On the Dooley-Rice contraction of the principal series

Benjamin Cahen

Université de Metz, UFR-MIM, Département de mathématiques, LMMAS, ISGMP-Bât. A, Ile du Saulcy 57045, Metz cedex 01, France cahen@univ-metz.fr

Received: 19.6.2013; accepted: 24.7.2013.

Abstract. In [A. H. DOOLEY AND J. W. RICE: On contractions of semisimple Lie groups, Trans. Am. Math. Soc., **289** (1985), 185–202], Dooley and Rice introduced a contraction of the principal series representations of a non-compact semi-simple Lie group to the unitary irreducible representations of its Cartan motion group. We study here this contraction by using non-compact realizations of these representations.

Keywords: Contraction of Lie groups; contraction of representations; semi-simple Lie group; semi-direct product; Cartan motion group; unitary representation; principal series; coadjoint orbit.

MSC 2010 classification: primary 22E46, secondary 22E45, 22E70, 22E15

Introduction

Since the pioneering paper of Inönü and Wigner [19], the contractions of Lie group representations have been studied by many authors, see in particular [27], [24], [14], [11] and [12].

In [16], Dooley and Rice introduced an important contraction of the principal series of a non-compact semi-simple Lie group to the unitary irreducible representations of its Cartan motion group which recovered many known examples and also illustrated the Mackey Analogy between semi-simple Lie groups and semi-direct products [23].

In [15], Dooley suggested interpreting contractions of representations in the setting of the Kirillov-Kostant method of orbits [20], [22] and, in [13], Cotton and Dooley showed how to recover contraction results by using the Weyl correspondence. In this spirit, we established in [7] a contraction of the discrete series of a non-compact semi-simple Lie group to the unitary irreducible representations of a Heisenberg group (see also [26], [3], [6] and [4]) and, in [10], we study the Dooley-Rice contraction of the principal series at the infinitesimal

http://siba-ese.unisalento.it/ © 2013 Università del Salento

level. We also refer the reader to [17] for recent developpements on contractions of representations.

Let G be a non-compact semi-simple Lie group with finite center and let K be a maximal compact subgroup of G. The corresponding Cartan motion group G_0 is the semi-direct product $V \rtimes K$, where V is the orthogonal complement of the Lie algebra of K in the Lie algebra of G with respect to the Killing form. In [16], the Dooley-Rice contraction of the principal series was established by using the compact picture for the principal series representations [21], p. 169. Here, we present the analogous contraction results in the non-compact picture.

This note is organized as follows. In Section 1 and Section 2, we introduce the non-compact realizations of the representations of the principal series of G and of the generic unitary irreducible representations of G_0 , following [9] and [10]. In Section 3, we study the Dooley-Rice contraction of the principal series in the non-compact picture. Our main result is then Proposition 4 which is analogous to Theorem 1 in [16]. Finally, in Section 4, we establish similar results for the corresponding derived representations.

1 Principal series representations

In this section, we introduce the non-compact realization of a principal series representation. We follow the exposition of [9] and [10] which is mainly based on [21], Chapter 7, [30], Chapter 8 and [18], Chapter VI. We use standard notation.

Let G be a connected non-compact semi-simple real Lie group with finite center. Let \mathfrak{g} be the Lie algebra of G. We can identify G-equivariantly \mathfrak{g} to its dual space \mathfrak{g}^* by using the Killing form β of \mathfrak{g} defined by $\beta(X,Y) = \operatorname{Tr}(\operatorname{ad} X \operatorname{ad} Y)$ for X and Y in \mathfrak{g} . Let θ be a Cartan involution of \mathfrak{g} and let $\mathfrak{g} = \mathfrak{k} \oplus V$ be the corresponding Cartan decomposition of \mathfrak{g} . Let K be the connected compact (maximal) subgroup of G with Lie algebra \mathfrak{k} . Let \mathfrak{a} be a maximal abelian subalgebra of V and let M be the centralizer of \mathfrak{a} in K. Let \mathfrak{m} denote the Lie algebra of M. We can decompose \mathfrak{g} under the adjoint action of \mathfrak{a} :

$$\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{m}\oplus\sum_{\lambda\in\Delta}\mathfrak{g}_{\lambda}$$

where Δ is the set of restricted roots. We fix a Weyl chamber in \mathfrak{a} and we denote by Δ^+ the corresponding set of positive roots. We set $\mathfrak{n} = \sum_{\lambda \in \Delta^+} \mathfrak{g}_{\lambda}$ and $\overline{\mathfrak{n}} = \sum_{\lambda \in \Delta^+} \mathfrak{g}_{-\lambda}$. Then $\overline{\mathfrak{n}} = \theta(\mathfrak{n})$. Let A, N and \overline{N} denote the analytic subgroups of G with algebras $\mathfrak{a}, \mathfrak{n}$ and $\overline{\mathfrak{n}}$. We fix a regular element ξ_1 in \mathfrak{a} , that is, $\lambda(\xi_1) \neq 0$ for each $\lambda \in \Delta$ and an element ξ_2 in \mathfrak{m} . Let $\xi_0 = \xi_1 + \xi_2$. Denote by $O(\xi_0)$ the orbit of ξ_0 in $\mathfrak{g}^* \simeq \mathfrak{g}$ under the (co)adjoint action of G and by $o(\xi_2)$ the orbit of ξ_2 in \mathfrak{m} under the adjoint action of M.

Consider a unitary irreducible representation σ of M on a complex (finitedimensional) vector space E. Henceforth we assume that σ is associated with the orbit $o(\xi_2)$ in the following sense, see [31], Section 4. For a maximal torus T of M with Lie algebra $\mathfrak{t}, i\beta(\xi_2, \cdot) \in i\mathfrak{t}^*$ is a highest weight for σ .

Now we consider the unitarily induced representation

$$\hat{\pi} = \operatorname{Ind}_{\operatorname{MAN}}^{\operatorname{G}} (\sigma \otimes \exp(\mathrm{i}\nu) \otimes 1_{\operatorname{N}})$$

where $\nu = \beta(\xi_1, \cdot) \in \mathfrak{a}^*$. The representation $\hat{\pi}$ lies in the unitary principal series of G and is usually realized on the space $L^2(\bar{N}, E)$ which is the Hilbert space completion of the space $C_0^{\infty}(\bar{N}, E)$ of compactly supported smooth functions $\phi: \bar{N} \to E$ with respect to the norm defined by

$$\|\phi\|^2 = \int_{\bar{N}} \langle \phi(y), \phi(y) \rangle_E \, dy$$

where dy is the Haar measure on \overline{N} normalized as follows. Let $(E_i)_{1 \leq i \leq n}$ be an orthonormal basis for $\overline{\mathbf{n}}$ with respect to the scalar product defined by $(Y, Z) := -\beta(Y, \theta(Z))$. Denote by (Y_1, Y_2, \ldots, Y_n) the coordinates of $Y \in \overline{\mathbf{n}}$ in this basis and let $dY = dY_1 dY_2 \ldots dY_n$ be the Euclidean measure on $\overline{\mathbf{n}}$. The exponential map exp is a diffeomorphism from $\overline{\mathbf{n}}$ onto \overline{N} and we set $dy = \log^*(dY)$ where $\log = \exp^{-1}$.

Note that $\hat{\pi}$ is associated with $O(\xi_0)$ by the method of orbits, see [2] and [5].

Recall that $\bar{N}MAN$ is a open subset of G whose complement has Haar measure zero. We denote by $g = \bar{n}(g)m(g)a(g)n(g)$ the decomposition of $g \in \bar{N}MAN$. For $g \in G$ the action of the operator $\hat{\pi}(g)$ is given by

$$(\hat{\pi}(g)\phi)(y) = e^{-(\rho+i\nu)\log a(g^{-1}y)}\sigma(m(g^{-1}y))^{-1}\phi(\bar{n}(g^{-1}y))$$
(1.1)

where $\rho(H) := \frac{1}{2} \operatorname{Tr}_{\overline{\mathfrak{n}}}(\operatorname{ad} H) = \frac{1}{2} \sum_{\lambda \in \Delta^+} \lambda.$

Recall that we have the Iwasawa decomposition G = KAN. We denote by $g = \tilde{k}(g)\tilde{a}(g)\tilde{n}(g)$ the decomposition of $g \in G$.

In order to simplify the study of the contraction, we slightly modify the preceding realization of $\hat{\pi}$ as follows. Let I be the unitary isomorphism of $L^2(\bar{N}, E)$ defined by

$$(I\phi)(y) = e^{-i\nu(\log \tilde{a}(y))}\phi(y).$$

Then we introduce the realization π of $\hat{\pi}$ defined by $\pi(g) := I^{-1} \hat{\pi}(g) I$ for each $g \in G$. We immediately obtain

$$(\pi(g)\phi)(y) = e^{i\nu(\log\tilde{a}(y) - \log\tilde{a}(\bar{n}(g^{-1}y))}e^{-(\rho + i\nu)\log a(g^{-1}y)}\sigma(m(g^{-1}y))^{-1}$$
(1.2)

$$\phi(\bar{n}(g^{-1}y)).$$

B. Cahen

For $g \in G$ and $y \in \overline{N}$, we have

$$g^{-1}y = \bar{n}(g^{-1}y)m(g^{-1}y)a(g^{-1}y)n(g^{-1}y)$$

= $\tilde{k}(\bar{n}(g^{-1}y))\tilde{a}(\bar{n}(g^{-1}y))\tilde{n}(\bar{n}(g^{-1}y))m(g^{-1}y)a(g^{-1}y)n(g^{-1}y).$

Then we get

$$\tilde{a}(g^{-1}y) = \tilde{a}(\bar{n}(g^{-1}y))a(g^{-1}y)$$

Hence we obtain

$$(\pi(g)\phi)(y) = e^{i\nu(\log \tilde{a}(y) - \log \tilde{a}(g^{-1}y))} e^{-\rho(\log a(g^{-1}y))} \sigma(m(g^{-1}y))^{-1}$$
(1.3)

$$\phi(\bar{n}(g^{-1}y)).$$

Now, we compute the derived representation $d\pi$. We introduce some additional notation. If H is a Lie group and X is an element of the Lie algebra of H then we denote by X^+ the right-invariant vector field generated by X, that is, $X^+(h) = \frac{d}{dt} (\exp(tX))h|_{t=0}$ for $h \in H$. We denote by $p_{\mathfrak{a}}$, $p_{\mathfrak{m}}$ and $p_{\overline{\mathfrak{n}}}$ the projection operators of \mathfrak{g} on \mathfrak{a} , \mathfrak{m} and $\overline{\mathfrak{n}}$ associated with the decomposition $\mathfrak{g} = \overline{\mathfrak{n}} \oplus \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Moreover, we also denote by $\tilde{p}_{\mathfrak{a}}$ the projection operator of \mathfrak{g} on \mathfrak{a} associated with the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. By differentiating the multiplication map $\overline{N} \times M \times A \times N \to \overline{N}MAN$, we easily get the following lemma, see [5].

Lemma 1. 1) For each $X \in \mathfrak{g}$ and each $y \in \overline{N}$, we have

$$\begin{aligned} &\frac{d}{dt} a(\exp(tX)y)|_{t=0} = p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X) \\ &\frac{d}{dt} m(\exp(tX)y)|_{t=0} = p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X) \\ &\frac{d}{dt} \bar{n}(\exp(tX)y)|_{t=0} = \left(\operatorname{Ad}(y) p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})X)\right)^{+}(y). \end{aligned}$$

2) For each $X \in \mathfrak{g}$ and each $g \in G$, we have

$$\frac{d}{dt}\tilde{a}(\exp(tX)g)|_{t=0} = \left(\tilde{p}_{\mathfrak{a}}\left(\operatorname{Ad}(\tilde{k}(g)^{-1})X\right)\right)^{+}(\tilde{a}(g)).$$

From this lemma, we easily obtain the following proposition.

86

Proposition 1. For $X \in \mathfrak{g}$, $\phi \in C^{\infty}(\bar{N}, E)$ and $y \in \bar{N}$, we have

$$(d\pi(X)\phi)(y) = i\nu \left(\tilde{p}_{\mathfrak{a}}\left(\operatorname{Ad}(\tilde{k}(y)^{-1})X\right)\right)\phi(y) + \rho \left(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})X)\right)\phi(y) + d\sigma \left(p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})X)\right)\phi(y) - d\phi(y) \left(\operatorname{Ad}(y) p_{\bar{\mathfrak{m}}}(\operatorname{Ad}(y^{-1})X)\right)^{+}(y).$$

2 Generic representations of the Cartan motion group

In this section we review some results from [9] and [10]. Recall that we have the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus V$ where V is the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to the Killing form β . We denote by $p_{\mathfrak{k}}^c$ and p_V^c the projections of \mathfrak{g} on \mathfrak{k} and V associated with the Cartan decomposition.

We can form the semi-direct product $G_0 := V \rtimes K$. The multiplication of G_0 is given by

$$(v,k).(v',k') = (v + \operatorname{Ad}(k)v',kk')$$

for v, v' in V and k, k' in K. The Lie algebra \mathfrak{g}_0 of G_0 is the space $V \times \mathfrak{k}$ endowed with the Lie bracket

$$[(w, U), (w', U')]_0 = ([U, w'] - [U', w], [U, U'])$$

for w, w' in V and U, U' in \mathfrak{k} .

Recall that β is positive definite on V and negative definite on \mathfrak{k} [18], p. 184. Then, by using β , we can identify V^* to V and \mathfrak{k}^* to \mathfrak{k} , hence $\mathfrak{g}_0^* \simeq V^* \times \mathfrak{k}^*$ to $V \times \mathfrak{k}$. Under this identification, the coadjoint action of G_0 on $\mathfrak{g}_0^* \simeq V \times \mathfrak{k}$ is then given by

$$(v,k) \cdot (w,U) = (\operatorname{Ad}(k)w, \operatorname{Ad}(k)U + [v, \operatorname{Ad}(k)w])$$

for v, w in V, k in K and U in \mathfrak{k} , see [25].

The coadjoint orbits of the semi-direct product of a Lie group by a vector space were described by Rawnsley in [25]. For each $(w, U) \in \mathfrak{g}_0^* \simeq \mathfrak{g}_0$, we denote by O(w, U) the orbit of (w, U) under the coadjoint action of G_0 . In [9], we proved the following lemma.

Lemma 2. 1) Let \mathcal{O} be a coadjoint orbit for the coadjoint action of G_0 on $\mathfrak{g}_0^* \simeq \mathfrak{g}_0$. Then there exists an element of \mathcal{O} of the form (ξ_1, U) with $\xi_1 \in \mathfrak{a}$. Moreover, if ξ_1 is regular then there exists $\xi_2 \in \mathfrak{m}$ such that $(\xi_1, \xi_2) \in \mathcal{O}$.

2) Let ξ_1 be a regular element of \mathfrak{a} . Then M is the stabilizer of ξ_1 in K.

In the rest of this note, we consider the orbit $O(\xi_1, \xi_2)$ of $(\xi_1, \xi_2) \in \mathfrak{a} \times \mathfrak{m} \subset \mathfrak{g}_0^* \simeq \mathfrak{g}_0$ under the coadjoint action of G_0 . As in Section 1, we assume that ξ_1 is a regular element of \mathfrak{a} and that the adjoint orbit $o(\xi_2)$ of ξ_2 in \mathfrak{m} is associated with a unitary irreducible representation σ of M which is realized on a (finite-dimensional) Hilbert space E. Then $O(\xi_1, \xi_2)$ is associated with the unitarily induced representation

$$\hat{\pi}_0 = \operatorname{Ind}_{V \times M}^{G_0} \left(e^{i\nu} \otimes \sigma \right)$$

where $\nu = \beta(\xi_1, \cdot) \in \mathfrak{a}^*$ (see [22] and [25]). By a result of Mackey, $\hat{\pi}_0$ is irreducible since σ is irreducible [29]. We say that the orbit $O(\xi_1, \xi_2)$ is generic and that the associated representation $\hat{\pi}_0$ is generic.

Let $O_V(\xi_1)$ be the orbit of ξ_1 in V under the action of K. We denote by μ the K-invariant measure on $O_V(\xi_1) \simeq K/M$. We denote by $\tilde{\pi}_0$ the usual realization of $\hat{\pi}_0$ on the space of square-integrable sections of a Hermitian vector bundle over $O_V(\xi_1)$ [22], [28], [25]. Let us briefly describe the construction of $\tilde{\pi}_0$. We introduce the Hilbert G_0 -bundle $L := G_0 \times_{e^{i\nu} \otimes \sigma} E$ over $O_V(\xi_1) \simeq K/M$. Recall that an element of L is an equivalence class

$$[g, u] = \{ (g.(v, m), e^{-i\nu(v)}\sigma(m)^{-1}u) \mid v \in V, m \in M \}$$

where $g \in G_0$, $u \in E$ and that G_0 acts on L by left translations: g[g', u] := [gg', u]. The action of G_0 on $O_V(\xi_1) \simeq K/M$ being given by $(v, k).\xi = \operatorname{Ad}(k)\xi$, the projection map $[(v, k), u] \to \operatorname{Ad}(k)\xi_1$ is G_0 -equivariant. The G_0 -invariant Hermitian structure on L is given by

$$\langle [g, u], [g, u'] \rangle = \langle u, u' \rangle_E$$

where $g \in G_0$ and $u, u' \in E$. Let \mathcal{H}_0 be the space of sections s of L which are square-integrable with respect to the measure μ , that is,

$$\|s\|_{\mathcal{H}_0}^2 = \int_{O_V(\xi_1)} \langle s(\xi) , \, s(\xi) \rangle \, d\mu(\xi) < +\infty.$$

Then $\tilde{\pi}_0$ is the action of G_0 on \mathcal{H}_0 defined by

$$(\tilde{\pi}_0(g) s)(\xi) = g s(g^{-1}.\xi).$$

Now we introduce a non-compact realization of $\hat{\pi}_0$. We consider the map $\tau: y \to \operatorname{Ad}(\tilde{k}(y))\xi_1$ which is a diffeomorphism from \bar{N} onto a dense open subset of $O_V(\xi_1)$ [30], Lemma 7.6.8. We denote by $k \cdot y$ the action of $k \in K$ on $y \in \bar{N}$ defined by $\tau(k \cdot y) = \operatorname{Ad}(k)\tau(y)$ or, equivalently, by $k \cdot y = \bar{n}(ky)$. Then the K-invariant measure on \bar{N} is given by $(\tau^{-1})^*(\mu) = e^{-2\rho(\log \tilde{a}(y))}dy$ [30], Lemma 7.6.8. We associate with each $s \in \mathcal{H}_0$ the function $\phi_s: \bar{N} \to E$ defined by

$$s(\tau(y)) = [(0, \tilde{k}(y)), e^{\rho(\log \tilde{a}(y))}\phi_s(y)].$$

We can easily verify that $J: s \to \phi_s$ is a unitary operator from \mathcal{H}_0 to $L^2(\bar{N}, E)$ and we set $\pi_0(v, k) := J\tilde{\pi}_0(v, k)J^{-1}$ for $(v, k) \in G_0$. Then we obtain

$$(\pi_0(v,k)\phi)(y) = e^{-\rho(\log a(k^{-1}y)) + i\beta(\operatorname{Ad}(\tilde{k}(y))\xi_1,v)} \sigma\left(m(k^{-1}y)\right)^{-1} \phi\left(\bar{n}(k^{-1}y)\right),$$
(2.1)

see [10].

The computation of $d\pi_0$ is similar to that of $d\pi$. By using Lemma 1, we obtain the following proposition.

Proposition 2. For $(v, U) \in \mathfrak{g}_0$, $\phi \in C^{\infty}(\overline{N}, E)$ and $y \in \overline{N}$, we have

$$\begin{aligned} (d\pi_0(v,U)\phi)(y) &= i\beta \left(\operatorname{Ad}(\tilde{k}(y))\xi_1, v \right) \phi(y) \\ &+ \rho \left(p_{\mathfrak{a}}(\operatorname{Ad}(y^{-1})U) \right) \phi(y) + d\sigma \left(p_{\mathfrak{m}}(\operatorname{Ad}(y^{-1})U) \right) \phi(y) \\ &- d\phi(y) \left(\operatorname{Ad}(y) p_{\bar{\mathfrak{n}}}(\operatorname{Ad}(y^{-1})U) \right)^+ (y). \end{aligned}$$

3 Contraction of group representations

Let us consider the family of maps $c_r: G_0 \to G$ defined by

$$c_r(v,k) = \exp(rv) k$$

for $v \in V$, $k \in K$ and indexed by $r \in [0, 1]$. One can easily show that

$$\lim_{r \to 0} c_r^{-1}(c_r(g) c_r(g')) = g g'$$

for each g, g' in G_0 . Then the family (c_r) is a group contraction of G to G_0 in the sense of [24].

Let $(\xi_1, \xi_2) \in \mathfrak{g}_0$ as in Section 2. Recall that π_0 is a unitary irreducible representation of G_0 associated with (ξ_1, ξ_2) . For each $r \in]0, 1]$, we set $\xi_r := (1/r)\xi_1 + \xi_2$ and we denote by π_r the principal series representation of G corresponding to $O(\xi_r)$.

We have to take into account some technicalities due to the fact that the projection maps a, m and \bar{n} are not defined on G but just on $\bar{N}MAN$. We begin by the following lemma.

Lemma 3. For each $k \in K$, the set $U_k := \{ y \in \overline{N} \mid k^{-1}y \in \overline{N}MAN \}$ is an open subset of \overline{N} whose complement in \overline{N} has measure zero.

Proof. For each $k \in K$, we set $V_k := \bar{N}MAN \cap k\bar{N}MAN$. Note that $G \setminus V_k = (G \setminus \bar{N}MAN) \cup (G \setminus k\bar{N}MAN)$ has Haar measure zero. On the other hand, we

have $V_k = U_k MAN$ hence $G \setminus V_k = (G \setminus \overline{N}MAN) \cup (\overline{N} \setminus U_k)MAN$. Thus we see that $(\overline{N} \setminus U_k)MAN$ also has Haar measure zero. Since the restriction of the Haar measure dg on G to $\overline{N}MAN$ is $e^{2\rho(\log a)}dy \, da \, dm \, dn$ where $dy, \, da, \, dm$ and dn are Haar measures on \overline{N}, A, M and N [30], p. 179, we conclude that $\overline{N} \setminus U_k$ has measure zero. QED

We denote by $C_0(\bar{N}, E)$ the space of compactly supported continuous functions $\phi : \bar{N} \to E$ and by $C_0^{\infty}(\bar{N}, E)$ the space of compactly supported smooth functions $\phi : \bar{N} \to E$. We have the following proposition.

Proposition 3. For each $(v,k) \in G_0$, $\phi \in C_0(\bar{N},E)$ and $y \in U_k$, we have

$$\lim_{r \to 0} \pi_r(c_r(v,k))\phi(y) = \pi_0(v,k)\phi(y).$$

Proof. By using the expressions for π_r and π_0 given in Section 1 and Section 2, we have just to verify that

$$\lim_{r \to 0} \frac{1}{r} \beta \Big(\xi_1 \,, \, \log \tilde{a}(y) - \log \tilde{a}(k^{-1} \exp(-rv)y) \Big) = \beta \big(\operatorname{Ad}(\tilde{k}(y))\xi_1, v \big).$$

But we have

$$\tilde{a}(k^{-1}\exp(-rv)y) = \tilde{a}(\exp(-rv)y) = \tilde{a}(\exp(-rv)\tilde{k}(y)\tilde{a}(y)\tilde{n}(y))$$
$$= \tilde{a}(\exp(-r\operatorname{Ad}(\tilde{k}(y)^{-1})v))\tilde{a}(y).$$

Then we get

$$\tilde{a}(y)\tilde{a}(k^{-1}\exp(-rv)y)^{-1} = \tilde{a}(\exp(-r\operatorname{Ad}(\tilde{k}(y)^{-1})v))^{-1}.$$

Thus, by using Lemma 1, we have

$$\frac{d}{dr}\log \tilde{a}(y)\tilde{a}(k^{-1}\exp(-rv)y)^{-1}|_{r=0} = p_{\tilde{a}}(\mathrm{Ad}(\tilde{k}(y)^{-1})v).$$

Hence the result follows.

QED

In order to establish the L^2 -convergence, we need the following lemma.

Lemma 4. Let U be an open subset of \overline{N} such that $\overline{N} \setminus U$ has measure zero. Then, for each $\phi \in C_0(\overline{N}, E)$ and each $\varepsilon > 0$, there exists $\psi \in C_0(\overline{N}, E)$ such that supp $\psi \subset U$ and $\|\psi - \phi\| \leq \varepsilon$.

.

Proof. Let $|\cdot|$ denote the Euclidean norm on $\bar{\mathbf{n}}$ (see Section 1). We endow \bar{N} with the distance d defined by $d(y, y') = |\log y - \log y'|$. Let $\phi \in C_0(\bar{N}, E)$ and $\varepsilon > 0$. Let C be a compact subset of \bar{N} such that $C \subset U \cap \operatorname{supp} \phi$ and

$$\int_{(U\cap\operatorname{supp}\phi)\backslash C} dy \le (1+4\sup_{y\in\bar{N}} \|\phi(y)\|_E^2)^{-1} \varepsilon.$$

In particular, we have $\delta := d(C, \overline{N} \setminus U) > 0$. Let $V := \{y \in \overline{N} : d(y, C) < \delta/2\}$. Then V is an open set such that $C \subset V \subset \overline{V} \subset U$. Consider now the function $\psi : \overline{N} \to E$ defined by

$$\psi(y) = \frac{d(y, \bar{N} \setminus V)}{d(y, C) + d(y, \bar{N} \setminus V)} \phi(y).$$

Note that ψ is well-defined since the intersection of C with the adherence of $\overline{N} \setminus V$ in \overline{N} is empty. Moreover, we have the following properties

- (1) supp $\psi \subset \overline{V} \subset U$ and supp $\psi \subset \operatorname{supp} \phi$;
- (2) $\sup_{y \in \bar{N}} \|\psi(y)\|_E \le \sup_{y \in \bar{N}} \|\phi(y)\|_E;$
- (3) $\psi(y) = \phi(y)$ for each $y \in C$.

This implies that

$$\begin{split} \int_{\bar{N}} \|\psi(y) - \phi(y)\|_{E}^{2} \, dy &= \int_{U \cap \mathrm{supp}\phi} \|\psi(y) - \phi(y)\|_{E}^{2} \, dy \\ &= \int_{(U \cap \mathrm{supp}\phi) \setminus C} \|\psi(y) - \phi(y)\|_{E}^{2} \, dy \\ &\leq 4 \sup_{y \in \bar{N}} \|\phi(y)\|_{E}^{2} \, \int_{(U \cap \mathrm{supp}\phi) \setminus C} \, dy \\ &\leq \varepsilon. \end{split}$$

QED

Proposition 4. 1) Let ϕ , ψ in $L^2(\overline{N}, E)$ and $(v, k) \in G_0$. Then we have

$$\lim_{r \to 0} \langle \pi_r(c_r(v,k))\phi,\psi \rangle = \langle \pi_0(v,k)\phi,\psi \rangle.$$

2) Let $\phi \in L^2(\overline{N}, E)$ and $(v, k) \in G_0$. Then we have $\lim_{r \to 0} \|\pi_r(c_r(v, k))\phi - \pi_0(v, k)\phi\| = 0.$

B. Cahen

Proof. 1) We can assume without loss of generality that $\phi, \psi \in C_0(N, E)$. Moreover, by Lemma 4, we can also assume that $\operatorname{supp} \phi \subset U_k$. We have

$$\langle \pi_r(c_r(v,k))\phi,\psi\rangle = \int_{\operatorname{supp}\psi} \langle \pi_r(c_r(v,k))\phi(y),\psi(y)\rangle_E \, dy.$$

By Proposition 3, for each $y \in \operatorname{supp} \psi$, the integrand

$$I_r(y) := \langle \pi_r(c_r(v,k))\phi(y), \psi(y) \rangle_E$$

converges to $\langle \pi_0(v,k)\phi(y),\psi(y)\rangle_E$ when $r \to 0$. In order to obtain the desired result, it suffices to verify that the dominated convergence theorem can be applied. This can be done as follows.

First we claim that there exists $r_0 > 0$ such that for each $r \in [0, r_0]$ and each $y \in \operatorname{supp} \psi$, we have $k^{-1} \exp(-rv)y \in \overline{N}MAN$. Indeed, if this is not the case, then there exists a sequence $r_n > 0$ converging to 0 and a sequence $y_n \in \operatorname{supp} \psi$ such that $k^{-1} \exp(-r_n v)y_n \in G \setminus \overline{N}MAN$ for each n. Since $\operatorname{supp} \psi$ is compact, we can also assume that y_n converges to an element $y \in \operatorname{supp} \psi$. Then we get $k^{-1}y \in G \setminus \overline{N}MAN$. This a contradiction.

Since the projection maps a and \bar{n} are continuous on $\bar{N}MAN$, there exists c > 0 such that, for each $r < r_0$ and each $y \in \operatorname{supp} \psi$, we have

$$e^{-\rho(\log a(k^{-1}\exp(-rv)y))} < c$$

Then, by taking into account the expression for $\pi_r(c_r(v,k))$, we get

$$|I_r(y)| \le c. \sup_{z \in \bar{N}} \|\phi(z)\|_E. \|\psi(y)\|_E$$

for each $r < r_0$ and each $y \in \operatorname{supp} \psi$, hence the result.

2) Since π and π_0 are unitary, for each $\phi \in L^2(\bar{N}, E)$ we have

$$\|\pi_r(c_r(v,k))\phi - \pi_0(v,k)\phi\|^2 = 2\|\phi\|^2 - 2\operatorname{Re}\langle\pi_r(c_r(v,k))\phi,\pi_0(v,k)\phi\rangle$$

which converges to $2\|\phi\|^2 - 2 \operatorname{Re} \langle \pi_0(v,k)\phi, \pi_0(v,k)\phi \rangle$ when $r \to 0$ by 1). QED

Remarks (1) In fact, 2) of Proposition 4 asserts that π_0 is a contraction of (π_r) in the sense of [24] (see also [8]).

(2) By using the Bruhat decomposition $G = \bigcup_{w \in W} MANwMAN$ where W is the Weyl group, it is easy to see that $\bigcap_{k \in K} k\bar{N}MAN = \emptyset$ then the set of all elements $y \in \bar{N}$ such that $k^{-1}y \in \bar{N}MAN$ for each $k \in K$ is also empty. Hence, it seems to be difficult to get uniform convergence on the compact sets of G_0 in Proposition 4 as in Theorem 1 of [16].

4 Contraction of derived representations

In this section, we give similar contraction results for the derived representations.

For each $r \in]0,1]$, we denote by C_r the differential of c_r . Then the family (C_r) is a contraction of Lie algebras from \mathfrak{g} onto \mathfrak{g}_0 , that is,

$$\lim_{r \to 0} C_r^{-1} ([C_r(X), C_r(Y)]) = [X, Y]_0$$

for each $X, Y \in \mathfrak{g}_0$. We also denote by $C_r^* : \mathfrak{g}^* \simeq \mathfrak{g} \to \mathfrak{g}_0^* \simeq \mathfrak{g}_0$ the dual map of C_r . Then we note that $\lim_{r\to 0} C_r^*(\xi_r) = (\xi_1, \xi_2)$.

Proposition 5. 1) For each $(v, U) \in \mathfrak{g}_0$, $\phi \in C^{\infty}(\overline{N}, E)$ and $y \in \overline{N}$, we have

$$\lim_{r \to 0} d\pi_r (C_r(v, U)) \phi(y) = d\pi_0(v, U) \phi(y).$$

2) For each $(v, U) \in \mathfrak{g}_0$ and $\phi, \psi \in C_0^{\infty}(\overline{N}, E)$, we have

$$\lim_{r \to 0} \langle d\pi_r(C_r(v,U))\phi,\psi\rangle = \langle d\pi_0(v,U)\phi,\psi\rangle.$$

3) For each $(v, U) \in \mathfrak{g}_0$ and $\phi \in C_0^{\infty}(\bar{N}, E)$, we have

$$\lim_{r \to 0} \|d\pi_r (C_r(v, U))\phi - d\pi_0(v, U)\phi\| = 0.$$

Proof. We immediately deduce 1) from Proposition 1 and Proposition 2. Note that another proof of 1) by the Berezin-Weyl calculus can be found in [10]. Moreover, by using Proposition 1 and Proposition 2 again, we see that if $\phi \in C_0^{\infty}(\bar{N}, E)$ then $d\pi_r(C_r(v, U))\phi$, $d\pi_0(v, U)\phi \in C_0^{\infty}(\bar{N}, E) \subset L^2(\bar{N}, E)$. Hence the expressions $\langle d\pi_r(C_r(v, U))\phi, \psi \rangle$ and $\langle d\pi_0(v, U)\phi, \psi \rangle$ make sense for ϕ, ψ in $C_0^{\infty}(\bar{N}, E)$ and we easily obtain 2). Finally, to prove 3), we write

$$\|d\pi_r(C_r(v,U))\phi - d\pi_0(v,U)\phi\|^2 = \|d\pi_r(C_r(v,U))\phi\|^2 + \|d\pi_0(v,U)\phi\|^2 - 2\operatorname{Re}\langle d\pi_r(C_r(v,U))\phi, d\pi_0(v,U)\rangle.$$

By 2), we see that

$$\lim_{r \to 0} \langle d\pi_r(C_r(v,U))\phi, d\pi_0(v,U)\phi \rangle = \langle d\pi_0(v,U)\phi, d\pi_0(v,U)\phi \rangle.$$

By the same arguments, we verify that

$$\lim_{r \to 0} \|d\pi_r(C_r(v,U))\phi\|^2 = \|d\pi_0(v,U)\phi\|^2.$$

Then the result follows.

QED

References

- [1] F. A. BEREZIN: Quantization, Math. USSR Izv., 8, n. 5, (1974), 1109–1165.
- [2] B. CAHEN: Deformation Program for Principal Series Representations, Lett. Math. Phys., 36 (1996), 65–75.
- B. CAHEN: Quantification d'orbites coadjointes et théorie des contractions, J. Lie Theory, 11 (2001), 257–272.
- [4] B. CAHEN: Contractions of SU(1, n) and SU(n + 1) via Berezin quantization, J. Anal. Math., 97 (2005), 83–102.
- [5] B. CAHEN: Weyl quantization for principal series, Beiträge Algebra Geom., 48 (2007), 175–190.
- B. CAHEN: Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math., 53, n. 1, (2009), 265–288.
- [7] B. CAHEN: Contraction of Discrete Series via Berezin Quantization, J. Lie Theory, 19 (2009), 291–310.
- [8] B. CAHEN: Some Remarks on the Notion of Contraction of Lie Group Representations, Math. Moravica, 14 (2010), 35–46.
- [9] B. CAHEN: Berezin-Weyl quantization for the Cartan motion groups, Comment. Math. Univ. Carolin., 52, n. 1, (2011), 127–137.
- [10] B. CAHEN: Contraction of the principal series by Berezin-Weyl quantization, Rocky Mountain J. Math., 43, n. 2, (2013), 417–441.
- [11] U. CATTANEO AND W. F. WRESZINSKI: Trotter limits of Lie algebra representations and coherent states, Helv. Phys. Acta, 52 (1979), 313–329.
- [12] U. CATTANEO AND W. F. WRESZINSKI: Contractions of Lie algebra representations, Rev. Math. Phys., 11 (1999), 1179–1207.
- [13] P. COTTON AND A. H. DOOLEY: Contraction of an Adapted Functional Calculus, J. Lie Theory, 7, (1997), 147–164.
- [14] E. CELEGHINI AND M. TARLINI: Contractions of Group Representations-I, Nuovo Cimento B, 31 (1981), 265–277.
- [15] A. H. DOOLEY: Contractions of Lie groups and applications to analysis, In Topics in Modern Harmonic Analysis, Proc. Semin., Torino and Milano 1982, Vol. I , Ist. di Alta Mat, Rome, 1983, pp. 483–515.
- [16] A. H. DOOLEY AND J. W. RICE: On contractions of semisimple Lie groups, Trans. Am. Math. Soc., 289 (1985), 185–202.
- [17] A. H. DOOLEY: Intertwining operators, The Cayley transform and the contraction of K to NM, Contemp. Math., 544, (2011), 101–108.
- [18] S. HELGASON: Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island 2001.
- [19] E. INÖNÜ, E. P. WIGNER: On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA, **39** (1953), 510–524.
- [20] A. A. KIRILLOV: Lectures on the Orbit Method, Graduate Studies in Mathematics Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004.

94

- [21] A. W. KNAPP: Representation theory of semisimple groups. An overview based on examples, Princeton Math. Series t. 36, 1986.
- [22] B. KOSTANT: Quantization and unitary representations, in: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New-York, 1970, pp. 87–207.
- [23] G. MACKEY: On the analogy between semisimple Lie groups and certain related semidirect product groups, in Lie groups and their representations, I. M. Gelfand Ed., Hilger, London, 1975.
- [24] J. MICKELSSON AND J. NIEDERLE: Contractions of Representations of de Sitter Groups, Commun. Math. Phys., 27 (1972), 167–180.
- [25] J. H. RAWNSLEY: Representations of a semi direct product by quantization, Math. Proc. Camb. Phil. Soc., 78 (1975), 345–350.
- [26] F. RICCI: A Contraction of SU(2) to the Heisenberg Group, Monatsh. Math., 101, (1986), 211–225.
- [27] E. J. SALETAN: Contraction of Lie groups, J. Math. Phys., 2 (1961), 1–21.
- [28] D. J. SIMMS: Lie Groups and Quantum Mechanics, Lecture Notes in Mathematics 52, Springer-Verlag, Berlin, Heidelberg, New-York, 1968.
- [29] M. E. TAYLOR: Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, Vol. 22, American Mathematical Society, Providence, Rhode Island 1986.
- [30] N. R. WALLACH: Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, Vol. 19, Marcel Dekker, New-York 1973.
- [31] N. J. WILDBERGER: On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc. A, 56 (1994), 64–116.