Maximal sector of analyticity for
 C_{0}-semigroups generated by elliptic operators with separation property in L^{p}

Giorgio Metafune
Department of Mathematics, University of Salento giorgio.metafune@unisalento.it
Noboru Okazawa ${ }^{\text {i }}$
Department of Mathematics, Tokyo University of Science
okazawa@ma.kagu.tus.ac.jp
Motohiro Sobajima
Department of Mathematics, Tokyo University of Science
msobajima1984@gmail.com
Tomomi Yokota ${ }^{\text {ii }}$
Department of Mathematics, Tokyo University of Science
yokota@rs.kagu.tus.ac.jp

Received: 28.5.2013; accepted: 24.6.2013.
Abstract. Analytic continuation of the C_{0}-semigroup $\left\{e^{-z A}\right\}$ on $L^{p}\left(\mathbb{R}^{N}\right)$ generated by the second order elliptic operator $-A$ is investigated, where A is formally defined by the differential expression $A u=-\operatorname{div}(a \nabla u)+(F \cdot \nabla) u+V u$ and the lower order coefficients have singularities at infinity or at the origin.

Keywords: Second order linear elliptic operators in L^{p}, analytic C_{0}-semigroups, maximal sectors of analyticity.

MSC 2010 classification: primary 35J15, secondary 47D06

1 Introduction

In this paper we deal with general second order elliptic operators of the form

$$
(A u)(x):=-\operatorname{div}(a(x) \nabla u(x))+(F(x) \cdot \nabla) u(x)+V(x) u(x), \quad x \in \mathbb{R}^{N}
$$

where $N \in \mathbb{N}, a \in C^{1} \cap W^{1, \infty}\left(\mathbb{R}^{N} ; \mathbb{R}^{N \times N}\right), F \in C^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ and $V \in L_{\text {loc }}^{\infty}(\Omega ; \mathbb{R})$ and the choice of $\Omega=\mathbb{R}^{N}$ or $\Omega=\mathbb{R}^{N} \backslash\{0\}$ depends on the location of the

[^0]singularities of F and V. Under the assumption on the triplet (a, F, V) specified below we discuss the maximal sector of analyticity for the semigroup $\left\{T_{p}(t)\right\}$ on $L^{p}=L^{p}\left(\mathbb{R}^{N}\right)(1<p<\infty)$ generated by $-A$ with a suitable domain. Because the domain of A changes with the choice of Ω, we describe it when we state the respective result.

The purpose of this paper is to improve the known sector of analyticity for $\left\{T_{p}(t)\right\}$. In Metafune-Pallara-Prüss-Schnaubelt [10] and Metafune-Prüss-Rhandi-Schnaubelt [11], it is proved that $\left\{T_{p}(t)\right\}$ is analytic and contractive in $\Sigma\left(\eta_{p}\right)$, where

$$
\begin{aligned}
\Sigma(\eta) & :=\{z \in \mathbb{C} \backslash\{0\} ;|\arg z|<\eta\}, \\
\eta_{p} & :=\frac{\pi}{2}-\tan ^{-1} \sqrt{\frac{(p-2)^{2}}{4(p-1)}+\frac{\beta^{2}}{4(1-\theta / p)}}
\end{aligned}
$$

for some $\beta \geq 0$ (see (2.1) below) and $\theta<p$ (satisfying $\theta V \geq \operatorname{div} F$); note that η_{p} is smaller than

$$
\omega_{p}:=\frac{\pi}{2}-\tan ^{-1}\left(\frac{|p-2|}{2 \sqrt{p-1}}\right)
$$

which is the angle of contractivity for C_{0}-semigroups generated by Schrödinger operators (see, e.g., Okazawa [12]). Using Gaussian estimates, one can construct a non-contractive holomorphic extension of $\left\{T_{p}(t)\right\}$ to $\Sigma(\eta)$ with $\eta \geq \eta_{p}$, where η is independent of p. However, an application of results in Ouhabaz [13, 14] would give $\eta=\eta_{2}$. We instead prove $\eta=\eta_{\bar{p}}$ for a certain \bar{p} and show that \bar{p} can be different from 2, see Remark 3 below.

2 Description of our assumption

Let $A_{p, \text { max }}$ and A_{p} be the operators respectively defined as follows:

$$
\begin{aligned}
A_{p, \max } u & :=A u, \quad D\left(A_{p, \max }\right):=\left\{u \in L^{p} \cap W_{\operatorname{loc}}^{2, p}(\Omega) ; A u \in L^{p}\right\}, \\
A_{p} u & :=A u, \quad D\left(A_{p}\right):=W^{2, p}\left(\mathbb{R}^{N}\right) \cap D(F \cdot \nabla) \cap D(V),
\end{aligned}
$$

where $D(F \cdot \nabla):=\left\{u \in L^{p} \cap W_{\mathrm{loc}}^{1, p}\left(\mathbb{R}^{N}\right) ;(F \cdot \nabla) u \in L^{p}\right\}$ and $D(V):=\{u \in$ $\left.L^{p} ; V u \in L^{p}\right\}$.

Now we present the basic assumption on the triplet (a, F, V) defining $A_{p, \text { max }}$ and A_{p}. As in Introduction Ω stands for \mathbb{R}^{N} or $\mathbb{R}^{N} \backslash\{0\}$.
(H1) ${ }^{t} a=a \in C^{1} \cap W^{1, \infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N \times N}\right)$ and a is uniformly elliptic on \mathbb{R}^{N}, that is, there exists a constant $\nu>0$ such that

$$
\langle a(x) \xi, \xi\rangle \geq \nu|\xi|^{2}, \quad x \in \mathbb{R}^{N}, \quad \xi \in \mathbb{C}^{N},
$$

where $\langle\cdot, \cdot\rangle$ is the usual Hermitian product;
(H2) $F \in C^{1}\left(\Omega ; \mathbb{R}^{N}\right), V \in L_{\text {loc }}^{\infty}(\Omega ; \mathbb{R})$ and there exist three constants $\beta \geq 0, \gamma_{1}$, $\gamma_{\infty}>0$ and a nonnegative auxiliary function $U \in L_{\text {loc }}^{\infty}(\Omega)$ such that

$$
\begin{align*}
|\langle F(x), \xi\rangle| & \leq \beta U(x)^{\frac{1}{2}}\langle a(x) \xi, \xi\rangle^{\frac{1}{2}} \quad \text { a.a. } x \in \Omega, \xi \in \mathbb{C}^{N}, \tag{2.1}\\
V(x)-\operatorname{div} F(x) & \geq \gamma_{1} U(x) \quad \text { a.a. } x \in \Omega, \tag{2.2}\\
V(x) & \geq \gamma_{\infty} U(x) \quad \text { a.a. } x \in \Omega ; \tag{2.3}
\end{align*}
$$

(H3) the auxiliary function $U \geq 0$ in (H2) belongs to $C^{1}(\Omega ; \mathbb{R})$ and there exist constants $c_{0} \geq k_{0}:=\max \left\{\gamma_{1}, \gamma_{\infty}\right\}>0$ and $c_{1} \geq 0$ such that

$$
\begin{equation*}
V(x) \leq c_{0} U(x)+c_{1} \quad \text { a.a. } x \in \Omega \tag{2.4}
\end{equation*}
$$

and U satisfies an oscillation condition with respect to the diffusion a, that is,

$$
\begin{equation*}
\lambda_{0}:=\lim _{c \rightarrow \infty}\left(\sup _{x \in \Omega} \frac{\langle a(x) \nabla U(x), \nabla U(x)\rangle^{1 / 2}}{(U(x)+c)^{3 / 2}}\right)<\infty . \tag{2.5}
\end{equation*}
$$

This yields a working form of the oscillation condition: for every $\lambda>\lambda_{0}$ there exists a constant $C_{\lambda}>0$ such that

$$
\begin{equation*}
\langle a(x) \nabla U(x), \nabla U(x)\rangle^{1 / 2} \leq \lambda\left(U(x)+C_{\lambda}\right)^{3 / 2}, \quad x \in \Omega . \tag{2.6}
\end{equation*}
$$

In particular, if $\Omega=\mathbb{R}^{N} \backslash\{0\}$ then $U(x)$ is assumed to tend to infinity as $x \rightarrow 0$.
Example 1 (Maeda-Okazawa [9]). Put $a_{j k}=\delta_{j k}$. Then it is possible to compute λ_{0} for $U(x):=|x|^{\alpha}$ when $\alpha \notin(-2,1]$.
(i) Let $U(x):=|x|^{\alpha}(\alpha>1)$. Then $U \in C^{1}\left(\mathbb{R}^{N}\right)$ and $\lambda_{0}=0$. In fact, we have

$$
\frac{\langle a(x) \nabla U(x), \nabla U(x)\rangle^{1 / 2}}{(U(x)+c)^{3 / 2}}=\frac{\alpha|x|^{\alpha-1}}{\left(|x|^{\alpha}+c\right)^{3 / 2}} \leq \alpha c^{-1 / 2-1 / \alpha} \rightarrow 0(c \rightarrow \infty) .
$$

(ii) Let $U(x):=|x|^{-\beta}(\beta>2)$. Then $U \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ and $\lambda_{0}=0$. The computation is similar as above. In particular, if $\beta=2$, then $\lambda_{0}=2$.

Remark 1. Let $\lambda>\lambda_{0}$ and $C_{\lambda}>0$ as in (2.6) and put

$$
\tilde{U}(x):=U(x)+C_{\lambda}>0 \quad \text { on } \Omega .
$$

Then \tilde{U} plays the role of a positive auxiliary function for the new (formal) operator

$$
\tilde{A}:=A+k_{0} C_{\lambda}
$$

with modified potential

$$
\tilde{V}(x):=V(x)+k_{0} C_{\lambda}>0 \quad \text { on } \Omega,
$$

where k_{0} is as in condition (H3). In fact, the new triplet (a, F, \tilde{V}) satisfies the original inequalities (2.1)-(2.4) with the pair (U, V) replaced with (\tilde{U}, \tilde{V}) :

$$
\begin{align*}
|\langle F(x), \xi\rangle| & \leq \beta\left(U(x)+C_{\lambda}\right)^{\frac{1}{2}}\langle a(x) \xi, \xi\rangle^{\frac{1}{2}}, \\
{\left[V(x)+k_{0} C_{\lambda}\right]-\operatorname{div} F(x) } & \geq \gamma_{1}\left(U(x)+C_{\lambda}\right), \\
V(x)+k_{0} C_{\lambda} & \geq \gamma_{\infty}\left(U(x)+C_{\lambda}\right), \\
V(x)+k_{0} C_{\lambda} & \leq c_{0}\left(U(x)+C_{\lambda}\right)+c_{1} .
\end{align*}
$$

Note further that (2.6) is also written in terms of \tilde{U} :

$$
\langle a(x) \nabla \tilde{U}(x), \nabla \tilde{U}(x)\rangle^{1 / 2} \leq \lambda \tilde{U}(x)^{3 / 2} \quad \text { on } \Omega .
$$

In particular, (2.1 $)$ and (2.6') yield that

$$
\begin{equation*}
|(F \cdot \nabla) \tilde{U}(x)| \leq \beta \lambda \tilde{U}(x)^{2} \quad \text { on } \Omega . \tag{2.7}
\end{equation*}
$$

3 The operators with singularities at infinity

In this section we consider the case where $\Omega=\mathbb{R}^{N}$.
Theorem 1. Assume that conditions (H1) and (H2) are satisfied with $\Omega=$ \mathbb{R}^{N}. Then one has the following assertions:
(i) Let $1<q<\infty$. Then $A_{q, \max }$ is m-sectorial in L^{q}, that is, $\left\{e^{-z A_{q, \max }}\right\}$ is an analytic contraction semigroup on L^{q} on the closed sector $\bar{\Sigma}\left(\pi / 2-\tan ^{-1} c_{q, \beta, \gamma}\right)$, where

$$
\begin{equation*}
c_{q, \beta, \gamma}:=\sqrt{\frac{(q-2)^{2}}{4(q-1)}+\frac{\beta^{2}}{4}\left(\frac{\gamma_{1}}{q}+\frac{\gamma_{\infty}}{q^{\prime}}\right)^{-1}} \tag{3.1}
\end{equation*}
$$

and q^{\prime} is the Hölder conjugate of q. Moreover, $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for $A_{q, \max }$.
(ii) Let $p \in(1, \infty)$ be arbitrarily fixed. Then the semigroup $\left\{e^{-z A_{p, \max }}\right\}$ in assertion (i) admits an analytic continuation to the open sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$, where

$$
\begin{equation*}
K_{\beta, \gamma}:=\min _{1<q<\infty} c_{q, \beta, \gamma} . \tag{3.2}
\end{equation*}
$$

Moreover, there exists a constant $\omega_{0}>0$ such that $\left\{e^{-z\left(\omega_{0}+A_{p, \max }\right)}\right\}$ forms a bounded analytic semigroup on L^{p} :

$$
\begin{equation*}
\left\|e^{-z A_{p, \max }}\right\|_{L^{p}} \leq M_{\varepsilon} e^{\omega_{0} \operatorname{Re} z} \quad \text { on } \bar{\Sigma}\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}-\varepsilon\right) . \tag{3.3}
\end{equation*}
$$

Here the constant ω_{0} depends only on $N,\left\|a_{j k}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$ and $\left\|\nabla a_{j k}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$, while the constant $M_{\varepsilon} \geq 1$ depends only on $\varepsilon, N, \nu, \beta, \gamma_{1}, \gamma_{\infty}$ and $\left\|a_{j k}\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}$.
(iii) Assume further that (H3) is satisfied with $\Omega=\mathbb{R}^{N}$. If

$$
\begin{equation*}
(p-1) \lambda_{0}\left(\frac{\beta}{p}+\frac{\lambda_{0}}{4}\right)<\frac{\gamma_{1}}{p}+\frac{\gamma_{\infty}}{p^{\prime}}, \tag{3.4}
\end{equation*}
$$

then $A_{p, \max }$ has the so-called separation property:

$$
\begin{equation*}
\|\operatorname{div}(a \nabla u)\|_{L^{p}}+\|(F \cdot \nabla) u\|_{L^{p}}+\|V u\|_{L^{p}} \leq C\left\|\left(1+A_{p, \max }\right) u\right\|_{L^{p}} \tag{3.5}
\end{equation*}
$$

for all $u \in D\left(A_{p, \max }\right)$ which implies the coincidence $A_{p, \max }=A_{p}$ and hence $\left\{e^{-z A_{p}}\right\}$ is analytic in $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$.

Here three remarks are in order.
Remark 2. Assertion (i) is a particular case of [15, Theorem 1.3]; note that the sector of analyticity and contraction property for $\left\{e^{-z A_{p, \max }}\right\}$ is reduced to the positive real axis (that is, $\tan ^{-1} c_{p, \beta, \gamma} \rightarrow \pi / 2$) as p tends to 1 or to ∞.

Remark 3. Assertion (ii) states that $\left\{e^{-z A_{p, \text { max }}}\right\}$ admits an analytic continuation without contraction property (in general) to a p-independent sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$ bigger than $\Sigma\left(\pi / 2-\tan ^{-1} c_{q, \beta, \gamma}\right)$. Moreover, in general the constant $c_{2, \beta, \gamma}$ does not attain $\min _{1<q<\infty} c_{q, \beta, \gamma}\left(=K_{\beta, \gamma}\right)$. In fact, we see by a simple calculation that

$$
\frac{\partial\left(c_{q, \beta, \gamma}\right)^{2}}{\partial q}=\frac{q(q-2)}{4(q-1)^{2}}+\frac{\beta^{2}\left(\gamma_{1}-\gamma_{\infty}\right)}{4 q^{2}}\left(\frac{\gamma_{1}}{q}+\frac{\gamma_{\infty}}{q^{\prime}}\right)^{-2}
$$

Therefore if $\gamma_{1} \neq \gamma_{\infty}$, then we have

$$
\left.\frac{\partial\left(c_{q, \beta, \gamma}\right)^{2}}{\partial q}\right|_{q=2}=\frac{\beta^{2}\left(\gamma_{1}-\gamma_{\infty}\right)}{4\left(\gamma_{1}+\gamma_{\infty}\right)^{2}} \neq 0 .
$$

This implies that in the case where $\gamma_{1} \neq \gamma_{\infty}$ the sector derived by L^{p}-theory can be bigger than the one derived by L^{2}-theory. Consequently, we have $c_{2, \beta, \gamma}>$ $K_{\beta, \gamma}$. An example with $\gamma_{1} \neq \gamma_{\infty}$ is also given later (see Example 3 below in Section 4).

Remark 4. It is shown in [10] that A_{p} is m-sectorial of type $S(\tan \omega)$ in L^{p}, where

$$
\omega:=\tan ^{-1} c_{p, \beta, \gamma}>\omega_{p}=\tan ^{-1} \frac{|p-2|}{2 \sqrt{p-1}},
$$

if p satisfies (3.4). Their proof is based on a perturbation technique with the separation property (3.5) under a setting similar to assertion (iii). Theorem 1 makes it clear that (3.5) is necessary only for the domain characterization of A_{p}.

First we describe the key lemma as Lemma 1 which plays an essential role in proving the existence of analytic continuation for $\left\{e^{-z A_{p, \text { max }}}\right\}$. Lemma 1 transplants a bounded analytic semigroup on $L^{p_{0}}$ onto L^{p} without changing the sector (or angle) of analyticity. Note that Lemma 1 was first proved in Ouhabaz [13] (for $A_{2, \max }$ associated with symmetric forms), and then in Arendt-ter Elst [2] and Hieber [8].

Lemma 1. For some $p_{0} \in(1, \infty)$ let $\left\{T_{p_{0}}(t) ; t \geq 0\right\}$ be a C_{0}-semigroup on $L^{p_{0}}$.
(i) (Gaussian Estimate) Assume that $\left\{T_{p_{0}}(t)\right\}$ admits a Gaussian estimate with integral kernel $\left\{k_{t}\right\}$. For every $p \in(1, \infty)$ define the family $\left\{T_{p}(t) ; t \geq 0\right\}$ as $T_{p}(0) f:=f$ and

$$
\left(T_{p}(t) f\right)(x):=\int_{\mathbb{R}^{N}} k_{t}(x, y) f(y) d y \quad \text { a.a. } x \in \mathbb{R}^{N}, \quad f \in L^{p}, \quad t>0
$$

Then the new family $\left\{T_{p}(t)\right\}$ forms a C_{0}-semigroup on L^{p}.
(ii) (Analyticity) Assume further that $\left\{e^{-\omega_{0} z} T_{p_{0}}(z)\right\}$ is a bounded analytic semigroup on $L^{p_{0}}$ in the sector $\Sigma\left(\psi_{0}\right)$ such that for every $\varepsilon>0$ there exists a constant $M_{\varepsilon} \geq 1$ satisfying

$$
\begin{equation*}
\left\|T_{p_{0}}(z)\right\|_{L^{p_{0}}} \leq M_{\varepsilon} e^{\omega_{0} \operatorname{Re} z} \quad \forall z \in \bar{\Sigma}\left(\psi_{0}-\varepsilon\right) \tag{3.6}
\end{equation*}
$$

Then $\left\{T_{p}(t)\right\}$ has almost the same property as $\left\{T_{p_{0}}(t)\right\}$; namely, $\left\{e^{-\omega_{0} t} T_{p}(t)\right\}$ can be extended to a bounded analytic semigroup $\left\{e^{-\omega_{0} z} T_{p}(z)\right\}$ in the sector $\Sigma\left(\psi_{0}\right)$ such that for every $\varepsilon>0$ there exists $\tilde{M}_{\varepsilon} \geq 1$ satisfying

$$
\left\|T_{p}(z)\right\|_{L^{p}} \leq \tilde{M}_{\varepsilon} e^{\omega_{0} \operatorname{Re} z} \quad \forall z \in \bar{\Sigma}\left(\psi_{0}-\varepsilon\right)
$$

(which is nothing but (3.6) with p_{0} and M_{ε} replaced with p and \tilde{M}_{ε}, respectively), where the constant \tilde{M}_{ε} depends only on $\varepsilon, N, p_{0}, \psi_{0}, M_{\varepsilon}, C$ and b.

Next we note that the (analytic contraction) semigroup $\left\{e^{-t A_{2, \max }}\right\}$ admits a Gaussian estimate. The proof of the following lemma is given in [3, Theorem 4.2].

Lemma 2. Assume that (H1), (H2) and (H3) are satisfied with $\Omega=\mathbb{R}^{N}$. Then $\left\{e^{-t A_{2, \max }}\right\}$ admits a Gaussian estimate with nonnegative kernel $\left\{k_{t}\right\}$ satisfying

$$
0 \leq k_{t}(x, y) \leq C t^{-N / 2} \exp \left(\omega_{0} t-\frac{|x-y|^{2}}{b t}\right) \quad \text { a.a. }(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{N}
$$

where the constant ω_{0} depends only on $N,\left\|a_{j k}\right\|_{L^{\infty}}$ and $\left\|\nabla a_{j k}\right\|_{L^{\infty}}$, while C, b depend only on $N, \nu, \beta, \gamma_{1}, \gamma_{\infty}$ and $\left\|a_{j k}\right\|_{L^{\infty}}$.

Next we state a modification of [10, Lemma 2.3]; note that the constant factors in the inequalities are figured out. It is worth noticing that under conditions (i) and (ii)

$$
A_{p, \min }:=A, \quad D\left(A_{p, \min }\right):=C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

is accretive in L^{p} (see, e.g., [10, Proposition 2.2] or [15, Theorem 1.1]).
Lemma 3. Assume that (H1), (H2) and (H3) are satisfied with $\Omega=\mathbb{R}^{N}$. Put

$$
k_{p}(\lambda):=\left(\frac{\gamma_{1}}{p}+\frac{\gamma_{\infty}}{p^{\prime}}\right)-(p-1) \lambda\left(\frac{\beta}{p}+\frac{\lambda}{4}\right), \quad \lambda>\lambda_{0}
$$

and let C_{λ} be a constant in (2.6). If $k_{p}(\lambda)>0$, then for every $\xi>k_{0} C_{\lambda}(=$ $\left.C_{\lambda} \max \left\{\gamma_{1}, \gamma_{\infty}\right\}\right)$ and $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ one has

$$
\begin{align*}
& \left\|\left(U+C_{\lambda}\right) u\right\|_{L^{p}} \leq \frac{1}{k_{p}(\lambda)}\|(\xi+A) u\|_{L^{p}} \tag{3.7}\\
& \|(F \cdot \nabla) u\|_{L^{p}}+\left\|\left(V+k_{0} C_{\lambda}\right) u\right\|_{L^{p}} \\
\leq & 2\left(1+\frac{c_{0}+\beta \tilde{C}_{1 /(2 \beta)}}{k_{p}(\lambda)}+\frac{c_{1}}{\xi-k_{0} C_{\lambda}}\right)\|(\xi+A) u\|_{L^{p}} \tag{3.8}
\end{align*}
$$

where $\tilde{C}_{1 /(2 \beta)}>0$ depends only on N, p, ν and $\left\|a_{j k}\right\|_{W^{1, \infty}}$. Moreover, let $\xi \geq$ $1+k_{0} C_{\lambda}$. Then there exists $C>0$ such that for every $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(\mathbb{R}^{N}\right)} \leq C\left(5+2 \frac{c_{0}+\beta \tilde{C}_{1 /(2 \beta)}}{k_{p}(\lambda)}+\frac{2 c_{1}}{\xi-k_{0} C_{\lambda}}\right)\|(\xi+A) u\|_{L^{p}} \tag{3.9}
\end{equation*}
$$

where $C>0$ depends only on N, p, ν and $\left\|a_{j k}\right\|_{W^{1, \infty}}$.
Proof. Define $\tilde{A} u:=\left(A+k_{0} C_{\lambda}\right) u$ for $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and set $\eta:=\xi-k_{0} C_{\lambda}>0$. Then $(\eta+\tilde{A}) u=(\xi+A) u$ so that (3.7) and (3.8) are respectively equivalent to

$$
\begin{align*}
& \|\tilde{U} u\|_{L^{p}} \leq k_{p}(\lambda)^{-1}\|(\eta+\tilde{A}) u\|_{L^{p}} \tag{3.10}\\
& \|(F \cdot \nabla) u\|_{L^{p}}+\|\tilde{V} u\|_{L^{p}} \\
\leq & 2\left(1+k_{p}(\lambda)^{-1}\left[c_{0}+\beta \tilde{C}_{1 /(2 \beta)}\right]+\eta^{-1} c_{1}\right)\|(\eta+\tilde{A}) u\|_{L^{p}} \tag{3.11}
\end{align*}
$$

where $\tilde{U}=U+C_{\lambda}>0$ and $\tilde{V}=V+k_{0} C_{\lambda}>0$ (see Remark 1).
First we prove (3.10). We use the key identity in [15, Section 1]: for every $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), v \in W_{\text {loc }}^{1,1}\left(\mathbb{R}^{N}\right)$ and $1 \leq r \leq \infty$,

$$
\begin{align*}
\int_{\mathbb{R}^{N}}(A u) \bar{v} d x & =\int_{\mathbb{R}^{N}}\left[\langle a \nabla u, \nabla v\rangle+\left(V-\frac{\operatorname{div} F}{r}\right) u \bar{v}\right] d x \\
& +\int_{\mathbb{R}^{N}} F \cdot\left(\frac{\bar{v} \nabla u}{r^{\prime}}-\frac{u \nabla \bar{v}}{r}\right) d x . \tag{3.12}
\end{align*}
$$

Then it follows from (3.12) with $r:=p$ and $v:=\tilde{U}^{p-1} u|u|^{p-2} \in W^{1,1}\left(\mathbb{R}^{N}\right)$ that

$$
\begin{align*}
& \operatorname{Re} \int_{\mathbb{R}^{N}}(\tilde{A} u) \tilde{U}^{p-1} \bar{u}|u|^{p-2} d x \\
= & (p-1)\left(I_{1}+I_{2}\right)+\int_{\mathbb{R}^{N}} \tilde{U}^{p-1}|u|^{p-4}\langle a \operatorname{Im}(\bar{u} \nabla u), \operatorname{Im}(\bar{u} \nabla u)\rangle d x \\
& +\int_{\mathbb{R}^{N}}\left(\tilde{V}-\frac{\operatorname{div} F}{p}\right) \tilde{U}^{p-1}|u|^{p} d x-\frac{p-1}{p} \int_{\mathbb{R}^{N}} \tilde{U}^{p-2}|u|^{p}(F \cdot \nabla) \tilde{U} d x, \tag{3.13}
\end{align*}
$$

where we have set

$$
\begin{aligned}
& I_{1}:=\int_{\mathbb{R}^{N}} \tilde{U}^{p-1}|u|^{p-4}\langle a \operatorname{Re}(\bar{u} \nabla u), \operatorname{Re}(\bar{u} \nabla u)\rangle d x \\
& I_{2}:=\int_{\mathbb{R}^{N}} \tilde{U}^{p-2}|u|^{p-2}\langle a \operatorname{Re}(\bar{u} \nabla u), \nabla \tilde{U}\rangle d x
\end{aligned}
$$

Here Young's inequality and (2.6') apply to give

$$
\begin{aligned}
I_{1}-\left|I_{2}\right| & \geq I_{1}-I_{1}^{1 / 2}\left(\int_{\mathbb{R}^{N}} \tilde{U}^{p-3}\langle a \nabla \tilde{U}, \nabla \tilde{U}\rangle|u|^{p} d x\right)^{1 / 2} \\
& \geq-\frac{1}{4} \int_{\mathbb{R}^{N}} \tilde{U}^{p-3}\langle a \nabla \tilde{U}, \nabla \tilde{U}\rangle|u|^{p} d x \\
& \geq-\frac{\lambda^{2}}{4}\|\tilde{U} u\|_{L^{p}}^{p}
\end{aligned}
$$

Now let $\eta \geq 0$. Then by virtue of $\left(2.2^{\prime}\right),\left(2.3^{\prime}\right),\left(2.6^{\prime}\right)$ and (2.7) we can rewrite (3.13) as

$$
\begin{aligned}
& \operatorname{Re} \int_{\mathbb{R}^{N}}(\eta u+\tilde{A} u) \tilde{U}^{p-1} \bar{u}|u|^{p-2} d x \\
\geq & \int_{\mathbb{R}^{N}}\left(\frac{\tilde{V}-\operatorname{div} F}{p}+\frac{\tilde{V}}{p^{\prime}}\right) \tilde{U}^{p-1}|u|^{p} d x \\
& -\frac{p-1}{p} \beta \int_{\mathbb{R}^{N}} \tilde{U}^{p-2} \tilde{U}^{1 / 2}\langle a \nabla \tilde{U}, \nabla \tilde{U}\rangle^{1 / 2}|u|^{p} d x-(p-1) \frac{\lambda^{2}}{4}\|\tilde{U} u\|_{L^{p}}^{p} \\
\geq & \left(\frac{\gamma_{1}}{p}+\frac{\gamma_{\infty}}{p^{\prime}}\right) \int_{\mathbb{R}^{N}} \tilde{U} \tilde{U}^{p-1}|u|^{p} d x \\
& -\frac{p-1}{p} \beta \lambda \int_{\mathbb{R}^{N}} \tilde{U}^{p-3 / 2} \tilde{U}^{3 / 2}|u|^{p} d x-(p-1) \frac{\lambda^{2}}{4}\|\tilde{U} u\|_{L^{p}}^{p} .
\end{aligned}
$$

Therefore we obtain

$$
\operatorname{Re} \int_{\mathbb{R}^{N}}(\eta u+\tilde{A} u) \tilde{U}^{p-1} \bar{u}|u|^{p-2} d x \geq\left(\frac{\gamma_{1}}{p}+\frac{\gamma_{\infty}}{p^{\prime}}-\frac{p-1}{p} \beta \lambda-\frac{p-1}{4} \lambda^{2}\right)\|\tilde{U} u\|_{L^{p}}^{p}
$$

Thus (3.10) is a consequence of Hölder's inequality.
Next we prove (3.11). It follows from (2.1') and (2.4') that

$$
\begin{equation*}
\|(F \cdot \nabla) u\|_{L^{p}}+\|\tilde{V} u\|_{L^{p}} \leq \beta\left\|\tilde{U}^{1 / 2}\langle a \nabla u, \nabla u\rangle^{1 / 2}\right\|_{L^{p}}+c_{0}\|\tilde{U} u\|_{L^{p}}+c_{1}\|u\|_{L^{p}} . \tag{3.14}
\end{equation*}
$$

Applying [10, Proposition 3.3] to our diffusion a and auxiliary function $\tilde{U} \geq$ $C_{\lambda}>0$, we see that for every $\varepsilon>0$ there exists a constant $\tilde{C}_{\varepsilon}>0$ depending only on N, p, ν and $\left\|a_{j k}\right\|_{W^{1, \infty}}$ such that

$$
\beta\left\|\tilde{U}^{1 / 2}\langle a \nabla u, \nabla u\rangle^{1 / 2}\right\|_{p} \leq \beta \varepsilon\|\operatorname{div}(a \nabla u)\|_{L^{p}}+\beta \tilde{C}_{\varepsilon}\|\tilde{U} u\|_{L^{p}} .
$$

Plugging this inequality with $\varepsilon=(2 \beta)^{-1}$ into (3.14), we have that

$$
\begin{align*}
& \|(F \cdot \nabla) u\|_{L^{p}}+\|\tilde{V} u\|_{L^{p}} \\
\leq & \frac{1}{2}\|(\eta+\tilde{A}) u\|_{L^{p}}+\frac{1}{2}\left(\|(F \cdot \nabla) u\|_{L^{p}}+\|\tilde{V} u\|_{L^{p}}\right) \\
& +\left(c_{0}+\beta \tilde{C}_{1 /(2 \beta)}\right)\|\tilde{U} u\|_{L^{p}}+\left(\frac{\eta}{2}+c_{1}\right)\|u\|_{L^{p}}, \quad \eta \geq 0 . \tag{3.15}
\end{align*}
$$

Here it is worth noticing that since $A_{p, \min }$ is accretive in $L^{p}, \tilde{A}_{p, \min }$ is also accretive in L^{p} :

$$
\begin{equation*}
\eta\|u\|_{L^{p}} \leq\|(\eta+\tilde{A}) u\|_{L^{p}} \quad(\eta \geq 0) \tag{3.16}
\end{equation*}
$$

Therefore, (3.11) follows from (3.15) as a consequence of (3.10) and (3.16):

$$
\begin{aligned}
& \|(F \cdot \nabla) u\|_{L^{p}}+\|\tilde{V} u\|_{L^{p}} \\
\leq & \|(\eta+\tilde{A}) u\|_{L^{p}}+2\left(c_{0}+2 \beta \tilde{C}_{1 /(2 \beta)}\right)\|\tilde{U} u\|_{L^{p}}+\left(\eta+2 c_{1}\right)\|u\|_{L^{p}} \\
\leq & 2\left(1+\frac{c_{0}+\beta \tilde{C}_{1 /(2 \beta)}}{k_{p}(\lambda)}+\frac{c_{1}}{\eta}\right)\|(\eta+\tilde{A}) u\|_{L^{p}}, \quad \eta \geq 0 .
\end{aligned}
$$

Finally, we prove (3.9). Condition (H1) and [6, Theorem 9.11] yield the well-known elliptic estimate: for every $u \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
\|u\|_{W^{2, p}\left(\mathbb{R}^{N}\right)} \leq C\left(\|\operatorname{div}(a \nabla u)\|_{L^{p}}+\|u\|_{L^{p}}\right)
$$

where C depends only on N, p, ν and $\left\|a_{j k}\right\|_{W^{1, \infty}}$. Now let $\eta \geq 1$. Then we can derive from (3.8) and (3.16) that

$$
\begin{aligned}
\|u\|_{W^{2, p}\left(\mathbb{R}^{N}\right)} & \leq C\left(\|(\eta+\tilde{A}) u\|_{L^{p}}+2 \eta\|u\|_{L^{p}}\right)+C\left(\|(F \cdot \nabla) u\|_{L^{p}}+\|\tilde{V} u\|_{L^{p}}\right) \\
& \leq C\left(5+2 \frac{c_{0}+\beta \tilde{C}_{1 /(2 \beta)}}{k_{p}(\lambda)}+\frac{2 c_{1}}{\eta}\right)\|(\eta+\tilde{A}) u\|_{L^{p}}, \quad \eta \geq 1 .
\end{aligned}
$$

Thus we obtain (3.9). This completes the proof of Lemma 3.

Proof of Theorem 1. (i) Let $c_{q, \beta, \gamma}$ be the constant defined by (3.1). Then by [15, Theorem 1.3] we can conclude that for every $q \in(1, \infty), A_{q \text {,max }}$ is m-sectorial of type $S\left(c_{q, \beta, \gamma}\right)$ in L^{q}, that is, $-A_{q \text {,max }}$ generates an analytic contraction semigroup $\left\{e^{-z A_{q, \max }}\right\}$ on L^{q} on the closed sector $\bar{\Sigma}\left(\pi / 2-\tan ^{-1} c_{q, \beta, \gamma}\right)$. Moreover, we see from $\left[15\right.$, Theorem 1.2] that $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for $A_{p, \text { max }}$. In fact, by condition (H1) it suffices to show that there exist a nonnegative auxiliary function $\Psi_{q} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ and a constant $\tilde{\beta} \geq 0$ such that

$$
\begin{gather*}
|\langle F(x), \xi\rangle| \leq \tilde{\beta} \Psi_{q}(x)^{1 / 2}\langle a(x) \xi, \xi\rangle^{1 / 2} \quad \text { a.a. } x \in \mathbb{R}^{N}, \xi \in \mathbb{C}^{N}, \tag{3.17}\\
V-\frac{\operatorname{div} F}{q} \geq \Psi_{q} \quad \text { a.e. on } \mathbb{R}^{N} . \tag{3.18}
\end{gather*}
$$

Now set

$$
\Psi_{q}(x):=\left(\frac{\gamma_{1}}{q}+\frac{\gamma_{\infty}}{q^{\prime}}\right) U(x), \quad \tilde{\beta}:=\beta\left(\frac{\gamma_{1}}{q}+\frac{\gamma_{\infty}}{q^{\prime}}\right)^{-\frac{1}{2}} .
$$

Then we see from conditions (2.1)-(2.3) with $\Omega=\mathbb{R}^{N}$ that (3.17) and (3.18) are satisfied:

$$
\begin{aligned}
|\langle F(x), \xi\rangle| & \leq \beta U(x)^{1 / 2}\langle a(x) \xi, \xi\rangle^{1 / 2} \\
& \leq \tilde{\beta} \Psi_{q}(x)^{\frac{1}{2}}\langle a(x) \xi, \xi\rangle^{1 / 2}, \\
\Psi_{q}(x) & \leq \frac{V(x)-\operatorname{div} F(x)}{q}+\frac{V(x)}{q^{\prime}} \\
& =V(x)-\frac{\operatorname{div} F(x)}{q},
\end{aligned}
$$

and hence we can apply [15, Theorem 1.3] to the triplet (a, F, V). The constant in (3.17) is reflected to that in (3.1). This completes the proof of assertion (i).
(ii) We want to construct a q-independent analytic continuation for $\left\{e^{-z A q, \text { max }}\right\}$. By virtue of Lemma 2 we can apply Lemma 1 (i) with $p_{0}=2$ to $\left\{e^{-z A_{2, \max }}\right\}$. Namely, the new family $\left\{T_{q}(t) ; t \geq 0\right\}$ of bounded linear operators on L^{q} defined as

$$
\left(T_{q}(t) f\right)(x)=\int_{\mathbb{R}^{N}} k_{t}(x, y) f(y) d y, \quad f \in L^{q}\left(\mathbb{R}^{N}\right), \quad t>0
$$

with the kernel of $e^{-t A_{2, \max }}$ forms a C_{0}-semigroup on L^{q} for every $1<q<\infty$. Denote by B_{q} the generator of $\left\{T_{q}(t)\right\}$ on L^{q}. Noting that $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for $A_{q, \text { max }}$, we deduce that - $B_{q}=A_{q, \text { max }}$ and hence we obtain

$$
T_{q}(t)=e^{-t A_{q, \max }} \quad \forall t \geq 0
$$

This implies by Theorem 1 (i) that $\left\{T_{q}(z)\right\}=\left\{e^{-z A_{q, \text { max }}}\right\}$ is an analytic contraction semigroup on L^{q} on the closed sector $\bar{\Sigma}\left(\pi / 2-\tan ^{-1} c_{q, \beta, \gamma}\right)$.

Next let $q_{0} \in(1, \infty)$ be as defined by

$$
c_{q_{0}, \beta, \gamma}=\min _{1<q<\infty} c_{q, \beta, \gamma}=K_{\beta, \gamma}
$$

Then we see that $\left\{T_{q_{0}}(t)\right\}$ satisfies the assumption of Lemma 1 (ii) with

$$
\left(p_{0}, \psi_{0}\right):=\left(q_{0}, \pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)
$$

Therefore for every $p \in(1, \infty),\left\{T_{p}(t)\right\}$ on L^{p} admits an analytic continuation to the sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$ such that

$$
\begin{equation*}
\left\|T_{p}(z)\right\|_{L^{p}} \leq M_{\varepsilon} e^{\omega_{0} \operatorname{Re} z}, \quad z \in \Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}-\varepsilon\right) \tag{3.19}
\end{equation*}
$$

where the constant M_{ε} depends only on $\varepsilon, N, \nu, \beta, \gamma_{1}, \gamma_{\infty}$ and $\left\|a_{j k}\right\|_{L^{\infty}}$. Consequently, the identity theorem for vector-valued analytic functions (see, e.g., [1, Theorem A.2]) implies that $\left\{T_{p}(z)\right\}$ is nothing but the analytic extension of $\left\{e^{-z A_{p, \max }}\right\}$ to the sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$ and hence using (3.19), we obtain (3.3). This completes the proof of assertion (ii).
(iii) It suffices to show that $A_{p, \max }=A_{p}$ if (H3) and (3.4) are satisfied with $\Omega=\mathbb{R}^{N}$. By definition we see that $A_{p} \subset A_{p, \max }$. Conversely, let $u \in D\left(A_{p, \max }\right)$. Since $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for $A_{p, \max }$, there exists a sequence $\left\{u_{n}\right\}$ in $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
u_{n} \rightarrow u, \quad A u_{n} \rightarrow A_{p, \max } u \quad \text { in } L^{p}(n \rightarrow \infty)
$$

Applying Lemma 3 with $\xi=1+k_{0} C_{\lambda}$, we see that for every $n \in \mathbb{N}$,

$$
\begin{aligned}
&\left\|u_{n}\right\|_{W^{2, p}\left(\mathbb{R}^{N}\right)}+\left\|(F \cdot \nabla) u_{n}\right\|_{L^{p}}+\left\|V u_{n}\right\|_{L^{p}} \\
& \leq(C+1)\left(5+2 \frac{c_{0}+\beta \tilde{C}_{1 /(2 \beta)}}{k_{p}}\right)\left\|(\xi+A) u_{n}\right\|_{L^{p}}
\end{aligned}
$$

Letting $n \rightarrow \infty$, we see that $u \in W^{2, p}\left(\mathbb{R}^{N}\right) \cap D(F \cdot \nabla) \cap D(V)=D\left(A_{p}\right)$. This completes the proof of $A_{p}=A_{p, \max }$.

QED

Example 2. We consider a typical one-dimensional Ornstein-Uhlenbeck operator

$$
\left(A_{\mu} v\right)(x):=-v^{\prime \prime}(x)+x v^{\prime}(x)
$$

in L_{μ}^{p} (the L^{p}-space with respect to the invariant measure $e^{-x^{2} / 2} d x$). Chill-Fašangová-Metafune-Pallara [4] show that the C_{0}-semigroup on L_{μ}^{p} generated by $-A_{\mu}$ is analytic in the sector $\Sigma\left(\tilde{\omega}_{p}\right)$ and that the angle $\tilde{\omega}_{p}=\pi / 2-\omega_{p}$ of analyticity is optimal.

Here, applying Theorem 1 (ii), we give another derivation of their angle ω_{p}. Using the isometry $u \mapsto e^{-x^{2} / 2 p} u$, we can transform A_{μ} into A :

$$
(A u)(x):=-\frac{d^{2} u}{d x^{2}}+\left(1-\frac{2}{p}\right) x \frac{d u}{d x}+\left(\frac{p-1}{p^{2}} x^{2}-\frac{1}{p}\right) u
$$

in the usual space $L^{p}\left(\mathbb{R}^{N}\right)$. Thus we obtain

$$
a(x) \equiv 1, \quad F(x):=\left(1-\frac{2}{p}\right) x, \quad V(x):=\frac{p-1}{p^{2}} x^{2}-\frac{1}{p}
$$

in our notation. Setting $U(x):=x^{2}$, the triplet $(a, F, V+1)$ satisfies conditions (H1) and (H2) with respective constants

$$
\beta=|p-2| / p, \quad \gamma_{1}=(p-1) / p^{2}=\gamma_{\infty}
$$

In fact, (2.1)-(2.3) are computed as

$$
\begin{aligned}
|\langle F(x), \xi\rangle| & =p^{-1}|p-2| U(x)^{1 / 2}|\xi| \leq \beta(U(x)+1)^{1 / 2}|\xi|, \\
(V(x)+1)-\operatorname{div} F(x) & =\frac{p-1}{p^{2}} U(x)+\frac{1}{p} \geq \gamma_{1}(U(x)+1), \\
V(x)+1 & =\frac{p-1}{p^{2}} U(x)+\frac{1}{p^{\prime}} \geq \gamma_{\infty}(U(x)+1) .
\end{aligned}
$$

This leads us to the angle ω_{p} introduced in Introduction:

$$
K_{\beta, \gamma}=\inf _{1<q<\infty} \sqrt{\frac{(q-2)^{2}}{4(q-1)}+\frac{(p-2)^{2}}{4(p-1)}}=\frac{|p-2|}{2 \sqrt{p-1}}=\tan \omega_{p}
$$

This shows that the domain of analyticity in this case is at least $\Sigma\left(\pi / 2-\omega_{p}\right)$ in a form of sector with vertex at the origin. Moreover, $U(x)$ satisfies (2.4) and (2.5) in (H3) with $c_{0}=1$ and $\lambda_{0}=0$, respectively. Hence A has a separation property (3.5).

4 The operators with local singularities

In this section we deal with the case $\Omega=\mathbb{R}^{N} \backslash\{0\}$. In this case $C_{0}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ is not a core for $A_{p, \text { max }}$ in general. In fact, $C_{0}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ is not dense in $W^{2, p}\left(\mathbb{R}^{N}\right)$ if $p>N / 2$. Therefore Theorem 1 (i) and (ii) may be false if \mathbb{R}^{N} is replaced with $\mathbb{R}^{N} \backslash\{0\}$. Nevertheless we can show that Theorem 1 (iii) remains true even if $\Omega=\mathbb{R}^{N} \backslash\{0\}$ because $A_{p}=A_{p, \text { max }}$ can be approximated by a family of operators $\left\{A_{p}^{(\delta)} ; \delta>0\right\}$ with those properties in Theorem 1 (i), (ii) and (iii).

Theorem 2. Let $1<p<\infty$. Assume that conditions (H1), (H2) and (H3) are satisfied with $\Omega=\mathbb{R}^{N} \backslash\{0\}$. Let $K_{\beta, \gamma}$ be the constant determined by (3.2). If (3.4) holds, then $\left\{e^{-z A_{p}}\right\}$ admits an analytic continuation to the sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$. In this case A_{p} has the separation property (3.5).

Before proving Theorem 2, we introduce our approximation for the lower order coefficients. This is a modified version of Yosida approximation.

Lemma 4. Let $\delta>0$. Under the assumption in Theorem 2 put

$$
\begin{align*}
& F_{\delta}(x):= \begin{cases}F(x)(1+\delta U(x))^{-2}, & x \neq 0 \\
0, & x=0\end{cases} \tag{4.1}\\
& U_{\delta}(x):= \begin{cases}U(x)(1+\delta U(x))^{-1}, & x \neq 0 \\
\delta^{-1}, & x=0\end{cases} \tag{4.2}\\
& V_{\delta}(x):=\frac{V(x)}{1+\delta U(x)}+\frac{\gamma_{1} \delta U(x)^{2}}{(1+\delta U(x))^{2}}+\frac{2 \beta \lambda \delta\left(U(x)+C_{\lambda}\right)^{2}}{(1+\delta U(x))^{3}} \quad \text { a.a. } x \in \mathbb{R}^{N}, \tag{4.3}
\end{align*}
$$

where λ and C_{λ} are the constants in (2.6). Then

$$
\begin{equation*}
F_{\delta} \in C^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right), \quad U_{\delta} \in C^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right), \quad V_{\delta} \in L^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}\right) \tag{4.4}
\end{equation*}
$$

and the triplet $\left(a, F_{\delta}, V_{\delta}\right)$ and U_{δ} satisfy

$$
\begin{equation*}
F_{\delta} \rightarrow F \text { in } L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\} ; \mathbb{R}^{N}\right), \quad V_{\delta} \rightarrow V \text { in } L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\} ; \mathbb{R}\right) \tag{4.5}
\end{equation*}
$$

and (2.1)-(2.3) with $\Omega=\mathbb{R}^{N}$:

$$
\begin{array}{rlrl}
\left|\left\langle F_{\delta}(x), \xi\right\rangle\right| & \leq \beta U_{\delta}(x)^{1 / 2}\langle a(x) \xi, \xi\rangle^{1 / 2}, & & x \in \mathbb{R}^{N}, \xi \in \mathbb{C}^{N} \\
V_{\delta}(x)-\operatorname{div} F_{\delta}(x) \geq \gamma_{1} U_{\delta}(x) & & \text { a.a. } x \in \mathbb{R}^{N} \\
V_{\delta}(x) \geq \gamma_{\infty} U_{\delta}(x) & & \text { a.a. } x \in \mathbb{R}^{N}
\end{array}
$$

Moreover, for $\delta \leq 1 / C_{\lambda}$, one has (2.4) and (2.6) for the triplet $\left(a, F_{\delta}, V_{\delta}\right)$:

$$
\begin{align*}
V_{\delta}(x) & \leq\left(c_{0}+\gamma_{1}+2 \beta \lambda\right) U_{\delta}(x)+c_{1}+2 \beta \lambda C_{\lambda} \tag{4.9}\\
\left\langle a(x) \nabla U_{\delta}(x), \nabla U_{\delta}(x)\right\rangle^{1 / 2} & \leq \lambda\left(U_{\delta}(x)+C_{\lambda}\right)^{3 / 2} \tag{4.10}
\end{align*}
$$

Proof. We can verify (4.4) and (4.5) by a simple computation. Now we prove conditions (H2) and (H3) for the approximated triplet $\left(a, F_{\delta}, V_{\delta}\right)$. Since the original triplet (a, F, V) satisfies conditions (2.1) and (2.3) with $\Omega=\mathbb{R}^{N} \backslash\{0\}$, we see that (4.6) and (4.8) are satisfied: the case of $x=0$ is clear and

$$
\begin{gathered}
\left|\left\langle F_{\delta}(x), \xi\right\rangle\right|=\frac{|\langle F(x), \xi\rangle|}{(1+\delta U(x))^{2}} \leq \frac{\beta U(x)^{1 / 2}\langle a(x) \xi, \xi\rangle^{1 / 2}}{(1+\delta U(x))^{1 / 2}}=\beta U_{\delta}(x)^{1 / 2}\langle a(x) \xi, \xi\rangle^{1 / 2}, \\
V_{\delta}(x) \geq \frac{V(x)}{1+\delta U(x)} \geq \frac{\gamma_{\infty} U(x)}{1+\delta U(x)}=\gamma_{\infty} U_{\delta}(x) .
\end{gathered}
$$

Furthermore, combining (2.2) and (2.7), we obtain (4.7):

$$
\begin{aligned}
& V_{\delta}(x)-\operatorname{div} F_{\delta}(x) \\
\geq & \frac{V(x)-\operatorname{div} F(x)}{(1+\delta U(x))^{2}}+\gamma_{1} \frac{\delta U(x)^{2}}{(1+\delta U(x))^{2}}+2 \delta \frac{\beta \lambda \tilde{U}(x)^{2}-|(F \cdot \nabla) \tilde{U}(x)|}{(1+\delta U(x))^{3}} \\
\geq & \gamma_{1} \frac{U(x)}{(1+\delta U(x))^{2}}+\gamma_{1} \frac{\delta U(x)^{2}}{(1+\delta U(x))^{2}} \\
= & \gamma_{1} U_{\delta}(x) .
\end{aligned}
$$

Now we prove (4.9) and (4.10). We see from (2.4) that for every $\delta \in\left(0,1 / C_{\lambda}\right]$,

$$
\begin{aligned}
V_{\delta}(x) & \leq\left(c_{0}+\gamma_{1}\right) U_{\delta}(x)+c_{1}+2 \beta \lambda\left(\frac{\delta C_{\lambda}+\delta U(x)}{1+\delta U(x)}\right) \frac{U(x)+C_{\lambda}}{(1+\delta U(x))^{2}} \\
& \leq\left(c_{0}+\gamma_{1}+2 \beta \lambda\right) U_{\delta}(x)+c_{1}+2 \beta \lambda C_{\lambda} .
\end{aligned}
$$

It follows from the estimate (2.6) for the original triplet (a, F, V) that

$$
\begin{aligned}
\left\langle a(x) \nabla U_{\delta}(x), \nabla U_{\delta}(x)\right\rangle^{1 / 2} & =\frac{\langle a(x) \nabla U(x), \nabla U(x)\rangle^{1 / 2}}{(1+\delta U(x))^{2}} \\
& \leq \frac{\lambda}{(1+\delta U(x))^{1 / 2}}\left(\frac{U(x)+C_{\lambda}}{1+\delta U(x)}\right)^{3 / 2} \\
& \leq \lambda\left(U_{\delta}(x)+C_{\lambda}\right)^{3 / 2} .
\end{aligned}
$$

This completes the proof of Lemma 4.
Proof of Theorem 2. In view of (3.4) we fix $\lambda>\lambda_{0}$ satisfying

$$
(p-1) \lambda\left(\frac{\beta}{p}+\frac{\lambda}{4}\right)<\frac{\gamma_{1}}{p}+\frac{\gamma_{\infty}}{p^{\prime}} .
$$

For $\delta>0$ let F_{δ}, V_{δ} and U_{δ} be as (4.1)-(4.3). Then Lemma 4 implies that the approximate triplet ($a, F_{\delta}, V_{\delta}$) satisfies (H2) and (H3) with $\Omega=\mathbb{R}^{N}$ and (3.4). Thus the triplet ($a, F_{\delta}, V_{\delta}$) satisfies the assumption in Theorem 1 (iii). Therefore we can define a family $\left\{A_{p}^{(\delta)} ; \delta>0\right\}$ approximate to A_{p} in L^{p} :

$$
\left\{\begin{array}{l}
D\left(A_{p}^{(\delta)}\right):=W^{2, p}\left(\mathbb{R}^{N}\right), \\
A_{p}^{(\delta)} u:=-\operatorname{div}(a \nabla u)+\left(F_{\delta} \cdot \nabla\right) u+V_{\delta} u, \quad u \in D\left(A_{p}^{(\delta)}\right) .
\end{array}\right.
$$

Let ω_{0} be the constant as in Theorem 1 (ii) depending only on $N,\left\|a_{j k}\right\|_{L^{\infty}}$ and $\left\|\nabla a_{j k}\right\|_{L^{\infty}}$. Then $-A_{p}^{(\delta)}$ generates a bounded analytic semigroup $\left\{e^{-z\left(\omega_{0}+A_{p}^{(\delta)}\right)}\right\}$ in the open sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$, with two norm bounds:

$$
\left\|e^{-z A_{p}^{(\delta)}}\right\|_{L^{p}} \leq 1, \quad z \in \bar{\Sigma}\left(\pi / 2-\tan ^{-1} c_{p, \beta, \gamma}\right),
$$

and for every $\varepsilon>0$ there exists a constant $M_{\varepsilon} \geq 1$ such that

$$
\begin{equation*}
\left\|e^{-z A_{p}^{(\delta)}}\right\|_{L^{p}} \leq M_{\varepsilon} e^{\omega_{0} \operatorname{Re} z}, \quad z \in \Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}-\varepsilon\right) \tag{4.11}
\end{equation*}
$$

where M_{ε} depends only on $\varepsilon, N, \nu, \beta, \gamma_{1}, \gamma_{\infty}$ and $\left\|a_{j k}\right\|_{L^{\infty}}$. Moreover, $A_{p}^{(\delta)}$ has the separation property (3.5): for every $u \in W^{2, p}\left(\mathbb{R}^{N}\right)\left(=D\left(A_{p}^{(\delta)}\right)\right)$,

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(\mathbb{R}^{N}\right)}+\left\|\left(F_{\delta} \cdot \nabla\right) u\right\|_{L^{p}}+\left\|U_{\delta} u\right\|_{L^{p}} \leq C\left\|u+A_{p}^{(\delta)} u\right\|_{L^{p}} \tag{4.12}
\end{equation*}
$$

where C is independent of $\delta \in\left(0,1 / C_{\lambda}\right]$.
Next we prove the m-sectoriality of A_{p}. Let $v \in D\left(A_{p}\right)$. Then by the definition of $A_{p}^{(\delta)}$ we have $v \in D\left(A_{p}^{(\delta)}\right)$ and $A_{p}^{(\delta)} v \rightarrow A_{p} v(\delta \downarrow 0)$ in L^{p}. We see from the sectoriality of $A_{p}^{(\delta)}$ that A_{p} is also sectorial in L^{p}. It remains to prove the maximality: $R\left(I+A_{p}\right)=L^{p}$. Let $f \in L^{p}$. We see from the m-accretivity of $A_{p}^{(\delta)}$ that for every $\delta>0$ there exists $u_{\delta} \in D\left(A_{p}^{(\delta)}\right)$ such that

$$
u_{\delta}-\operatorname{div}\left(a \nabla u_{\delta}\right)+\left(F_{\delta} \cdot \nabla\right) u_{\delta}+V_{\delta} u_{\delta}=f
$$

Hence (4.12) yields that for every $\delta \in\left(0,1 / C_{\lambda}\right]$,

$$
\begin{equation*}
\left\|u_{\delta}\right\|_{W^{2, p}\left(\mathbb{R}^{N}\right)}+\left\|\left(F_{\delta} \cdot \nabla\right) u_{\delta}\right\|_{L^{p}}+\left\|U_{\delta} u_{\delta}\right\|_{L^{p}} \leq C\|f\|_{L^{p}} \tag{4.13}
\end{equation*}
$$

It follows from (4.13) that there exist a subsequence $\left\{u_{\delta_{m}}\right\}_{m}$ with $\delta_{m} \downarrow 0(m \rightarrow$ $\infty)$ and a function $u \in W^{2, p}\left(\mathbb{R}^{N}\right) \cap D(U)$ such that

$$
\begin{aligned}
u_{\delta_{m}} & \rightarrow u \quad(m \rightarrow \infty) \quad \text { weakly in } W^{2, p}\left(\mathbb{R}^{N}\right), \\
U_{\delta_{m}} u_{\delta_{m}} & \rightarrow U u(m \rightarrow \infty) \quad \text { weakly in } L^{p}\left(\mathbb{R}^{N}\right)
\end{aligned}
$$

It follows from (2.4) that $V u \in L^{p}$. The Rellich-Kondrachov theorem implies that

$$
u_{\delta_{m}} \rightarrow u \quad \text { in } W_{\mathrm{loc}}^{1, p}\left(\mathbb{R}^{N}\right)
$$

Using Fatou's lemma, we see that

$$
\|(F \cdot \nabla) u\|_{L^{p}}^{p} \leq \liminf _{m \rightarrow \infty}\left\|\left(F_{\delta_{m}} \cdot \nabla\right) u_{\delta_{m}}\right\|_{L^{p}}^{p} \leq C^{p}\|f\|_{L^{p}}^{p}
$$

Thus we have $u \in D\left(A_{p}\right)$. By (4.5) in Lemma 4 we deduce that

$$
\begin{array}{cl}
\left(F_{\delta_{m}} \cdot \nabla\right) u_{\delta_{m}} \rightarrow(F \cdot \nabla) u & \text { in } L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N} \backslash\{0\}\right) \\
V_{\delta_{m}} u_{\delta_{m}} \rightarrow V u & \text { in } L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{N} \backslash\{0\}\right)
\end{array}
$$

and hence we obtain $u+A_{p} u=f$, that is, $R\left(I+A_{p}\right)=L^{p}$. This completes the proof of the m-sectoriality of A_{p}.

Consequently, the Hille-Yosida generation theorem modified by Goldstein [7, Theorem 1.5.9] implies that $-A_{p}$ generates an analytic contraction semigroup $\left\{e^{-t A_{p}}\right\}$ on L^{p}. Furthermore, applying Trotter's convergence theorem (see, e.g., [5, Theorem III.4.8]), we deduce that for every $f \in L^{p}$ and $t \geq 0$,

$$
e^{-t A_{p}^{(\delta)}} f \rightarrow e^{-t A_{p}} f \text { in } L^{p}
$$

Finally, by Vitali's theorem (see, e.g., [1, Theorem A.5]) we see from (4.11) that $\left\{e^{-t A_{p}}\right\}$ admits an analytic continuation to the sector $\Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}\right)$. Moreover,

$$
\left\|e^{-z A_{p}}\right\|_{L^{p}} \leq 1, \quad z \in \bar{\Sigma}\left(\pi / 2-\tan ^{-1} c_{p, \beta, \gamma}\right)
$$

and for every $\varepsilon>0$,

$$
\begin{equation*}
\left\|e^{-z A_{p}}\right\|_{L^{p}} \leq M_{\varepsilon} e^{\omega_{0} \operatorname{Re} z}, \quad z \in \Sigma\left(\pi / 2-\tan ^{-1} K_{\beta, \gamma}-\varepsilon\right) \tag{4.14}
\end{equation*}
$$

Noting that (4.14) implies the continuity at the origin, we finish the proof.

Example 3 (A case where $\gamma_{1} \neq \gamma_{\infty}$). We consider the following operator

$$
A u=-\Delta u+\frac{b x}{|x|^{2}} \cdot \nabla u+\frac{c}{|x|^{2}}
$$

that is, (a, F, V) and Ω in our notation are given by

$$
a_{j k}(x):=\delta_{j k}, \quad F(x):=\frac{b x}{|x|^{2}}, \quad V(x):=\frac{c}{|x|^{2}}, \quad \Omega=\mathbb{R}^{N} \backslash\{0\}
$$

note that this operator has a singularity at the origin. Taking the auxiliary function U as $U(x):=|x|^{-2}$, we can see that the respective constants in (H2) are given by

$$
\beta=|b|, \quad \gamma_{1}=c-b(N-2), \quad \gamma_{\infty}=c
$$

Thus $\gamma_{1} \neq \gamma_{\infty}$ if $N \neq 2$ and $b \neq 0$. We also have $\lambda_{0}=2$ (see Example 1). Hence if b, c and p satisfy (3.4), that is, if

$$
p-1+\frac{2}{p}|b|=(p-1) \lambda_{0}\left(\frac{\beta}{p}+\frac{\lambda_{0}}{4}\right)<\frac{\gamma_{1}}{p}+\frac{\gamma_{\infty}}{p^{\prime}}=c-\frac{b(N-2)}{p}
$$

holds, then we can apply Theorem 2 to the operator A and hence the conclusion of Remark 3 yields that $c_{2, \beta, \gamma}>K_{\beta, \gamma}$.

References

[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander: Vector-Valued Laplace Transform and Cauchy Problems, Monographs in Mathematics 96, Birkhauser Verlag, Basel, 2001.
[2] W. Arendt, A. F. M. ter Elst: Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87-130.
[3] W. Arendt, G. Metafune, D. Pallara: Schrödinger operators with unbounded drift, J. Operator Theory 55 (2006), 185-211.
[4] R. Chill, E. Fašangová, G. Metafune, D. Pallara: The sector of analyticity of the Ornstein-Uhlenbeck semigroup on L^{p} spaces with invariant measure, J. London Math. Soc. (2) 71 (2005), 703-722.
[5] K.J. Engel, R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, New York, 2000.
[6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, Berlin, 1983.
[7] J.A. Goldstein: Semigroups of Linear Operators and Applications, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1985.
[8] M. Hieber: Gaussian estimates and holomorphy of semigroups on L^{p} spaces, J. London Math. Soc. 2nd Ser. 54 (1996), 148-160.
[9] Y. Maeda, N. Okazawa: Holomorphic families of Schrödinger operators in L^{p}, SUT J. Math. 47 (2011), 185-216.
[10] G. Metafune, D. Pallara, J. Prüss, R. Schnaubelt: L ${ }^{p}$-theory for elliptic operators on \mathbb{R}^{d} with singular coefficients, Z. Anal. Anwendungen 24 (2005), 497-521.
[11] G. Metafune, J. Prüss, A. Rhandi, R. Schnaubelt: L^{p}-regularity for elliptic operators with unbounded coefficients, Adv. Differential Equations 10 (2005), 1131-1164.
[12] N. Okazawa: Sectorialness of second order elliptic operators in divergence form, Proc. Amer. Math. Soc. 113 (1991), 701-706.
[13] E. M. Ouhabaz: Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc. 123 (1995), 1465-1474.
[14] E. M. Ouhabaz: Analysis of Heat Equations on Domains, London Math. Soc. Monogr. Ser. 31, Princeton University Press, Princeton, NJ, 2005.
[15] M. Sobajima: L^{p}-theory for second order elliptic operators with unbounded coefficients, J. Evol. Equ. 12 (2012), 957-971.

[^0]: ${ }^{\text {i }}$ This work is partially supported by Grant-in-Aid for Scientific Research (C), No. 20540190.
 ${ }^{\text {ii }}$ This work is partially supported by Grant-in-Aid for Young Scientists Research (B), No. 20740079 .
 http://siba-ese.unisalento.it/ © 2013 Università del Salento

