ASPECTS OF THE UNIFORM λ -PROPERTY (*)

ROBERT H. LOHMAN

Dedicated to the memory of Professor Gottfried Köthe

ABSTRACT. If Z is a uniformly convex normed space, the quotient space $\ell_{\infty}(Z)/c_0(Z)$, which is not strictly convexifiable, is shown to have the uniform λ -property and its λ -function is calculated. An example is given of a Banach space X with a closed linear subspace Y such that Y and X/Y are strictly convex, yet X fails to have the λ -property. Convex sequences which generate $B_{\ell_{\infty}}$ are characterized.

Every point in the closed unit ball of a strictly convex space is a convex combination of two extreme points. Thus, every strictly convex space has the uniform λ -property, a geometric property of normed spaces introduced in [1] and which represents one direction that can be followed in generalizing the notion of strict convexity. Because the strictly convex spaces represent such a fundamental class of normed spaces with the uniform λ -property, it is natural to ask whether these classes contain the same spaces, up to isomorphism. That is, does every normed space with the uniform λ -property possess an equivalent strictly convex norm? In this note, we show that the answer is no by proving that $\ell_{\infty}(Z)/c_0(Z)$ has the uniform λ -property whenever Z is a uniformly convex space. Since $\ell_{\infty}(Z)/c_0(Z)$ is not strictly convexifiable, we obtain a negative answer to the preceding question. In particular, ℓ_{∞}/c_0 is an example of a much-studied classical Banach space which has the uniform λ -property but is not strictly convexifiable. We also show that the uniform λ -property is very far from being a three-space property. Namely, we give an example of a Banach space X with a closed linear subspace Y such that Y and X/Y are strictly convex, yet X fails to have the λ -property. In the last section, we examine certain convex sequences, the so-called B_X generating sequences, which naturally appear in the context of any discussion of a Banach space X with the uniform λ -property. The $B_{\ell_{\infty}(R)}$ -generating sequences are characterized.

0. PRELIMINARIES

Given a normed space X, B_X denotes its closed unit ball and S_X its closed unit sphere. If $x \in B_X$, a triple (e, y, λ) is amenable to x, if $e \in \text{ext}(B_X), y \in B_X, 0 < \lambda \leq 1$ and

^(*) AMS 1980 Mathematics Subject Classification: Primary 46B20.

Key words and phrases: extreme point, strict convexity, λ -property, uniform convexity.

158 Robert H. Lohman

 $x = \lambda e + (1 - \lambda)y$. In this case, we define

$$\lambda(x) = \sup\{\lambda : (e, y, \lambda) \text{ is amenable to } x\}.$$

X has the λ -property if each $x \in B_X$ admits an amenable triple. If, in addition $\lambda(X) \equiv \inf \{\lambda(x) : x \in B_X\} > 0$, then X is said to have the uniform λ -property. General facts concerning these properties appear in [1], [4] and [7]. Discussion of these properties for classical sequence and function spaces can be found in [1], [5], [8]-[10].

If Z is a normed space, $\ell_{\infty}(Z)$ denotes the normed space of all bounded Z-valued sequences $z=(z_n)$, where $||z||=\sup_n ||z_n||$. The closed linear subspace of $\ell_{\infty}(Z)$ consisting of all zose z for which $z_n\to 0$ is denoted by $c_0(Z)$. It is a well-known result of J. Bourgain [3] that $\ell_{\infty}(Z)/c_0(Z)$ is not strictly convexifiable (i.e., does not admit an equivalent strictly convex norm) in the cases $Z=\mathbb{R}$ or \mathbb{C} . In these cases, the latter quotient space is denoted simply by ℓ_{∞}/c_0 . For an arbitrary normed space Z, fix $z\in Z_0Z$. Then the mapping $T:\ell_{\infty}/c_0\to\ell_{\infty}(Z)/c_0(Z)$, defined by $T((a_n)+c_0)=(a_nz)+c_0(Z)$, is easily seen to be a linear isometry of ℓ_{∞}/c_0 into $\ell_{\infty}(Z)/c_0(Z)$. By Bourgain's result, it follows that $\ell_{\infty}(Z)/c_0(Z)$ is not strictly convexifiable.

If Z is a uniformly convex normed space and (u_n) , (v_n) are sequences in B_Z such that $||u_n + v_n|| \to 2$, then $||u_n - v_n|| \to 0$. If A is a subset of a normed space, $\overline{co}(A)$ denotes the closed convex hull of A.

1. $\ell_{\infty}(Z)/c_0(Z)$ AND THE UNIFORM λ -PROPERTY

We write $X=\ell_\infty(Z)/c_0(Z)$ and let $Q:\ell_\infty(Z)\to X$ denote the canonical quotient mapping, defined by $Q(z)=z+c_0(Z)$ for all $z\in\ell_\infty(Z)$.

Lemma 1. $Q(B_{\ell_{\infty}(Z)}) = B_X$ for any normed space Z.

Proof. It suffices to show that $B_X\subset Q(B_{\ell_\infty(Z)})$. Let $\hat{z}\in B_X$ and choose $z=(z_n)\in \ell_\infty(Z)$ such that $\hat{z}=Q(z)$. Since $||Q(z)||\leq 1$, the set $\mathbb{N}_k=\{n:||z_n||\geq 1+k^{-1}\}$ is finite for every $k\in\mathbb{N}$. Define $x=(x_n)\in B_{\ell_\infty(Z)}$ as follows:

$$x_n = \begin{cases} z_n, & \text{if } ||z_n|| \le 1 \\ \frac{z_n}{||z_n||}, & \text{if } 1 < ||z_n|| \end{cases}$$

Observe that if $n>\max \mathbb{N}_k$ and $1<||z_n||$, then $1<||z_n||<1+k^{-1}$. It follows that $||x_n-z_n||< k^{-1}$ if $n>\max \mathbb{N}_k$. Consequently, we have $x-z\in c_0(Z)$ so that $\hat{z}=Q(z)=Q(x)$. Since $x\in B_{\ell_m(Z)}$, the proof is complete.

Lemma 2. (a) If Z is a strictly convex normed space, $\operatorname{ext}(B_X) \subset Q(\operatorname{ext}(B_{\ell_{\infty}(Z)}))$. (b) If Z is a uniformly convex normed space, $\operatorname{ext}(B_X) = Q(\operatorname{ext}(B_{\ell_{\infty}(Z)}))$.

Proof. (a). If $\hat{e} \in \text{ext }(B_X)$, then by Lemma 1, we can write $\hat{e} = Q(x)$, where $x = (x_n) \in B_{\ell_\infty(Z)}$. Then $||x_n|| \leq 1$ for all n and we claim $||x_n|| \to 1$. If not, there exists $\varepsilon > 0$ such that $||x_n|| \leq 1 - \varepsilon$ for an infinite subset \mathbb{N}_ε of \mathbb{N} . Thus, for each $n \in N_\varepsilon$, there exist $u_n, v_n \in B_Z$ such that $1 \geq ||u_n - x_n||, ||v_n - x_n|| \geq \varepsilon$ and $x_n = \frac{1}{2}(u_n + v_n)$. This implies that there exist $u, v \in B_{\ell_\infty(Z)}$ such that $u - x, v - x \notin C_0(Z)$ and $x = \frac{1}{2}(u + v)$. Hence, $\hat{e} = \frac{1}{2}(Q(u) + Q(v))$, where $Q(u) \neq \hat{e} \neq Q(v)$. This contradiction establishes the claim. Since $||x_n|| \to 1$, there is no loss of generality in assuming $x_n \neq 0$ for all n. Then $e = \frac{x_n}{||x_n||} \in \text{ext }(B_{\ell_\infty(Z)})$ and $x - e \in c_0(Z)$, which implies Q(x) = Q(e) and completes the proof.

(b) Let $e=(e_n)\in \operatorname{ext}(B_{\ell_\infty(Z)})$. Then $||e_n||=1$ for all n and ||Q(e)||=1. Suppose $Q(e)=\frac{1}{2}(\hat{u}+\hat{v})$, where $\hat{u},\hat{v}\in B_X$. Then $||\hat{u}||=||\hat{v}||=1$ and, by Lemma 1, we can find $u=(u_n)$, $v=(v_n)\in B_{\ell_\infty(Z)}$ such that $\hat{u}=Q(u)$, $\hat{v}=Q(v)$. Since $Q(e)=Q\left(\frac{u+v}{2}\right)$, it follows that $e-\frac{1}{2}(u+v)\in c_0(Z)$; that is, $\left\|e_n-\frac{1}{2}(u_n+v_n)\right\|\to 0$. Uniform convexity of Z and the facts that $||u_n||, ||v_n|| \le 1$, $||u_n+v_n|| \to 2$ forces $||u_n-v_n|| \to 0$. This implies $u-v\in c_0(Z)$ which, in turn, implies $\hat{u}=Q(u)=Q(v)=\hat{v}$. Therefore, $Q(e)=\hat{u}=\hat{v}$, implying $Q(e)\in \operatorname{ext}(B_X)$.

Theorem 3. Let Z be a uniformly convex normed space. The quotient space $X = \ell_{\infty}(Z)/c_0(Z)$ has the uniform λ -property but is not strictly convexifiable. If $\hat{z} \in B_X$, then

$$(*) \qquad \lambda(\hat{z}) = \sup\left\{\frac{1}{2}(1+\inf_n||z_n||): z=(z_n) \in B_{\ell_\infty(Z)} \quad \text{and} \quad Q(z)=\hat{z}\right\}.$$

Proof. Let $\hat{z} \in B_X$ and suppose $\hat{z} = Q(z)$, where $z = (z_n) \in B_{\ell_\infty(Z)}$. By theorem 1.13 of [1], there exist $e \in \text{ext } (B_{\ell_\infty(Z)}), y \in B_{\ell_\infty(Z)}$ such that $z = \lambda e + (1 - \lambda)y$, where $\lambda = \frac{1}{2}(1 + \inf_n ||z_n||)$. By Lemmas 1 and 2, $(Q(e), Q(y), \lambda)$ is amenable to $\hat{z} = Q(z)$. This proves X has the uniform λ -property and that $\lambda(\hat{z})$ is at least as large as the supremum indicated in (*).

160 Robert H. Lohman

On the other hand, given $\varepsilon > 0$, there exists a triple $(\hat{e}, \hat{y}, \lambda)$ amenable to \hat{z} such that $\lambda(\hat{z}) - \varepsilon < \lambda$. By Lemmas 1 and 2, we may assume $\hat{e} = Q(e), \hat{y} = Q(y)$, where $e \in \text{ext}(B_{\ell_{\infty}(Z)}), y \in B_{\ell_{\infty}(Z)}$. Let $z = (z_n) = \lambda e + (1 - \lambda)y$ and observe that $Q(z) = \hat{z}$. By theorem 1.13 of [1], $\lambda \leq \lambda(z) = \frac{1}{2}(1 + \inf_n ||z_n||)$. Thus,

$$\lambda(\hat{z}) \leq \frac{1}{2}(1 + \inf_{n} ||z_{n}||) + \varepsilon,$$

showing that the supremum indicated in (*) is at least as large as $\lambda(\hat{z})$.

2. THREE-SPACE CONSIDERATIONS

The uniform λ -property is not a three-space property. For example, ℓ_{∞} has the uniform λ -property but contains a subspace $Y(=c_0)$ without the λ -property. On the other hand, a classical example of V. Klee [5] shows that ℓ_1 can be given an equivalent strictly convex norm $||\cdot||$ such that every seprarable Banach space is isometrically isomorphic to a quotient of $(\ell_1,||\cdot||)$. Thus, a quotient of a strictly convex space may fail to ahve the λ -property. Our goal here is to show the existence of a Banach space X with a closed linear subspace Y such that Y and X/Y are both strictly convex, yet X fails to have the λ -property.

To this end, let Y be a real Banach space having two equivalent norms, $||\cdot||_1$ and $||\cdot||_2$, such that $(Y, ||\cdot||_1)$ is strictly convex and the closed unit ball of $(Y, ||\cdot||_2)$ fails to have an extreme point. For example $Y = c_0$ is such a space. Let B_i denote the closed unit ball of $(Y, ||\cdot||_i)$, i = 1, 2. We may assume that $2B_2 \subset B_1$. In $X = Y \times \mathbb{R}$, let

$$B=\overline{co}((B_1\times\{0\})\cup(B_2\times\{-1,1\})).$$

If $||\cdot||$ denotes the gauge functional of B in X, then $||\cdot||$ is a norm on X, $(X,||\cdot||)$ is a Banach space and B is closed unit ball of $(X,||\cdot||)$. Routine calculations show that $(Y,||\cdot||_1)$ is isometrically isomorphic to the subspace $Y \times \{0\}$ of $(X,||\cdot||)$, so that $Y \times \{0\}$ is strictly convex. Obviously, the one-dimensional space $X/(Y \times \{0\})$ is strictly convex.

Assume that $(X, ||\cdot||)$ has the λ -property and define $f \in X^*$ by f(x, t) = t. Then f(0, 1) = ||f|| = 1. Since $(X, ||\cdot||)$ has the λ -property, f must attain its maximum on B at a member (x, t) of ext (B) (see Theorem 3.3 of [1]). This forces t = 1 and hence, by the definition of B, we obtain $x \in B_2$. Since B_2 does not contain an extreme point, it follows that $(x, 1) \notin ext(B)$, a contradiction.

Remark 4. The preceding example also shows that a Banach space without the λ -property can contain a closed, one-codimensional subspace that is strictly convex.

3. B_x -GENERATING SEQUENCES

A sequence (λ_k) of positive real numbers will be called a convex sequence in case $\sum_{k=1}^{\infty} \lambda_k =$

= 1. The following result has recently been shown in [2]:

Theorem 5. A Banach space X has the λ -property if and only if B_X has the convex series representation property; that is, for each $x \in B_X$, there exists a convex sequence (λ_k) and

a sequence
$$(e_k) \subset \text{ext}(B_X)$$
 such that $x = \sum_{k=1}^{\infty} \lambda_k e_k$.

On the other hand, it is well-known from [1] that

Theorem 6. A Banach space X has the uniform λ -property if and only if there exists a convex sequence (λ_k) such that for each B_X , there exists a sequence $(e_k) \subset \text{ext}(B_X)$

satisfying
$$x = \sum_{k=1}^{\infty} \lambda_k e_k$$
.

A sequence (λ_k) satisfying the condition of Theorem 6 will be called a B_X -generating sequence. We see that Theorems 5 and 6 mark a clear distinction between Banach spaces with the λ -property and Banach spaces with the uniform λ -property. In the case of the λ -property, the sequence (λ_k) of Theorem 5 depends on $x \in B_X$. In the case of the uniform λ -

property, the sequence (λ_k) is fixed and changing the extreme points e_k in the sums $\sum_{k=1}^{\infty} \lambda_k e_k$

is sufficient to produce all the members of B_X . Hence, a Banach space X has the uniform λ -property if and only if there is a B_X -generating sequence. For such a space X, it would be of interest to determine all the B_X -generating sequences. If this were possible, then given Banach spaces X,Y with the uniform λ -property, one might be able to distinguish certain geometric or quantitative differences between B_X and B_Y in terms of differences between the collections of B_X -generating and B_Y -generating sequences.

The problem of characterizing the B_X -generating sequences for a Banach space X with the uniform λ -property has only recently been considered. In this section, however, we settle this question for $X=\mathbb{R}$ and $X=\ell_\infty(\mathbb{R})$. Recall from [8] that a Banach space X has the uniform λ -property if and only if $\ell_\infty(X)$ has the uniform λ -property.

Lemma 7. Let X be a Banach space with the uniform λ -property. Then the families of B_X -generating sequences and $B_{\ell_{\infty}(X)}$ -generating sequences are equal.

Proof. Let (λ_k) be a B_X -generating sequence and let $x = (x_n) \in B_{\ell_{\infty}(X)}$. For each n,

there exist a sequence $(e_k^{(n)})_{k=1}^{\infty} \subset \operatorname{ext}(B_X)$ such that

$$x_n = \sum_{k=1}^{\infty} \lambda_k e_k^{(n)}, \qquad n = 1, 2, \dots$$

If we define $e_k=(e_k^{(n)})_{n=1}^\infty$, then $e_k\in \mathrm{ext}\,(B_{\ell_\infty(X)})$ and for each m, we have

$$\left\|x - \sum_{k=1}^{m} \lambda_k e_k\right\| = \sup_{n} \left\|x_n - \sum_{k=1}^{m} \lambda_k e_k^{(n)}\right\| \le \sum_{k=m+1}^{\infty} \lambda_k.$$

Consequently, $x = \sum_{k=1}^{\infty} \lambda_k e_k$, proving that (λ_k) is a $B_{\ell_{\infty}(X)}$ -generating sequence. The proof of the converse is equally simple.

Theorem 8. Let (λ_k) be a convex sequence. The following are equivalent:

- (a) (λ_k) is $B_{\ell_{\infty}(R)}$ -generating.
- (b) (λ_k) is B_R -generating.
- (c) For each $t \in [0,1]$, there is a sequence (a_k) of 0's and 1's such that $t = \sum_{k=1}^{\infty} \lambda_k a_k$.
- (d) If $(\hat{\lambda}_k)$ is the nonincreasing rearrangement of (λ_k) , then for all n we have $\hat{\lambda}_n \leq \sum_{k=n+1}^{\infty} \hat{\lambda}_k$.

Proof. That (a) ⇔ (b) follows from Lemma 7.

- (b) \Rightarrow (c). Let $t \in [0,1]$. Since $\operatorname{ext}(B_R) = \{-1,1\}$, there is a sequence (b_k) of \pm 1's such that $2t-1=\sum_{k=1}^{\infty}\lambda_k b_k$. Then $t=\sum_{k=1}^{\infty}\lambda_k (b_k+1)/2$, and, for each k, $(b_k+1)/2$ equals 0 or 1.
- (c) \Rightarrow (b). If $-1 \le x \le 1$, write x = 2t 1, where $0 \le t \le 1$. By hypothesis, there is a sequence (a_k) of 0's and 1's such that $t = \sum_{k=1}^{\infty} \lambda_k a_k$. It follows that $x = \sum_{k=1}^{\infty} \lambda_k (2a_k 1)$

and, for each k, $2a_k - 1$ is either -1 or 1. Consequently (λ_k) is a B_R -generating sequence.

(c) \Rightarrow (d). Since $(\hat{\lambda}_k)$ also satisfies statement (c), there is no loss of generality in assuming (λ_k) is nonincreasing. Assume, to the contrary, that $\lambda_n > \sum_{k=n+1}^{\infty} \lambda_k$ for some n. Given

a sequence
$$(a_k)$$
 of 0's and 1's, write $t = \sum_{k=1}^{\infty} \lambda_k a_k$. If $a_k = 0$ for $1 \le k \le n$, then $t \le n$

 $\leq \sum_{k=n+1}^{\infty} \lambda_n$. On the other hand, if $a_{k_0} = 1$ for some k_0 between 1 and n, then $t \geq \lambda_{k_0} \geq \lambda_n$.

This shows that $t \notin \left(\sum_{k=n+1}^{\infty} \lambda_k, \lambda_n\right)$ and contradicts the fact that (λ_k) satisfies (c).

(d) \Rightarrow (c). Without loss of generality, (λ_k) is nonincreasing. Define $\lambda_0 = 1$ and let 0 < t < 1. Let n_1 be the smallest nonnegative integer such that $\lambda_{n_1+1} \le t$. If $\sum_{k=n_1+1}^m \lambda_k \le t$

for all $m \ge n_1 + 1$, then we obtain $\lambda_{n_1} \le \sum_{k=n_1+1}^{\infty} \lambda_k \le t$, which is impossible if $n_1 = 0$ and contradicts the definition of n_1 if $n_1 \ge 1$. Consequently, there is an integer $m_1 \ge n_1 + 1$

(1) $\sum_{k=n_1+1}^{m_1} \lambda_k \leq t < \sum_{k=n_2+1}^{m_1+1} \lambda_k$

If $t = \sum_{k=n_1+1}^{m_1} \lambda_k$, then $t = \sum_{k=1}^{\infty} \lambda_k a_k$ for the obvious sequence (a_k) of 0's and 1's. Thus, we

may assume strict inequality holds in (1).

Assume that $0 \le n_1 < m_1 < \ldots < n_j < m_j$ have been chosen so that

(2)
$$\sum_{i=1}^{j} \left(\sum_{k=n_i+1}^{m_i} \lambda_k \right) < t < \sum_{i=1}^{j-1} \left(\sum_{k=n_i+1}^{m_i} \lambda_k \right) + \sum_{k=n_j+1}^{m_j+1} \lambda_k$$

If s_i denotes the left-hand side of (2), then (2) becomes

$$s_j < t < s_j + \lambda_{m_j+1},$$

which implies $0 < t - s_j < \lambda_{m_j+1}$. There is a largest integer $n_{j+1} \ge m_j + 1$ such that

$$(3) t < s_j + \lambda_{n_{j+1}}$$

This implies

such that

$$(4) s_j + \lambda_{n_{j+1}+1} \le t$$

164 Robert H. Lohman

If
$$s_j + \sum_{k=n_{j+1}+1}^m \lambda_k \le t$$
 for all $m \ge n_{j+1} + 1$, we obtain

$$s_j + \lambda_{n_{j+1}} \leq s_j + \sum_{k=n_{j+1}+1}^{\infty} \lambda_k \leq t,$$

which contradicts (3). Therefore, there exists $m \ge n_{j+1} + 1$ such that $t < s_j + \sum_{k=n_{j+1}+1}^m \lambda_k$.

This fact, together with (4), implies that there is an integer $m_{j+1} \ge n_{j+1} + 1$ such that

(5)
$$s_j + \sum_{k=n_{j+1}+1}^{m_{j+1}} \lambda_k \le t < s_j + \sum_{k=n_{j+1}+1}^{m_{j+1}+1} \lambda_k$$

If equality holds in the left-hand side of (5), then $t=s_{j+1}$. If the left-hand side of (5) is a strict inequality, then $0 < t-s_{j+1} < \lambda_{m_{j+1}+1}$. By induction, either $t=s_j$ for some j or $t=\lim_{j\to\infty} s_j$. In either case, $t=\sum_{h=1}^\infty \lambda_k a_k$ for a sequence (a_k) of 0's and 1's.

Remark 9. In order to illustrate an application of these result, let $0 < \lambda < 1$ and define $\lambda_k = \lambda (1-\lambda)^{k-1}$. Then (λ_k) a nonincreasing sequence of positive numbers satisfying $\sum_{k=1}^{\infty} \lambda_k = 1$. For each positive integer n, we have $\sum_{k=n+1}^{\infty} \lambda (1-\lambda)^{k-1} = (1-\lambda)^n$. It follows that (λ_k) is a $B_{\ell_{\infty}(R)}$ -generating sequence if and only if

$$\lambda(1-\lambda)^{n-1} \le (1-\lambda)^n$$

for each n. This occurs if and only if $\lambda \leq \frac{1}{2}$.

REFERENCES

- [1] R.M. ARON, R.H. LOHMAN, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math., 127 (1987), pp. 209-231.
- [2] R.M. Aron, R.H. Lohman, A. Suarez, Problems related to the convex series representation property and rotundity in Banach spaces, Proc. Amer. Math. Soc., 3 (1991), pp. 151-155.
- [3] J. BOURGAIN, ℓ_{∞}/c_0 has no equivalent strictly convex norm, Proc. Amer. Soc., 78 (1980), pp. 225-226.
- [4] A.S. GRANERO, On the Aron-Lohman λ -property, preprint.
- [5] A.S. GRANERO, The λ -function in the spaces $\left(\bigotimes \sum_{i\in I} X_i\right)_p$ and $L_p(\mu, X)$, $1 \le p \le \infty$, preprint.
- [6] V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Annalen, 139 (1959), pp. 51-63.
- [7] R.H. LOHMAN, The λ-function in Banach spaces, Contemporary Mathematics: Banach Space Theory, 856 (1989), pp. 345-354.
- [8] R.H. LOHMAN, J. SHURA, Calculation of the λ-function for several classes of normed linear spaces, Nonlinear and Convex Analysis: Proceedings in Honor of Ky Fan, Marcel Dekker Lecture Notes in Pure and Applied Mathematics, (1987), pp. 167-174.
- [9] R.H. LOHMAN, T.J. SHURA, The λ-property for generalized direct sums of normed spaces, Bull. Australian Math. Soc., 41 (1990), pp. 441-450.
- [10] F.B. TRUJILLO, The λ -property in the $C(K, \mathbb{R})$ spaces, preprint.