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ASPECTS OF THE UNIFORM ) -PROPERTY (*)
ROBERT H. LOHMAN

Dedicated to the memory of Professor Gottfried Kothe

ABSTRACT. If Z is a uniformly convex normed space, the quotient space £__(Z) [cy(Z),
which 1s not strictly convexifiable, 1s shown (o have the uniform X\ -property and its A -function
1s calculated. An example is given of a Banach space X with a closed linear subspace Y such
thatY and XY are strictly convex, yet X fails to have the X - property. Convex sequences
which gencrate B,  are characterized.

Every point in the closed unit ball of a strictly convex space is a convex combination of two
extreme points. Thus, every strictly convex space has the uniform M -property, a geometric
property of normed spaces introduced in [1] and which represents one direction that can be
followed in generalizing the notion of strict convexity. Because the strictly convex spaces
represent such a fundamental class of normed spaces with the uniform M -property, it 1s natural
to ask whether these classes contain the same spaces, up to isomorphism. That 1s, does every
normed space with the uniform A -pmpcrty possess an equivalent strictly convex norm? In
this note, we show that the answer is no by proving that £__(Z)/cy(Z) has the uniform
A -property whenever Z is a uniformly convex space. Since £_(Z)/c,(Z) is not strictly
convexifiable, we obtain a negative answer to the preceding question. In particular, £_/c,
is an example of a much-studied classical Banach space which has the uniform A -property
but is not strictly convexifiable. We also show that the uniform ) -property 1s very far from
being a three-space property. Namely, we give an example of a Banach space X with a
closed linear subspace Y such that Y and X/Y are strictly convex, yet X fails to have
the X -property. In the last section, we examine certain convex sequences, the so-called By -
generating sequences, which naturally appear in the context of any discussion of a Banach
space X with the umiform X -property. The BEW{ Ry -generating sequences are characterized.

0. PRELIMINARIES

Given a normed space X , By denotes its closed unit ball and Sy 1ts closed unit sphere. If
T € By, atriple (e,y,)\) isamenable to z,if e € ext (By),y € Bx,0 < X <1 and
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r= e+ (1 — A)y. Inthis case, we define
A(z) = sup{X : (e,y,N) is amcnable to z}.

X has the X-property if each z € B, admits an amenable triple. If, in addition AM(X) =
= inf{A\(z) : £ € By} > 0, then X is said to have the uniform X -property. General
facts concemning these properties appear in [1], [4] and [7] . Discussion of these properues
for classical sequence and function spaces can be found in [1], [5], [8]-[10].

If Z 1s a normed space, £__(Z) denotes the normed space of all bounded Z -valued se-
quences z = (z_), where ||z]| = sup ||z,]|. The closed linear subspace of £__(Z) consisting

n

of all zose z for which z_ — O is denoted by ¢, (Z) . It is a well-known result of J. Bour-
gain [3] that £_(Z)/cy(Z) is not strictly convexifiable (i.e., does not admit an equivalent
strictly convex norm) in the cases Z = R or €. In these cases, the latter quotient space is
denoted simply by £__/c, . For an arbitrary normed space Z, fix z € ZyZ . Then the map-
ping T : £_/cy — £.(2Z)/co(Z),defined by T'((a,) + ¢g) = (a,2) + ¢y(Z), is casily
seen {0 be a linear isometry of Z__/c, mnto £__(Z)/cy(Z) . By Bourgain’s result, it follows
that £__(Z) /cy(Z) is notstrictly convexifiable.

If Z is a uniformly convex normed space and (u,),(v,) are sequences in B, such that
|lu, + v || = 2,then ||[u_ — v || — 0. If A is a subset of a normed space, co( A) denotes
the closed convex hull of A.

1. £_(Z)/c,(Z) AND THE UNIFORM ) -PROPERTY

We write X = £2_(Z)/c,(Z) and let Q : £_(Z) — X denote the canonical quotient
mapping, defined by Q(z) = z+ ¢y(Z) forall z € £4_(2Z).

Lemma 1. Q(B, ;) = By for any normed space Z.

Proof. It suffices to show that By C Q(B, (z). Let z € By and choose z = (z,) €

€£_(Z) suchthat 2 = Q(2). Since [|Q(2)]| < 1,theset N, = {n: ]|z, || > 1+ k~'} is
finite for every k € N . Define z = (z,) € B, (5 as follows:

2 if|z,[| <1

nl

T 2 if1 < )2

2.l

,then 1 < ||z.|| < 1+ k~'. It follows

Observe that if n > max N, and 1 < ||z,|

that ||z, — 2 || < k~! if n > max N ,. Consequently, we have z — z € ¢;(Z) so that
z=Q(z) =Q(z). Since z € B, (5, the proof is complete.
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Lemma 2. (a) If Z is a strictly convex normed space, ext( B, ) C Q(ext(B, (2) Y). (b)If

Z is a uniformly convex normed space, ext (B, ) = Q(ext (Bﬂm(Z})) .

Proof. (a). If ¢ € ext (By),then by Lemma 1, we can write & = Q(z) ,where z = (z) €
€ By (z- Then ||z ]| < 1 forall »n and we claim ||z, || — 1. If not, there exists € > 0

such that ||z || < 1 — € for an infinite subset N _ of IN . Thus, for each n € N_, there exist

1
u,,v, € By suchthat 1 > |ju_ —z_||,||[v,—z || >eand z_= -;;(u,n+vﬂ) . This implies that

n! Ti

there exist u,v € B, (5 suchthatu —z,v —z € Cy(Z) and z = E(u + v). Hence, e =

]
= E(Q(u.) + Q(v)), where Q(u) #e# Q(v). This contradiction establishes the claim.

Since ||z || — 1, there is no loss of generality in assuming z_# 0 for all n. Then e =

In . M . A — P "
_ (HIHH> € ext (Bzm{z)) and r—e € ¢y (Z) , whichimplies Q(z) = Q(e) and completes

the proof.
(b) Lete = (e,) € ext (B, (5 ). Then |le || =1 forall nand ||Q(e)|| = 1. Suppose

= 1 and, by Lemma 1, we can find

| =l

U

1
Qe) = 5(& + v), where u,v € By . Then

u=(u,),v=(v,) € By (5 suchthat & = Q(u), = Q(v) . Since Q(e) = Q (“’; ”),i:

1

e — j(un + v _){i — 0. Uniform convexity

ni

] .
follows that e — E(U + v) € cy(Z); that1s,

of Z and the facts that ||u_||, ||lv,|| < 1,]||v, + v, || — 2 forces ||u, —v_|| — O . This implics
u — v € ¢cy(Z) which,in turn, implies ¢ = Q(u) = Q(v) = v. Therefore, Q(e) = u = v,
implying Q(e) € ext (By).

Theorem 3. Let Z be a uniformly convex normed space. The quotient space X = £__
(Z) [cy(Z) has the uniform X-property but is not strictly convexifiable. If z € B , then

1
(%) A(:z):sup{i(l“‘ifllznll):z=(zn)EBEM) and Q(Z):‘%}'

Proof. Let z € By and suppose z = Q(z), where z = (2,) € B, (5 . By theorem 1.13

of [1], there exist e € ext (Bgmw)),y € B‘Em{z) such that z = Xe + (1 — /\)y, where
1

A= 5(1 +inf ||z_||). By Lemmas 1 and 2, (Q(e),Q(y), ) is amenable to z = Q(z).

This proves X has the uniform A -property and that A(2) 1s at least as large as the supremum
indicated 1n (*).
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On the other hand, given € > 0, there exists a triple (&, §, A\) amenable to 2 such that
AM2) —e < A. ByLemmas 1 and 2, we may assume € = Q(e),y = Q(y), where e €
€ ext (By (z)),¥ € By (2. Let z = (z,) = Ae+ (1 — A)y and observe that Q(z) = Z.

1
By theorem 1.13 of [1], A < A(2) = 5-(1+ inf [|z,]) . Thus,
n

) + €,

al

1
AM2) < 5(1 + 1nf ||z
showing that the supremum indicated in (*) 1s at least as large as A\ (2) .

2. THREE-SPACE CONSIDERATIONS

The uniform X -property is not a three-space property. For example, Z__ has the uniform X -
property but contains a subspace Y (= c,) without the A-property. On the other hand, a
classical example of V. Klee [5] shows that £, can be given an equivalent strictly convex
norm || - || such that every seprarable Banach space is isometrically isomorphic to a quotient
of (£,,|| - ||). Thus, a quotient of a strictly convex space may fail to ahve the A - property.
Our goal here is to show the existence of a Banach space X with a closed linear subspace Y
such that Y and X /Y are both strictly convex, yet X fails to have the M\ -property.

To this end, let Y be a real Banach space having two equivalent norms, || - ||, and || - ||, ,
such that (Y, || - ||,) is strictly convex and the closed unit ball of (Y, || - ||,) fails to have an
extreme point. For example Y = ¢, 1s such a space. Let B, denote the closed unit ball of
(Yl -1l),4=1,2. Wemay assume that 2B, C B;. In X =Y x R, let

B=co((B, x{0hHu(B, x{-1,1})).

If || - || denotes the gauge functional of B in X, then || - || isanormon X, (X,]|| - [P
is a Banach space and B is closed unit ball of (X,|| - ||) . Routine calculations show that
(Y, || -|l;) is isometrically isomorphic to the subspace Y x {0} of (X, || -||) ,so that Y x{0}
is strictly convex. Obviously, the one-dimensional space X /(Y x {0}) is strictly convex.

Assume that (X,|| - ||) has the X-property and define f € X* by f(z,t) = t. Then
f£(0,1) =||fl| = 1. Since (X,|| - | has the X-property, f must attain its maximum on B
at amember (z,t) of ext (B) (see Theorem 3.3 of {1]). This forces ¢t = 1 and hence, by the
definition of B, we obtain z € B, . Since B, does not contain an extreme point, it follows
that (z,1) ¢ ext(B), a contradiction.

Remark 4. The preceding example also shows that a Banach space without the A -property
can contain a closed, one-codimensional subspace that is strictly convex.
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3. B, -GENERATING SEQUENCES

A sequence (A,) of positive real numbers will be called a convex sequence in case E A =
k=1
= 1. The following result has recently been shown in [2]:

Theorem 3. A Banach space X has the ) -property if and only if B, has the convex series
representation property; that is, for each T € By , there exists a convex sequence (X\,) and

a sequence (e,) C ext (By) suchthat x = zikek.
k=1

On the other hand, i1t 1s well-known from [1] that

Theorem 6. A Banach space X has the uniform M\ -property if and only if there exists a
convex sequence (A,) such that for each By , there exists a sequence (e,) C ext (By)

(*8)
satisfying ¢ = E A€
k=1

A sequence (A,) sausfying the condition of Theorem 6 will be called a B, -generating
sequence. We sec that Theorems 5 and 6 mark a clear distincuon between Banach spaces
with the A -property and Banach spaces with the uniform A -property. In the case of the -
property, the sequence (A,) of Theorem 5 depends on z € By . In the case of the uniform A -

00
property, the sequence (A, ) 1s fixed and changing the extreme points e, in the sums E -
k=1
1s sufficient to produce all the members of B, . Hence, a Banach space X has the uniform
A -property if and only if there 18 a B, -generating sequence. For such a space X, 1t would
be of interest to determine all the By -generating sequences. If this were possible, then given
Banach spaces X,Y with the uniform X -property, one might be able to distinguish certain
geometric or quantitative differences between B, and B, in terms of differences between
the collections of B, -gencrating and B,, -gencrating scquences.

The problem of characterizing the B, -generating sequences for a Banach space X with
the uniform A -property has only recently been considered. In this secuon, however, we settle
this question for X = R and X = £__(IR) . Recall from [8] that a Banach space X has the
uniform X -property if and only if £__(X) has the uniform A -property.

Lemma 7. Let X be a Banach space with the uniform X -property. Then the families of
By -generating sequences and B, (x-generaling sequences are equal.

Proof. Let (M) be a B, -gencrating sequence and let z = (z,) € B, (x,- For each n,
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there exist a sequence (ei“) ey C ext (By) such that

=Y 0P, n=1.2,...
k=1

If we define e, = (e}” )&, , then e, € ext (B, (x,) and for each m, we have

m m o
— (n)
T — E Aerll =sup |z, — E e | < E A
k=1 k=1 k=m+1

Consequently, z = Z Ai€;, proving that (A,) 18a B, (4, -generating sequence. The proof
k=1
of the converse is equally simple.

Theorem 8. Let ()\,) be a convex sequence. The following are equivalent.
(a) (A,) is B, (g -generating.
(b) (\.) is Bp-generating.

o0
(c) Foreacht € [0,1], there is a sequence (a,) of 0's and I's such that t = Z}‘k“k-
k=1

L)

(d) If (h) is the nonincreasing rearrangement of (A.), then for all n we have X\, <
o0
<M
k=n+1

Proof, That (a) < (b) follows from Lemma 7.
(b) = (c). Let t € [0,1]. Since ext(By) = {—1, 1}, there is a sequence (b,) of +

+ I'ssuchthat 2t — 1= Zkkbk. Then t = Z,\k(bk+ 1)/2 ,and, foreach k, (b, + 1) /2
k=1 k=1

equals O or 1.
C©=0b.If-1<z<1,wntexz=2t—1,where 0 <t < 1. By hypothesis, there is

asequence (a,) of O’sand I’ssuchthatt = Y /7, A, a,. Itfollows that z = EM(Z%— 1)
k=1

and, foreach k,2a, — 1 1seither —1 or 1. Consequently (A,) isa B -generating sequence.

()= (d). Since (:\ ) also satisfies statement (c), there is no loss of generality in assuming
k
(X,) is nonincreasing. Assunte, i the contrary, that A, > Y 72 ., A, for some n. Given

a sequence (a,) of O'sand 1's, write ¢ = E'\k“k- Ifa,=0forl < k< n,thent <
k=1
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< E A, - Ontheotherhand,if o, =1 forsome k, betweenland n,thent > A, > X .

k=n+1
This shows that t ¢ ( E A An) and contradicts the fact that (X,) sausfies (¢).
(d) = (c). Without loss of generality, (X,) is nonincreasing. Define Ay, = 1 and let

0 <t < 1.Letn; bethesmallest nonnegative integer such that Ap+1 ST If E A <1

k=n.1+1

forall m > my + 1, then we obtain A, < E A < t, which is impossible if n, = 0 and
k=n,+1

contradicts the definition of n; 1f n; > 1. Consequently, there 1s an integer my; > n; + 1

such that

™ ﬂ'l]"'l
(1) Do M<t< Yo
k=n,+1 k=n, +1]

m, oo
Ift= ) X thent=)"X.a, for the obvious sequence (a;) of 0’s and 1's. Thus, we
k=n, +1 k=1

may assume strict inequality holds in (1).
Assume that 0 <my < my < ... < n; < m, have been chosen so that

J m, J-1 m, m;+l
o (53] < B[ 50) T
1=] k=n+1 1=] k=n+1 k=n)-+1

If S denotes the left-hand side of (2), then (2) becomes

Sj-{t{SJ-+}\

4]
m?

which implies 0 <t — s, < Am_,.ﬂ . There is a largest integer n;,; > m, + 1 such that

(3) < s+ Ay,
This implics

(4) s, 40, 4 <t
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If.s}.+ Z A, <t forall m > n,,, + 1, we obtain
kﬂ15+,+1.

which contradicts (3). Therefore, there exists m > n;,; + 1 suchthatt < s; + E Ag.
k=n;, +]1

This fact, together with (4), implies that there 1s an integer m,,, > n,, | + 1 such that

My Mie*

(5) 5+Zk<t{5+z,\

k=n;,  +1 k=n;, ,+1

If equality holds in the left-hand side of (5), then t = Sit1- If the left-hand side of (5) 1s a

strict inequality, then 0 < t — s;,; < A, ;. By induction, cither ¢t = s; for some j or
J

t = lim s;. In either case, ¢ = 5 A.a, forasequence (a,) of O’sand 1’s.
J—oo
h=1

Remark 9. In order to illustrate an application of these result, let 0 < A < 1 and define
= A(1 — A)*~1. Then ()\,) a nonincreasing sequence of positive numbers satisfying

Z A, = 1. For each positive integer n, we have E M1 =21 =(1-=))". It follows

k=1 k=n+1
that (X\,) is a B, (p,-generating sequence if and only if

M1 =M™ < =n"

]
for each n. This occurs if and only if X < 5
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