On some continued fraction expansions for the ratios of the function $\rho(a, b)$

D. D. Somashekara

Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India.
dsomashekara@yahoo.com

S. L. Shalini

Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India.
shalinisl.maths@gmail.com
K. Narasimha Murthy

Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India.
simhamurth@yahoo.com

Received: 7.1.2013; accepted: 1.4.2013.
Abstract. In his lost notebook, Ramanujan has defined the function $\rho(a, b)$ by

$$
\rho(a, b):=\left(1+\frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n} b^{-n}}{(-a q)_{n}}
$$

where $|q|<1$, and $(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2,3, \ldots$, and has given a beautiful reciprocity theorem involving $\rho(a, b)$. In this paper we obtain some continued fraction expansions for the ratios of $\rho(a, b)$ with some of its contiguous functions. We also obtain some interesting special cases of our continued fraction expansions which are analogous to the continued fraction identities stated by Ramanujan.

Keywords: Basic hypergeometric series, q-continued fractions.
MSC 2010 classification: 2010 Mathematics Subject Classification: primary 33D05, secondary 11A55.

1 Introduction

Ramanujan, a pioneer in the theory of continued fractions has recorded scores of continued fraction identities in chapter 12 of his second notebook [23] and in his lost notebook [24]. This part of Ramanujan's work has been treated and developed by several authors including Andrews [4], Hirschhorn [19], Carlitz [12], Gordon [18], Al-Salam and Ismail [3], Ramanathan [21], [22], Denis

[^0][13], [14], [15], Bhargava and Adiga [8], [9], Bhargava, Adiga and Somashekara [10], [11], Adiga and Somashekara [2], Verma, Denis and Srinivasa Rao [29], Singh [26], Bhagirathi [5], [6], [7], Adiga, Denis and Vasuki [1], Denis, Singh and Bhagirathi [17], Denis and Singh [16], Vasuki [27], Vasuki and Madhusudan [28], Somashekara and Fathima [25], Mamta and Somashekara [20].

The main purpose of this paper is to establish continued fraction expansions for the ratios $\rho(a q, b) / \rho(a, b)$ and $\rho(a, b q) / \rho(a, b)$, where

$$
\begin{equation*}
\rho(a, b)=\left(1+\frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n} b^{-n}}{(-a q)_{n}}, \tag{1.1}
\end{equation*}
$$

which was given by Ramanujan in his lost notebook [24]. In fact Ramanujan has given a beautiful reciprocity theorem for the function $\rho(a, b)$ in his lost notebook.

In section 2 , we prove some key functional relations satisfied by $\rho(a, b)$, which will be used in the development of continued fractions. In section 3, we prove our main results and in section 4 we obtain some special cases of our continued fractions which are analogous to the continued fractions of Ramanujan.

2 Some functional relations satisfied by $\rho(a, b)$

In this section, we prove some functional relations satisfied by $\rho(a, b)$.
Lemma 1. $\rho(a, b)$ satisfies the following functional relations.

$$
\begin{align*}
& (1+a q) \frac{\rho(a, b)}{\left(1+\frac{1}{b}\right)}-a q \frac{\rho(a q, b)}{\left(1+\frac{1}{b}\right)}=\frac{\rho(a q, b q)}{\left(1+\frac{1}{b q}\right)} \tag{2.1}\\
& (1+a q) \frac{\rho(a, b q)}{\left(1+\frac{1}{b q}\right)}-(1+a q) \frac{\rho(a, b)}{\left(1+\frac{1}{b}\right)}=\frac{a q}{b} \frac{\rho(a q, b)}{\left(1+\frac{1}{b}\right)}-\frac{a}{b} \frac{\rho(a q, b q)}{\left(1+\frac{1}{b q}\right)}, \tag{2.2}\\
& \frac{\rho(a, b q)}{\left(1+\frac{1}{b q}\right)}=\left(1-\frac{a}{b}\right) \frac{\rho(a, b)}{\left(1+\frac{1}{b}\right)}+\frac{\frac{a q}{b}(1+a)}{(1+a q)} \frac{\rho(a q, b)}{\left(1+\frac{1}{b}\right)}, \tag{2.3}\\
& \rho(a, b)=\left(\frac{1-\frac{a q}{b}+a q}{1+a q}\right) \rho(a q, b)+\left(\frac{a q^{2} / b}{1+a q^{2}}\right) \rho\left(a q^{2}, b\right), \tag{2.4}\\
& (1+a q) \frac{\rho(a, b q)}{\left(1+\frac{1}{b q}\right)}-a q \frac{\rho(a q, b q)}{\left(1+\frac{1}{b q}\right)}=\frac{\rho\left(a q, b q^{2}\right)}{\left(1+\frac{1}{b q^{2}}\right)}, \tag{2.5}\\
& \rho(a, b)=\left[\frac{a+b q(a-1)}{a(1+b q)}\right] \rho(a, b q)+\left[\frac{b q^{2}}{a\left(1+b q^{2}\right)}\right] \rho\left(a, b q^{2}\right) \tag{2.6}
\end{align*}
$$

Proof. Using (1.1), the left side of (2.1) can be written as

$$
\begin{aligned}
& (1+a q)+(1+a q) \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n} b^{-n}}{(-a q)_{n}} \\
& \quad-a q-a q \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}(a q)^{n} b^{-n}}{\left(-a q^{2}\right)_{n}} \\
& \quad=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n} b^{-n}}{\left(-a q^{2}\right)_{n-1}}\left\{1-\frac{a q^{n+1}}{1+a q^{n+1}}\right\}=\frac{\rho(a q, b q)}{\left(1+\frac{1}{b q}\right)},
\end{aligned}
$$

which is the right side of (2.1).
Using (1.1), the left side of (2.2) can be written as

$$
\begin{aligned}
(1+ & +a q) \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n}(b q)^{-n}}{(-a q)_{n}}-(1+a q) \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n} b^{-n}}{(-a q)_{n}} \\
= & \frac{-a}{b} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} q^{n(n-1) / 2} a^{n-1} b^{-n+1}}{\left(-a q^{2}\right)_{n-1}} \\
& +\frac{a q}{b} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} q^{n(n-1) / 2}(a q)^{n-1} b^{-n+1}}{\left(-a q^{2}\right)_{n-1}} \\
= & \frac{a q}{b} \frac{\rho(a q, b)}{\left(1+\frac{1}{b q}\right)}-\frac{a \rho(a q, b q)}{b} \frac{\left(1+\frac{1}{b q}\right)}{(1)}
\end{aligned}
$$

This proves (2.2).
Substituting for $\rho(a q, b q) /(1+1 / b q)$ in (2.2) from (2.1), we obtain (2.3) on some simplifications.

Changing a to $a q$ in (2.3), then adding resulting equation to (2.1), we obtain (2.4).

Using (1.1), the left side of (2.5) can be written as

$$
\begin{aligned}
&(1+a q)+(1+a q) \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n}(b q)^{-n}}{(-a q)_{n}} \\
&-a q-a q \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}(a q)^{n}(b q)^{-n}}{\left(-a q^{2}\right)_{n}} \\
&=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2} a^{n}(b q)^{-n}}{\left(-a q^{2}\right)_{n-1}}\left\{1-\frac{a q^{n+1}}{1+a q^{n+1}}\right\}=\frac{\rho\left(a q, b q^{2}\right)}{\left(1+\frac{1}{b q^{2}}\right)}
\end{aligned}
$$

which is the right side of (2.5).

Adding (2.1), (2.2) and the negative of (2.5), we obtain (2.6) on some simplifications.

3 Main results

In this section, we deduce the continued fraction expansions for the ratios $\rho(a q, b) / \rho(a, b)$ and $\rho(a, b q) / \rho(a, b)$.

Theorem 1. We have

$$
\begin{equation*}
\frac{\rho(a q, b)}{\rho(a, b)}=\frac{(1+a q)}{N_{1}+} \frac{M_{1}}{N_{2}+} \frac{M_{2}}{N_{3}+\cdots} \frac{M_{n}}{N_{n+1} \cdots}, \tag{3.1}
\end{equation*}
$$

where

$$
M_{n}=\frac{a q^{n+1}}{b}\left(1+a q^{n}\right)
$$

and

$$
N_{n}=\left(1-\frac{a q^{n}}{b}+a q^{n}\right), \quad n=0,1,2, \ldots
$$

Proof. Changing a to $a q^{n}$ in (2.4), we obtain

$$
\rho\left(a q^{n}, b\right)=\left(\frac{1-\frac{a q^{n+1}}{b}+a q^{n+1}}{1+a q^{n+1}}\right) \rho\left(a q^{n+1}, b\right)+\left(\frac{a q^{n+2} / b}{1+a q^{n+2}}\right) \rho\left(a q^{n+2}, b\right) .
$$

This can be written as

$$
\begin{equation*}
T_{n} \equiv \frac{\rho\left(a q^{n}, b\right)}{\rho\left(a q^{n+1}, b\right)}=\left(\frac{1-\frac{a q^{n+1}}{b}+a q^{n+1}}{1+a q^{n+1}}\right)+\frac{\left(\frac{a q^{n+2} / b}{1+a q^{n+2}}\right)}{T_{n+1}} \tag{3.2}
\end{equation*}
$$

Iterating (3.2) with $n=0,1,2, \ldots$, and then taking reciprocals, we obtain (3.1) after some simplifications.

Theorem 2. We have

$$
\begin{equation*}
\frac{\rho(a, b q)}{\rho(a, b)}=\frac{\left(1-\frac{a}{b}\right)(1+b q)}{q(1+b)}+\frac{(1+b q) M_{0}}{q(1+b) N_{1}+} \frac{q(1+b) M_{1}}{N_{2}+} \frac{M_{2}}{N_{3}+\cdots} \frac{M_{n}}{N_{n+1} \cdots}, \tag{3.3}
\end{equation*}
$$

where M_{n} and N_{n} are as in theorem (3.1).
Proof. Equation (2.3) can be written as

$$
\begin{equation*}
\frac{\rho(a, b q)}{\rho(a, b)}=\frac{\left(1-\frac{a}{b}\right)(1+b q)}{q(1+b)}+\frac{\frac{a q}{b}(1+a)(1+b q)}{q(1+b)(1+a q) \frac{\rho(a, b)}{\rho(a q, b)}} . \tag{3.4}
\end{equation*}
$$

Iterating (3.2) with $n=0,1,2, \ldots$, and substituting the resulting identity in (3.4), we obtain (3.3) after some simplifications.

Theorem 3. We have

$$
\begin{equation*}
\frac{\rho(a, b q)}{\rho(a, b)}=\frac{a(1+b q)}{A_{0}+} \frac{B_{0}}{A_{1}+} \frac{B_{1}}{A_{2}+\cdots} \frac{B_{n}}{A_{n+1} \cdots}, \tag{3.5}
\end{equation*}
$$

where

$$
A_{n}=\left[a+b q^{n+1}(a-1)\right]
$$

and

$$
B_{n}=\left[a b q^{n+2}\left(1+b q^{n+1}\right)\right], \quad n=0,1,2, \ldots
$$

Proof. Changing b to $b q^{n}$ in (2.6), we obtain on some simplifications

$$
\rho\left(a, b q^{n}\right)=\left[\frac{a+b q^{n+1}(a-1)}{a\left(1+b q^{n+1}\right)}\right] \rho\left(a, b q^{n+1}\right)+\left[\frac{b q^{n+2}}{a\left(1+b q^{n+2}\right)}\right] \rho\left(a, b q^{n+2}\right) .
$$

This can be written as

$$
\begin{equation*}
F_{n} \equiv \frac{\rho\left(a, b q^{n}\right)}{\rho\left(a, b q^{n+1}\right)}=\left[\frac{a+b q^{n+1}(a-1)}{a\left(1+b q^{n+1}\right)}\right]+\frac{\left[\frac{b q^{n+2}}{a\left(1+b q^{n+2}\right)}\right]}{F_{n+1}} \tag{3.6}
\end{equation*}
$$

Iterating (3.6) with $n=0,1,2, \ldots$, and then taking reciprocals, we obtain (3.5) after some simplifications.

4 Some special cases

In this section, we derive the following special cases of (3.1), (3.3) and (3.5).

$$
\begin{align*}
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+3) / 2}}{\left(-q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(-q)_{n}}}=\frac{1+q}{1+} \frac{q^{2}(1+q)}{1+} \frac{q^{3}\left(1+q^{2}\right)}{1+\cdots} \tag{4.1}\\
& \frac{\sum_{n=0}^{\infty} \frac{q^{n(n+3) / 2}}{\left(q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(q)_{n}}}=\frac{1-q}{1-} \frac{q^{2}(1-q)}{1-} \frac{q^{3}\left(1-q^{2}\right)}{1-\cdots} \tag{4.2}\\
& \frac{\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{\left(q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q)_{n}}}=\frac{1-q}{(2-q)-} \frac{q(1-q)}{\left(1+q-q^{2}\right)-\cdots} \tag{4.3}\\
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+5) / 2}}{\left(-q^{3}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+3) / 2}}{\left(-q^{2}\right)_{n}}}=\frac{1+q^{2}}{1+} \frac{q^{3}\left(1+q^{2}\right)}{1+} \frac{q^{4}\left(1+q^{3}\right)}{1+\cdots} \tag{4.4}
\end{align*}
$$

$$
\begin{align*}
& \frac{\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{\left(q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{\left(q^{2}\right)_{n}}}=2-\frac{q(1-q)}{\left(1+q-q^{2}\right)-} \frac{q^{2}\left(1-q^{2}\right)}{\left(1+q^{2}-q^{3}\right)-\cdots}, \tag{4.5}\\
& \frac{\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{\left(q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{q^{n(n+3) / 2}}{\left(q^{2}\right)_{n}}}=(1+q)-\frac{q^{2}(1-q)}{1-} \frac{q^{3}\left(1-q^{2}\right)}{1-\cdots}, \tag{4.6}\\
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-3) / 2}}{\left(-q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1) / 2}}{\left(-q^{2}\right)_{n}}}=\frac{q-1}{q}+\frac{(1+q)}{q^{2}+\cdots} \tag{4.7}\\
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{\left(-q^{3}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+3) / 2}}{\left(-q^{3}\right)_{n}}}=(1-q)+\frac{q^{2}\left(1+q^{2}\right)}{\left(1-q^{2}+q^{3}\right)+\cdots}, \tag{4.8}\\
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1) / 2}}{(-q)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{(-q)_{n}}}=\frac{2 q}{1+} \frac{q^{2}(1+q)}{1+} \frac{q^{3}\left(1+q^{2}\right)}{1+\cdots}, \tag{4.9}\\
& \frac{\sum_{n=0}^{\infty} \frac{q^{n(n-1) / 2}}{(q)_{n}}}{\sum_{n=0}^{\infty} \frac{q^{n(n+1) / 2}}{(q)_{n}}}=\frac{2 q}{(1+2 q)-} \frac{q^{2}(1+q)}{\left(1+2 q^{2}\right)-\cdots}, \tag{4.10}\\
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{\left(-q^{2}\right)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+3) / 2}}{\left(-q^{2}\right)_{n}}}=\frac{2}{1+} \frac{(1+q)}{\left(1-q+q^{2}\right)+} \frac{q^{2}\left(1+q^{2}\right)}{\left(1-q^{2}+q^{3}\right)+\cdots}, \tag{4.11}\\
& \frac{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-3) / 2}}{(-q)_{n}}}{\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1) / 2}}{(-q)_{n}}}=\frac{q(1+q)}{1+} \frac{q^{3}\left(1+q^{2}\right)}{1+} \frac{q^{4}\left(1+q^{3}\right)}{1+} \cdots \tag{4.12}
\end{align*}
$$

Proof. Setting $a=1=b$ in (3.1) and using the definition (1.1) of $\rho(a, b)$ we obtain (4.1) after some simplifications. Similarly we obtain (4.2), (4.3) and (4.4) from (3.1) for $a=-1, b=1 ; a=-1, b=q$ and $a=q, b=1$ respectively.

Setting $a=-q, b=q$ in (3.3) and using the definition (1.1) of $\rho(a, b)$ we obtain (4.5) after some simplifications. Similarly we obtain (4.6), (4.7) and (4.8) from (3.3) for $a=-q, b=1 ; a=q, b=q^{2}$ and $a=q^{2}, b=q$ respectively.

Setting $a=1=b$ in (3.5) and using the definition (1.1) of $\rho(a, b)$ we obtain (4.9) after some simplifications. Similarly we obtain (4.10), (4.11) and (4.12) from (3.5) for $a=-1, b=1 ; a=q, b=1$ and $a=1, b=q$ respectively. \quad QED

Acknowledgements. The first author is thankful to University Grants Commission (UGC), India for the financial support under the grant SAP-DRS-

1-NO.F.510/2/DRS/2011. The second author is thankful to UGC for awarding the award of Rajiv Gandhi National Fellowship, No. F1-17.1/2011-12/RGNF-SC-KAR-2983/(SA-III/Website) and the third author is thankful to University Grants Commission, India, for the award of Teacher Fellowship under the grant No. KAMY074-TF01-13112010.

References

[1] C. Adiga, R. Y. Denis and K. R. Vasuki: On some continued fraction expansions for the ratios of ${ }_{2} \psi_{2}$, Special Functions: Selected Articles, P. K. Banerji (Ed.), Scientific Publishers (India), 2001, 1-16.
[2] C. Adiga and D. D. Somashekara: On some Rogers-Ramanujan type continued fraction identities, Mathematical Balcanika, New series, 12 (1998), 37-45.
[3] W. A. Al-Salam and M. E. H. Ismail: Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pacific J. Math., 104 (1983), 269-283.
[4] G. E. Andrews: Ramanujan's 'lost' notebook III. The Rogers-Ramanujan continued fraction, Adv. Math., 41 (1981), 186-208.
[5] N. A. Bhagirathi: On certain continued fractions and q-series, Math. Student, 56 (1988), 97-104.
[6] N. A. Bhagirathi: On basic bilateral hypergeometric series and continued fraction, Math. Student, 56 (1988), 135-141.
[7] N. A. Bhagirathi: On certain investigations in q-series and continued fraction, Math. Student, 56 (1988), 158-170.
[8] S. Bhargava and C. AdIGA: On some continued fraction identities of Srinivasa Ramanujan, Proc. Amer. Math. Soc., 92 (1984), 13-18.
[9] S. Bhargava and C. Adiga: Two generalizations of Ramanujan's continued fraction identities, Number Theory, K. Alladi (Ed.), Lecture Note in Math., No. 1122, SpringerVerlag, Berlin, (1985), 56-62.
[10] S. Bhargava, C. Adiga and D. D. Somashekara: On some generalizations of Ramanujan's continued fraction identities, Proc. Indian Acad. Sci., 97 (1987), 31-43.
[11] S. Bhargava, C. Adiga and D. D. Somashekara: On certain continued fraction related to ${ }_{3} \phi_{2}$ basic hypergeometric function, J. Math. Phys. Sci., 21 (1987), 613-629.
[12] L. Carlitz: Note on some continued fraction of the Rogers-Ramanujan type, Duke Math. J., 32 (1965), 713-720.
[13] R. Y. Denis: On certain q-series and continued fractions, Math. Student, 44 (1984), 70-76.
[14] R. Y. Denis: On basic hypergeometric functions and continued fractions, Math. Student, 52 (1984), 129-136.
[15] R. Y. Denis: On certain q-series and continued fraction identities, Math. Student, 53 (1985), 243-248.
[16] R. Y. DEnis and S. N. Singh: Generalized hypergeometric functions and continued fractions, Selected Topics in Special Functions, R. P. Agarwal, H. L. Manocha and K. Srinivasa Rao, (Eds.), 2001, 173-207.
[17] R. Y. Denis, S. N. Singh and N. A. Bhagirathi, On certain bilateral q-series and Ramanujan's continued fractions, Special Functions: Selected Articles, P. K. Banerji (Ed.), Scintific Publishers (India), 2001, 149-165.
[18] B. Gordon, Some continued fractions of Rogers-Ramanujan type, Duke Math. J., 32 (1965), 741-748.
[19] M. D. Hirschhorn, A continued fraction of Ramanujan, J. Austral. Math. Soc., Ser. A, 29 (1980), 80-86.
[20] D. Mamta and D. D. Somashekara, On some continued fraction expansions for the ratios ${ }_{2} \psi_{2}$, Far East J. Math. Sci., 23, n. 1, (2006), 65-80.
[21] K. G. Ramanathan, On Ramanujan's continued fraction, Acta Arith., 43 (1984), 209-226.
[22] K. G. Ramanathan, On the Roger's-Ramanujan continued fraction, Proc. Indian Acad. Sci., (Math. Sci.), 93 (1984), 67-77.
[23] S. Ramanujan, Notebooks (2 Volumes), Tata Institute of Fundamental Research, Bombay, 1957.
[24] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
[25] D. D. Somashekara and Syeda Noor Fathima, On continued fraction expansions for the ratios ${ }_{2} \psi_{2}$, Indian J. Math., 45, n. 3, (2003), 333-355.
[26] S. N. Singh, On q-hypergeometric functions and continued fractions, Math. Student, 56 (1988), 81-84.
[27] K. R. Vasuki, On some continued fractions related to ${ }_{2} \psi_{2}$ basic bilateral hypergeometric series, Mathematical Forum, 12 (1998), 31-43.
[28] K. R. Vasuki and H. S. Madhusudan, On certain continued fractions related to ${ }_{2} \psi_{2}$ basic bilateral hypergeometric functions, Indian J. Pure Appl. Math., 33, n. 10, (2002), 1563-1573.
[29] A. Verma, R. Y. Denis and K. Srinivasa Rao, New continued fractions involving basic hypergeometric ${ }_{3} \phi_{2}$ functions, J. Math. Phys. Sci., 21 (1987), 585-592.

[^0]: http://siba-ese.unisalento.it/ © 2013 Università del Salento

