

We can easily verify that J : s→ φs is a unitary operator from H0 to L2(N̄ , E)
and we set π0(v, k) := Jπ̃0(v, k)J−1 for (v, k) ∈ G0. Then we obtain

(π0(v, k)φ)(y) = e−ρ(log a(k
−1y))+iβ(Ad(k̃(y))ξ1,v) σ

(

m(k−1y)
)−1

φ
(

n̄(k−1y)
)

,
(2.1)

see [10].
The computation of dπ0 is similar to that of dπ. By using Lemma 1, we

obtain the following proposition.

Proposition 2. For (v, U) ∈ g0, φ ∈ C∞(N̄ , E) and y ∈ N̄ , we have

(dπ0(v, U)φ)(y) = iβ
(

Ad(k̃(y))ξ1, v
)

φ(y)

+ ρ
(

pa(Ad(y−1)U)
)

φ(y) + dσ
(

pm(Ad(y−1)U)
)

φ(y)

− dφ(y)
(

Ad(y) pn̄(Ad(y−1)U)
)+

(y).

3 Contraction of group representations

Let us consider the family of maps cr : G0 → G defined by

cr(v, k) = exp(rv) k

for v ∈ V , k ∈ K and indexed by r ∈]0, 1]. One can easily show that

lim
r→0

c−1
r (cr(g) cr(g

′)) = g g′

for each g, g′ in G0. Then the family (cr) is a group contraction of G to G0 in
the sense of [24].

Let (ξ1, ξ2) ∈ g0 as in Section 2. Recall that π0 is a unitary irreducible
representation of G0 associated with (ξ1, ξ2). For each r ∈]0, 1], we set ξr :=
(1/r)ξ1 + ξ2 and we denote by πr the principal series representation of G corre-
sponding to O(ξr).

We have to take into account some technicalities due to the fact that the
projection maps a, m and n̄ are not defined on G but just on N̄MAN . We begin
by the following lemma.

Lemma 3. For each k ∈ K, the set Uk := { y ∈ N̄ | k−1y ∈ N̄MAN } is
an open subset of N̄ whose complement in N̄ has measure zero.

Proof. For each k ∈ K, we set Vk := N̄MAN ∩ kN̄MAN . Note that G \ Vk =
(G \ N̄MAN)∪ (G \ kN̄MAN) has Haar measure zero. On the other hand, we
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have Vk = UkMAN hence G \ Vk = (G \ N̄MAN) ∪ (N̄ \ Uk)MAN . Thus we
see that (N̄ \Uk)MAN also has Haar measure zero. Since the restriction of the
Haar measure dg on G to N̄MAN is e2ρ(log a)dy da dmdn where dy, da, dm and
dn are Haar measures on N̄ , A, M and N [30], p. 179, we conclude that N̄ \Uk
has measure zero. QED

We denote by C0(N̄ , E) the space of compactly supported continuous func-
tions φ : N̄ → E and by C∞

0 (N̄ , E) the space of compactly supported smooth
functions φ : N̄ → E. We have the following proposition.

Proposition 3. For each (v, k) ∈ G0, φ ∈ C0(N̄ , E) and y ∈ Uk, we have

lim
r→0

πr(cr(v, k))φ (y) = π0(v, k)φ(y).

Proof. By using the expressions for πr and π0 given in Section 1 and Section 2,
we have just to verify that

lim
r→0

1

r
β
(

ξ1 , log ã(y)− log ã(k−1 exp(−rv)y)
)

= β
(

Ad(k̃(y))ξ1, v
)

.

But we have

ã(k−1 exp(−rv)y) = ã(exp(−rv)y) = ã(exp(−rv)k̃(y)ã(y)ñ(y))

= ã(exp(−rAd(k̃(y)−1)v))ã(y).

Then we get

ã(y)ã(k−1 exp(−rv)y)−1 = ã(exp(−rAd(k̃(y)−1)v))−1.

Thus, by using Lemma 1, we have

d

dr
log ã(y)ã(k−1 exp(−rv)y)−1|r=0 = pã(Ad(k̃(y)−1)v).

Hence the result follows. QED

In order to establish the L2-convergence, we need the following lemma.

Lemma 4. Let U be an open subset of N̄ such that N̄ \U has measure zero.
Then, for each φ ∈ C0(N̄ , E) and each ε > 0, there exists ψ ∈ C0(N̄ , E) such
that suppψ ⊂ U and ‖ψ − φ‖ ≤ ε.
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Proof. Let | · | denote the Euclidean norm on n̄ (see Section 1). We endow N̄
with the distance d defined by d(y, y′) = | log y − log y′|. Let φ ∈ C0(N̄ , E) and
ε > 0. Let C be a compact subset of N̄ such that C ⊂ U ∩ suppφ and

∫

(U∩suppφ)\C
dy ≤ (1 + 4 sup

y∈N̄

‖φ(y)‖2E)−1 ε.

In particular, we have δ := d(C, N̄ \U) > 0. Let V := {y ∈ N̄ : d(y, C) < δ/2}.
Then V is an open set such that C ⊂ V ⊂ V̄ ⊂ U . Consider now the function
ψ : N̄ → E defined by

ψ(y) =
d(y, N̄ \ V )

d(y, C) + d(y, N̄ \ V )
φ(y).

Note that ψ is well-defined since the intersection of C with the adherence of
N̄ \ V in N̄ is empty. Moreover, we have the following properties

(1) suppψ ⊂ V̄ ⊂ U and suppψ ⊂ suppφ;

(2) supy∈N̄ ‖ψ(y)‖E ≤ supy∈N̄ ‖φ(y)‖E ;

(3) ψ(y) = φ(y) for each y ∈ C.

This implies that

∫

N̄
‖ψ(y)− φ(y)‖2E dy =

∫

U∩suppφ
‖ψ(y)− φ(y)‖2E dy

=

∫

(U∩suppφ)\C
‖ψ(y)− φ(y)‖2E dy

≤4 sup
y∈N̄

‖φ(y)‖2E
∫

(U∩suppφ)\C
dy

≤ε.

QED

Proposition 4. 1) Let φ, ψ in L2(N̄ , E) and (v, k) ∈ G0. Then we have

lim
r→0
〈πr(cr(v, k))φ, ψ〉 = 〈π0(v, k)φ, ψ〉.

2) Let φ ∈ L2(N̄ , E) and (v, k) ∈ G0. Then we have

lim
r→0
‖πr(cr(v, k))φ− π0(v, k)φ‖ = 0.
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Proof. 1) We can assume without loss of generality that φ, ψ ∈ C0(N̄ , E). More-
over, by Lemma 4, we can also assume that suppφ ⊂ Uk. We have

〈πr(cr(v, k))φ, ψ〉 =

∫

suppψ
〈πr(cr(v, k))φ(y), ψ(y)〉E dy.

By Proposition 3, for each y ∈ suppψ, the integrand

Ir(y) := 〈πr(cr(v, k))φ(y), ψ(y)〉E

converges to 〈π0(v, k)φ(y), ψ(y)〉E when r → 0. In order to obtain the desired
result, it suffices to verify that the dominated convergence theorem can be ap-
plied. This can be done as follows.

First we claim that there exists r0 > 0 such that for each r ∈ [0, r0] and each
y ∈ suppψ, we have k−1 exp(−rv)y ∈ N̄MAN . Indeed, if this is not the case,
then there exists a sequence rn > 0 converging to 0 and a sequence yn ∈ suppψ
such that k−1 exp(−rnv)yn ∈ G \ N̄MAN for each n. Since suppψ is compact,
we can also assume that yn converges to an element y ∈ suppψ. Then we get
k−1y ∈ G \ N̄MAN . This a contradiction.

Since the projection maps a and n̄ are continuous on N̄MAN , there exists
c > 0 such that, for each r < r0 and each y ∈ suppψ, we have

e−ρ(log a(k
−1 exp(−rv)y)) ≤ c.

Then, by taking into account the expression for πr(cr(v, k)), we get

|Ir(y)| ≤ c. sup
z∈N̄

‖φ(z)‖E .‖ψ(y)‖E

for each r < r0 and each y ∈ suppψ, hence the result.

2) Since π and π0 are unitary, for each φ ∈ L2(N̄ , E) we have

‖πr(cr(v, k))φ− π0(v, k)φ‖2 = 2‖φ‖2 − 2 Re 〈πr(cr(v, k))φ, π0(v, k)φ〉

which converges to 2‖φ‖2−2 Re 〈π0(v, k)φ, π0(v, k)φ〉 when r → 0 by 1). QED

Remarks (1) In fact, 2) of Proposition 4 asserts that π0 is a contraction of
(πr) in the sense of [24] (see also [8]).

(2) By using the Bruhat decomposition G =
⋃

w∈W MANwMAN where W
is the Weyl group, it is easy to see that

⋂

k∈K kN̄MAN = ∅ then the set of all
elements y ∈ N̄ such that k−1y ∈ N̄MAN for each k ∈ K is also empty. Hence,
it seems to be difficult to get uniform convergence on the compact sets of G0 in
Proposition 4 as in Theorem 1 of [16].
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4 Contraction of derived representations

In this section, we give similar contraction results for the derived represen-
tations.

For each r ∈]0, 1], we denote by Cr the differential of cr. Then the family
(Cr) is a contraction of Lie algebras from g onto g0, that is,

lim
r→0

C−1
r

(

[Cr(X) , Cr(Y )]
)

= [X , Y ]0

for each X, Y ∈ g0. We also denote by C∗
r : g∗ ≃ g → g∗0 ≃ g0 the dual map of

Cr. Then we note that limr→0 C
∗
r (ξr) = (ξ1, ξ2).

Proposition 5. 1) For each (v, U) ∈ g0, φ ∈ C∞(N̄ , E) and y ∈ N̄ , we
have

lim
r→0

dπr(Cr(v, U))φ (y) = dπ0(v, U)φ(y).

2) For each (v, U) ∈ g0 and φ, ψ ∈ C∞
0 (N̄ , E), we have

lim
r→0
〈dπr(Cr(v, U))φ, ψ〉 = 〈dπ0(v, U)φ, ψ〉.

3) For each (v, U) ∈ g0 and φ ∈ C∞
0 (N̄ , E),we have

lim
r→0
‖dπr(Cr(v, U))φ− dπ0(v, U)φ‖ = 0.

Proof. We immediately deduce 1) from Proposition 1 and Proposition 2. Note
that another proof of 1) by the Berezin-Weyl calculus can be found in [10].
Moreover, by using Proposition 1 and Proposition 2 again, we see that if φ ∈
C∞
0 (N̄ , E) then dπr(Cr(v, U))φ, dπ0(v, U)φ ∈ C∞

0 (N̄ , E) ⊂ L2(N̄ , E). Hence
the expressions 〈dπr(Cr(v, U))φ, ψ〉 and 〈dπ0(v, U)φ, ψ〉 make sense for φ, ψ in
C∞
0 (N̄ , E) and we easily obtain 2). Finally, to prove 3), we write

‖dπr(Cr(v, U))φ− dπ0(v, U)φ‖2 = ‖dπr(Cr(v, U))φ‖2 + ‖dπ0(v, U)φ‖2
− 2 Re〈dπr(Cr(v, U))φ, dπ0(v, U)〉.

By 2), we see that

lim
r→0
〈dπr(Cr(v, U))φ, dπ0(v, U)φ〉 = 〈dπ0(v, U)φ, dπ0(v, U)φ〉.

By the same arguments, we verify that

lim
r→0
‖dπr(Cr(v, U))φ‖2 = ‖dπ0(v, U)φ‖2.

Then the result follows. QED
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