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Abstract. In his lost notebook, Ramanujan has defined the function ρ(a, b) by

ρ(a, b) :=

(

1 +
1

b

) ∞
∑

n=0

(−1)nqn(n+1)/2anb−n

(−aq)n
,

where |q| < 1, and (a; q)n =
∏n−1

k=0 (1 − aqk), n = 1, 2, 3, . . . , and has given a beautiful reci-
procity theorem involving ρ(a, b). In this paper we obtain some continued fraction expansions
for the ratios of ρ(a, b) with some of its contiguous functions. We also obtain some interest-
ing special cases of our continued fraction expansions which are analogous to the continued
fraction identities stated by Ramanujan.

Keywords: Basic hypergeometric series, q-continued fractions.
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1 Introduction

Ramanujan, a pioneer in the theory of continued fractions has recorded
scores of continued fraction identities in chapter 12 of his second notebook
[23] and in his lost notebook [24]. This part of Ramanujan’s work has been
treated and developed by several authors including Andrews [4], Hirschhorn [19],
Carlitz [12], Gordon [18], Al-Salam and Ismail [3], Ramanathan [21], [22], Denis
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[13], [14], [15], Bhargava and Adiga [8], [9], Bhargava, Adiga and Somashekara
[10], [11], Adiga and Somashekara [2], Verma, Denis and Srinivasa Rao [29],
Singh [26], Bhagirathi [5], [6], [7], Adiga, Denis and Vasuki [1], Denis, Singh
and Bhagirathi [17], Denis and Singh [16], Vasuki [27], Vasuki and Madhusudan
[28], Somashekara and Fathima [25], Mamta and Somashekara [20].

The main purpose of this paper is to establish continued fraction expansions
for the ratios ρ(aq, b)/ρ(a, b) and ρ(a, bq)/ρ(a, b), where

ρ(a, b) =

(

1 +
1

b

) ∞
∑

n=0

(−1)nqn(n+1)/2anb−n

(−aq)n
, (1.1)

which was given by Ramanujan in his lost notebook [24]. In fact Ramanujan
has given a beautiful reciprocity theorem for the function ρ(a, b) in his lost
notebook.

In section 2, we prove some key functional relations satisfied by ρ(a, b), which
will be used in the development of continued fractions. In section 3, we prove
our main results and in section 4 we obtain some special cases of our continued
fractions which are analogous to the continued fractions of Ramanujan.

2 Some functional relations satisfied by ρ(a, b)ρ(a, b)ρ(a, b)

In this section, we prove some functional relations satisfied by ρ(a, b).

Lemma 1. ρ(a, b) satisfies the following functional relations.

(1 + aq)
ρ(a, b)
(

1 + 1
b

) − aqρ(aq, b)
(

1 + 1
b

) =
ρ(aq, bq)
(

1 + 1
bq

) , (2.1)

(1 + aq)
ρ(a, bq)
(

1 + 1
bq

) − (1 + aq)
ρ(a, b)
(

1 + 1
b

) =
aq

b

ρ(aq, b)
(

1 + 1
b

) − a

b

ρ(aq, bq)
(

1 + 1
bq

) , (2.2)

ρ(a, bq)
(

1 + 1
bq

) =
(

1− a

b

) ρ(a, b)
(

1 + 1
b

) +
aq
b (1 + a)

(1 + aq)

ρ(aq, b)
(

1 + 1
b

) , (2.3)

ρ(a, b) =

(

1− aq
b + aq

1 + aq

)

ρ(aq, b) +

(

aq2/b

1 + aq2

)

ρ(aq2, b), (2.4)

(1 + aq)
ρ(a, bq)
(

1 + 1
bq

) − aqρ(aq, bq)
(

1 + 1
bq

) =
ρ(aq, bq2)
(

1 + 1
bq2

) , (2.5)

ρ(a, b) =

[

a+ bq(a− 1)

a(1 + bq)

]

ρ(a, bq) +

[

bq2

a(1 + bq2)

]

ρ(a, bq2) (2.6)
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Proof. Using (1.1), the left side of (2.1) can be written as

(1 + aq) + (1 + aq)
∞
∑

n=1

(−1)nqn(n+1)/2anb−n

(−aq)n

− aq − aq
∞
∑

n=1

(−1)nqn(n+1)/2(aq)nb−n

(−aq2)n

= 1 +
∞
∑

n=1

(−1)nqn(n+1)/2anb−n

(−aq2)n−1

{

1− aqn+1

1 + aqn+1

}

=
ρ(aq, bq)
(

1 + 1
bq

) ,

which is the right side of (2.1).
Using (1.1), the left side of (2.2) can be written as

(1 + aq)
∞
∑

n=1

(−1)nqn(n+1)/2an(bq)−n

(−aq)n
− (1 + aq)

∞
∑

n=1

(−1)nqn(n+1)/2anb−n

(−aq)n

=
−a
b

∞
∑

n=1

(−1)n−1qn(n−1)/2an−1b−n+1

(−aq2)n−1

+
aq

b

∞
∑

n=1

(−1)n−1qn(n−1)/2(aq)n−1b−n+1

(−aq2)n−1

=
aq

b

ρ(aq, b)
(

1 + 1
bq

) − a

b

ρ(aq, bq)
(

1 + 1
bq

) .

This proves (2.2).
Substituting for ρ(aq, bq)/(1 + 1/bq) in (2.2) from (2.1), we obtain (2.3) on

some simplifications.
Changing a to aq in (2.3), then adding resulting equation to (2.1),

we obtain (2.4).
Using (1.1), the left side of (2.5) can be written as

(1 + aq) + (1 + aq)
∞
∑

n=1

(−1)nqn(n+1)/2an(bq)−n

(−aq)n

− aq − aq
∞
∑

n=1

(−1)nqn(n+1)/2(aq)n(bq)−n

(−aq2)n

= 1 +
∞
∑

n=1

(−1)nqn(n+1)/2an(bq)−n

(−aq2)n−1

{

1− aqn+1

1 + aqn+1

}

=
ρ(aq, bq2)
(

1 + 1
bq2

) .

which is the right side of (2.5).
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Adding (2.1), (2.2) and the negative of (2.5), we obtain (2.6) on some
simplifications. QED

3 Main results

In this section, we deduce the continued fraction expansions for the ratios
ρ(aq, b)/ρ(a, b) and ρ(a, bq)/ρ(a, b).

Theorem 1. We have

ρ(aq, b)

ρ(a, b)
=

(1 + aq)

N1+

M1

N2+

M2

N3 + · · ·
Mn

Nn+1 · · ·
, (3.1)

where

Mn =
aqn+1

b
(1 + aqn),

and

Nn =

(

1− aqn

b
+ aqn

)

, n = 0, 1, 2, . . . .

Proof. Changing a to aqn in (2.4), we obtain

ρ(aqn, b) =

(

1− aqn+1

b + aqn+1

1 + aqn+1

)

ρ(aqn+1, b) +

(

aqn+2/b

1 + aqn+2

)

ρ(aqn+2, b).

This can be written as

Tn ≡
ρ(aqn, b)

ρ(aqn+1, b)
=

(

1− aqn+1

b + aqn+1

1 + aqn+1

)

+

(

aqn+2/b
1+aqn+2

)

Tn+1
. (3.2)

Iterating (3.2) with n = 0, 1, 2, . . . , and then taking reciprocals, we obtain (3.1)
after some simplifications. QED

Theorem 2. We have

ρ(a, bq)

ρ(a, b)
=

(

1− a
b

)

(1 + bq)

q(1 + b)
+

(1 + bq)M0

q(1 + b)N1+

q(1 + b)M1

N2+

M2

N3 + · · ·
Mn

Nn+1 · · ·
,

(3.3)
where Mn and Nn are as in theorem (3.1).

Proof. Equation (2.3) can be written as

ρ(a, bq)

ρ(a, b)
=

(

1− a
b

)

(1 + bq)

q(1 + b)
+

aq
b (1 + a)(1 + bq)

q(1 + b)(1 + aq) ρ(a, b)
ρ(aq, b)

. (3.4)

Iterating (3.2) with n = 0, 1, 2, . . . , and substituting the resulting identity in
(3.4), we obtain (3.3) after some simplifications. QED



On some continued fraction expansions for the ratios of the function ρ(a, b) 39

Theorem 3. We have

ρ(a, bq)

ρ(a, b)
=
a(1 + bq)

A0+

B0

A1+

B1

A2 + · · ·
Bn

An+1 · · ·
, (3.5)

where

An = [a+ bqn+1(a− 1)],

and

Bn =
[

abqn+2(1 + bqn+1)
]

, n = 0, 1, 2, . . . .

Proof. Changing b to bqn in (2.6), we obtain on some simplifications

ρ(a, bqn) =

[

a+ bqn+1(a− 1)

a(1 + bqn+1)

]

ρ(a, bqn+1) +

[

bqn+2

a(1 + bqn+2)

]

ρ(a, bqn+2).

This can be written as

Fn ≡
ρ(a, bqn)

ρ(a, bqn+1)
=

[

a+ bqn+1(a− 1)

a(1 + bqn+1)

]

+

[

bqn+2

a(1+bqn+2)

]

Fn+1
. (3.6)

Iterating (3.6) with n = 0, 1, 2, . . . , and then taking reciprocals, we obtain (3.5)
after some simplifications. QED

4 Some special cases

In this section, we derive the following special cases of (3.1), (3.3) and (3.5).

∑∞
n=0

(−1)nqn(n+3)/2

(−q2)n
∑∞

n=0
(−1)nqn(n+1)/2

(−q)n

=
1 + q

1+

q2(1 + q)

1+

q3(1 + q2)

1 + · · · , (4.1)

∑∞
n=0

qn(n+3)/2

(q2)n
∑∞

n=0
qn(n+1)/2

(q)n

=
1− q
1−

q2(1− q)
1−

q3(1− q2)
1− · · · , (4.2)

∑∞
n=0

qn(n+1)/2

(q2)n
∑∞

n=0
qn(n−1)/2

(q)n

=
1− q

(2− q)−
q(1− q)

(1 + q − q2)− · · · , (4.3)

∑∞
n=0

(−1)nqn(n+5)/2

(−q3)n
∑∞

n=0
(−1)nqn(n+3)/2

(−q2)n

=
1 + q2

1+

q3(1 + q2)

1+

q4(1 + q3)

1 + · · · , (4.4)
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∑∞
n=0

qn(n−1)/2

(q2)n
∑∞

n=0
qn(n+1)/2

(q2)n

= 2− q(1− q)
(1 + q − q2)−

q2(1− q2)
(1 + q2 − q3)− · · · , (4.5)

∑∞
n=0

qn(n+1)/2

(q2)n
∑∞

n=0
qn(n+3)/2

(q2)n

= (1 + q)− q2(1− q)
1−

q3(1− q2)
1− · · · , (4.6)

∑∞
n=0

(−1)nqn(n−3)/2

(−q2)n
∑∞

n=0
(−1)nqn(n−1)/2

(−q2)n

=
q − 1

q
+

(1 + q)

q2 + · · · , (4.7)

∑∞
n=0

(−1)nqn(n+1)/2

(−q3)n
∑∞

n=0
(−1)nqn(n+3)/2

(−q3)n

= (1− q) +
q2(1 + q2)

(1− q2 + q3) + · · · , (4.8)

∑∞
n=0

(−1)nqn(n−1)/2

(−q)n
∑∞

n=0
(−1)nqn(n+1)/2

(−q)n

=
2q

1+

q2(1 + q)

1+

q3(1 + q2)

1 + · · · , (4.9)

∑∞
n=0

qn(n−1)/2

(q)n
∑∞

n=0
qn(n+1)/2

(q)n

=
2q

(1 + 2q)−
q2(1 + q)

(1 + 2q2)− · · · , (4.10)

∑∞
n=0

(−1)nqn(n+1)/2

(−q2)n
∑∞

n=0
(−1)nqn(n+3)/2

(−q2)n

=
2

1+

(1 + q)

(1− q + q2)+

q2(1 + q2)

(1− q2 + q3) + · · · , (4.11)

∑∞
n=0

(−1)nqn(n−3)/2

(−q)n
∑∞

n=0
(−1)nqn(n−1)/2

(−q)n

=
q(1 + q)

1+

q3(1 + q2)

1+

q4(1 + q3)

1+
· · · . (4.12)

Proof. Setting a = 1 = b in (3.1) and using the definition (1.1) of ρ(a, b) we
obtain (4.1) after some simplifications. Similarly we obtain (4.2), (4.3) and (4.4)
from (3.1) for a = −1, b = 1; a = −1, b = q and a = q, b = 1 respectively.

Setting a = −q, b = q in (3.3) and using the definition (1.1) of ρ(a, b) we
obtain (4.5) after some simplifications. Similarly we obtain (4.6), (4.7) and (4.8)
from (3.3) for a = −q, b = 1; a = q, b = q2 and a = q2, b = q respectively.

Setting a = 1 = b in (3.5) and using the definition (1.1) of ρ(a, b) we obtain
(4.9) after some simplifications. Similarly we obtain (4.10), (4.11) and (4.12)
from (3.5) for a = −1, b = 1; a = q, b = 1 and a = 1, b = q respectively. QED
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