Control affine systems on solvable three-dimensional Lie groups, II

Rory Biggs
Department of Mathematics (Pure and Applied), Rhodes University, 6140 Grahamstown, South Africa
rorybiggs@gmail.com
Claudiu C. Remsing
Department of Mathematics (Pure and Applied), Rhodes University, 6140 Grahamstown, South Africa
c.c.remsing@ru.ac.za

Received: 24.9.2012; accepted: 25.2.2013.

Abstract

We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types $I I I, V I$, and $V I I$ in the Bianchi-Behr classification.

Keywords: Left-invariant control system, (detached) feedback equivalence, affine subspace, solvable Lie algebra

MSC 2010 classification: primary 93A10, secondary 93B27, 17B30

1 Introduction

Left-invariant control affine systems constitute an important class of systems, extensively used in many control applications. In this paper we classify, under local detached feedback equivalence, the full-rank left-invariant control affine systems evolving on certain solvable three-dimensional Lie groups. Specifically, we consider only those Lie groups with Lie algebras of types $V I_{h}$ (including $I I I), V I_{0}, V I I_{h}$, and $V I I_{0}$ in the Bianchi-Behr classification.

We reduce the problem of classifying such systems to that of classifying affine subspaces of the associated Lie algebras. Thus, for each of the four types of Lie algebra, we need to classify their affine subspaces. A tabulation of the results is included as an appendix.

[^0]
2 Invariant control systems and equivalence

A left-invariant control affine system Σ is a control system of the form

$$
\dot{g}=g \Xi(\mathbf{1}, u)=g\left(A+u_{1} B_{1}+\cdots+u_{\ell} B_{\ell}\right), \quad g \in \mathrm{G}, u \in \mathbb{R}^{\ell}
$$

Here G is a (real, finite-dimensional) Lie group with Lie algebra \mathfrak{g}. Also, the parametrization map $\Xi(\mathbf{1}, \cdot): \mathbb{R}^{\ell} \rightarrow \mathfrak{g}$ is an injective affine map (i.e., B_{1}, \ldots, B_{ℓ} are linearly independent). The "product" $g \Xi(\mathbf{1}, u)$ is to be understood as $T_{\mathbf{1}} L_{g}$. $\Xi(\mathbf{1}, u)$, where $L_{g}: \mathrm{G} \rightarrow \mathrm{G}, h \mapsto g h$ is the left translation by g. Note that the dynamics $\Xi: G \times \mathbb{R}^{\ell} \rightarrow T \mathrm{G}$ are invariant under left translations, i.e., $\Xi(g, u)=g \Xi(\mathbf{1}, u)$. We shall denote such a system by $\Sigma=(\mathrm{G}, \Xi)$ (cf. [3]).

The admissible controls are piecewise continuous maps $u(\cdot):[0, T] \rightarrow \mathbb{R}^{\ell}$. A trajectory for an admissible control $u(\cdot)$ is an absolutely continuous curve $g(\cdot):[0, T] \rightarrow G$ such that $\dot{g}(t)=g(t) \Xi(\mathbf{1}, u(t))$ for almost every $t \in[0, T]$. We say that a system Σ is controllable if for any $g_{0}, g_{1} \in \mathrm{G}$, there exists a trajectory $g(\cdot):[0, T] \rightarrow G$ such that $g(0)=g_{0}$ and $g(T)=g_{1}$. For more details about (invariant) control systems see, e.g., [2], [12], [13], [18], [17].

The image set $\Gamma=\operatorname{im} \Xi(\mathbf{1}, \cdot)$, called the trace of Σ, is an affine subspace of g. Specifically,

$$
\Gamma=A+\Gamma^{0}=A+\left\langle B_{1}, \ldots, B_{\ell}\right\rangle
$$

A system Σ is called homogeneous if $A \in \Gamma^{0}$, and inhomogeneous otherwise. Furthermore, Σ is said to have full rank if its trace generates the whole Lie algebra (i.e., the smallest Lie algebra containing Γ is \mathfrak{g}). Henceforth, we assume that all systems under consideration have full rank. (The full-rank condition is necessary for a system Σ to be controllable.)

An important equivalence relation for invariant control systems is that of detached feedback equivalence. Two systems are detached feedback equivalent if there exists a "detached" feedback transformation which transforms the first system to the second (see [4], [11]). Two detached feedback equivalent control systems have the same set of trajectories (up to a diffeomorphism in the state space) which are parametrized differently by admissible controls. More precisely, let $\Sigma=(\mathrm{G}, \Xi)$ and $\Sigma^{\prime}=\left(\mathrm{G}^{\prime}, \Xi^{\prime}\right)$ be left-invariant control affine systems. Σ and Σ^{\prime} are called locally detached feedback equivalent (shortly $D F_{l o c}$-equivalent) at points $a \in \mathrm{G}$ and $a^{\prime} \in \mathrm{G}^{\prime}$ if there exist open neighbourhoods N and N^{\prime} of a and a^{\prime}, respectively, and a diffeomorphism $\Phi: N \times \mathbb{R}^{\ell} \rightarrow N^{\prime} \times \mathbb{R}^{\ell^{\prime}},(g, u) \mapsto$ $(\phi(g), \varphi(u))$ such that $\phi(a)=a^{\prime}$ and $T_{g} \phi \cdot \Xi(g, u)=\Xi^{\prime}(\phi(g), \varphi(u))$ for $g \in N$
and $u \in \mathbb{R}^{\ell}$ (i.e., the diagram

commutes).
Any $D F_{\text {loc }}$-equivalence between two control systems can be reduced to an equivalence between neighbourhoods of the identity. More precisely, Σ and Σ^{\prime} are $D F_{l o c}$-equivalent at $a \in \mathrm{G}$ and $a^{\prime} \in \mathrm{G}^{\prime}$ if and only if they are $D F_{l o c}{ }^{-}$ equivalent at $\mathbf{1} \in \mathrm{G}$ and $\mathbf{1} \in \mathrm{G}^{\prime}([4])$. Henceforth, we will assume that any $D F_{\text {loc }}$-equivalence is between neighbourhoods of identity. We recall an algebraic characterization of this equivalence.

Proposition 1 ([4]). Σ and Σ^{\prime} are $D F_{\text {loc }}$-equivalent if and only if there exists a Lie algebra isomorphism $\psi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ such that $\psi \cdot \Gamma=\Gamma^{\prime}$.

For the purpose of classification, we may assume that Σ and Σ^{\prime} have the same Lie algebra \mathfrak{g}. We will say that two affine subspaces Γ and Γ^{\prime} are \mathfrak{L} equivalent if there exists a Lie algebra automorphism $\psi: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\psi \cdot \Gamma=\Gamma^{\prime}$. Then Σ and Σ^{\prime} are $D F_{l o c}$-equivalent if and only if there traces Γ and Γ^{\prime} are \mathfrak{L}-equivalent. This reduces the problem of classifying under $D F_{\text {loc }}{ }^{-}$ equivalence to that of classifying under \mathfrak{L}-equivalence. Suppose $\left\{\Gamma_{i}: i \in I\right\}$ is an exhaustive collection of (non-equivalent) class representatives (i.e., any affine subspace is \mathfrak{L}-equivalent to exactly one Γ_{i}). For each $i \in I$, we can easily find a system $\Sigma_{i}=\left(\mathrm{G}, \Xi_{i}\right)$ with trace Γ_{i}. Then any system Σ is $D F_{\text {loc }}$-equivalent to exactly one Σ_{i}.

3 Affine subspaces of three-dimensional Lie algebras

The classification of three-dimensional Lie algebras is well known. The classification over \mathbb{C} was done by S. Lie (1893), whereas the standard enumeration of the real cases is that of L. Bianchi (1918). In more recent times, a different (method of) classification was introduced by C. Behr (1968) and others (see [15], [14], [16] and the references therein); this is customarily referred to as the Bianchi-Behr classification (or even the "Bianchi-Schücking-Behr classification"). Any solvable three-dimensional Lie algebra is isomorphic to one of nine types (in fact, there are seven algebras and two parametrized infinite families of algebras). In terms of an (appropriate) ordered basis (E_{1}, E_{2}, E_{3}), the
commutator operation is given by

$$
\begin{aligned}
& {\left[E_{2}, E_{3}\right]=n_{1} E_{1}-a E_{2}} \\
& {\left[E_{3}, E_{1}\right]=a E_{1}+n_{2} E_{2}} \\
& {\left[E_{1}, E_{2}\right]=0 .}
\end{aligned}
$$

The (Bianchi-Behr) structure parameters a, n_{1}, n_{2} for each type are given in table 1. For the two infinite families, $V I_{h}$ and $V I I_{h}$, each value of the parameter

Type	Notation	a	n_{1}	n_{2}	Representatives
I	$3 \mathfrak{g}_{1}$	0	0	0	\mathbb{R}^{3}
$I I$	$\mathfrak{g}_{3.1}$	0	1	0	\mathfrak{h}_{3}
$I I I=V I_{-1}$	$\mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1}$	1	1	-1	$\mathfrak{a f f}(\mathbb{R}) \oplus \mathbb{R}$
$I V$	$\mathfrak{g}_{3.2}$	1	1	0	
V	$\mathfrak{g}_{3.3}$	1	0	0	
$V I_{0}$	$\mathfrak{g}_{3.4}^{3}$	0	1	-1	$\mathfrak{s e}(1,1)$
$V I_{h}, h<0$					
$h \neq-1$	$\mathfrak{g}_{3.4}^{h}$	$\sqrt{-h}$	1	-1	
$V I I_{0}$	$\mathfrak{g}_{3.5}^{0}$	0	1	1	$\mathfrak{s e}(2)$
$V I I_{h}, h>0$	$\mathfrak{g}_{3.5}^{h}$	\sqrt{h}	1	1	

Table 1. Bianchi-Behr classification (solvable)
h yields a distinct (i.e., non-isomorphic) Lie algebra.
In this paper we will only consider types $I I I, V I_{0}, V I_{h}, V I I_{0}$, and $V I I_{h}$. The other solvable Lie algebras (i.e., those of types $I I, I V$, and V) are treated in [7]. (For the Abelian Lie algebra $3 \mathfrak{g}_{1}$ the classification is trivial.) Furthermore, type $I I I=V I_{-1}$ will be considered as part of $V I_{h}$.

An affine subspace Γ of a Lie algebra \mathfrak{g} is written as

$$
\Gamma=A+\Gamma^{0}=A+\left\langle B_{1}, B_{2}, \ldots, B_{\ell}\right\rangle
$$

where $A, B_{1}, \ldots, B_{\ell} \in \mathfrak{g}$. Let Γ_{1} and Γ_{2} be two affine subspaces of \mathfrak{g}. Γ_{1} and Γ_{2} are \mathfrak{L}-equivalent if there exists a Lie algebra automorphism $\psi \in \operatorname{Aut}(\mathfrak{g})$ such that $\psi \cdot \Gamma_{1}=\Gamma_{2}$. \mathfrak{L}-equivalence is a genuine equivalence relation. (Note that $\Gamma_{1}=A_{1}+\Gamma_{1}^{0}$ and $\Gamma_{2}=A_{2}+\Gamma_{2}^{0}$ are \mathfrak{L}-equivalent if and only if there exists an automorphism ψ such that $\psi \cdot \Gamma_{1}^{0}=\Gamma_{2}^{0}$ and $\psi \cdot A_{1} \in \Gamma_{2}$.) An affine subspace Γ is said to have full rank if it generates the whole Lie algebra. The full-rank property is invariant under \mathfrak{L}-equivalence. Henceforth, we assume that all affine subspaces under consideration have full rank.

In this paper we classify, under \mathfrak{L}-equivalence, the (full-rank) affine subspaces of $\mathfrak{g}_{3.4}^{h}$ (including $\mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1}$), $\mathfrak{g}_{3.4}^{0}, \mathfrak{g}_{3.5}^{h}$, and $\mathfrak{g}_{3.5}^{0}$. Clearly, if Γ_{1} and Γ_{2} are \mathfrak{L}-equivalent, then they are necessarily of the same dimension. Furthermore, $0 \in \Gamma_{1}$ if and only if $0 \in \Gamma_{2}$. We shall find it convenient to refer to an ℓ-dimensional affine subspace Γ as an $(\ell, 0)$-affine subspace when $0 \in \Gamma$ (i.e., Γ is a vector subspace) and as an ($\ell, 1$)-affine subspace, otherwise. Alternatively, Γ is said to be homogeneous if $0 \in \Gamma$, and inhomogeneous otherwise.

Remark 1. No (1,0)-affine subspace has full rank. A (1,1)-affine subspace has full rank if and only if A, B_{1}, and $\left[A, B_{1}\right]$ are linearly independent. A $(2,0)$ affine subspace has full rank if and only if B_{1}, B_{2}, and $\left[B_{1}, B_{2}\right]$ are linearly independent. Any $(2,1)$-affine subspace or $(3,0)$-affine subspace has full rank.
Clearly, there is only one affine subspace whose dimension coincides with that of the Lie algebra \mathfrak{g}, namely the space itself. From the standpoint of classification this case is trivial and hence will not be covered explicitly.

Let us fix a three-dimensional Lie algebra \mathfrak{g} (together with an ordered basis). In order to classify the affine subspaces of \mathfrak{g}, we require the (group of) automorphisms of \mathfrak{g}. These are well known (see, e.g., [9], [10], [16]); a summary is given in table 3. For each type of Lie algebra, we construct class representatives (by considering the action of automorphisms on a typical affine subspace). By using some classifying conditions, we explicitly construct \mathfrak{L}-equivalence relations relating an arbitrary affine subspace to a fixed representative. Finally, we verify that none of the representatives are equivalent.

The following simple result is useful.
Proposition 2. Let Γ be a (2,0)-affine subspace of a Lie algebra \mathfrak{g}. Suppose $\left\{\Gamma_{i}: i \in I\right\}$ is an exhaustive collection of \mathfrak{L}-equivalence class representatives for (1,1)-affine subspaces of \mathfrak{g}. Then Γ is \mathfrak{L}-equivalent to at least one element of $\left\{\left\langle\Gamma_{i}\right\rangle: i \in I\right\}$.

Proof. We have $\Gamma=\langle A, B\rangle$ for some $A, B \in \mathfrak{g}$. Thus $\Gamma^{\prime}=A+\langle B\rangle$ is a $(1,1)-$ affine subspace and so there exists an automorphism ψ such that $\psi \cdot \Gamma^{\prime}=\Gamma_{i}$ for some $i \in I$. Hence $\psi \cdot \Gamma=\left\langle\Gamma_{i}\right\rangle$.

4 Type VI

The family $\mathfrak{g}_{3.4}^{h}$ of Lie algebras (including cases $h=0$ and $h=-1$) has commutator relations

$$
\left[E_{2}, E_{3}\right]=E_{1}-a E_{2}, \quad\left[E_{3}, E_{1}\right]=a E_{1}-E_{2}, \quad\left[E_{1}, E_{2}\right]=0
$$

in terms of an (appropriate) ordered basis (E_{1}, E_{2}, E_{3}). Here a is a non-negative parameter $(a=\sqrt{-h})$. However, we shall choose a different basis with respect
to which the automorphisms take a simpler form (see table 3). Specifically, we will consider the basis

$$
F_{1}=E_{3} \quad F_{2}=E_{1}+E_{2} \quad F_{3}=-E_{1}+E_{2}
$$

which has commutator relations

$$
\left[F_{2}, F_{3}\right]=0, \quad\left[F_{3}, F_{1}\right]=-(a+1) F_{3}, \quad\left[F_{1}, F_{2}\right]=(a-1) F_{2}
$$

4.1 Type $V I_{h}$

Consider the Lie algebra $\mathfrak{g}_{3.4}^{h}$ with $h<0$. Recall that type $I I I$ is included in this discussion. With respect to the ordered basis $\left(F_{1}, F_{2}, F_{3}\right)$, the group of automorphisms takes the form

$$
\operatorname{Aut}\left(\mathfrak{g}_{3.4}^{h}\right)=\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
x & u & 0 \\
y & 0 & v
\end{array}\right]: x, y, u, v \in \mathbb{R}, u v \neq 0\right\}
$$

We start the classification with the inhomogeneous one-dimensional case.
Proposition 3. Any (1,1)-affine subspace of $\mathfrak{g}_{3.4}^{h}$ is \mathfrak{L}-equivalent to exactly one of the following subspaces

$$
\Gamma_{1}=F_{2}+F_{3}+\left\langle F_{1}\right\rangle \quad \Gamma_{2, \alpha}=\alpha F_{1}+\left\langle F_{2}+F_{3}\right\rangle
$$

Here $\alpha \neq 0$ parametrizes a family of class representatives, each different value corresponding to a distinct non-equivalent representative.

Proof. Let $\Gamma=A+\Gamma^{0}$ be a (1,1)-affine subspace of $\mathfrak{g}_{3.4}^{h}$. First assume that $F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$. (Here F_{1}^{*} denotes the corresponding element of the dual basis.) Then $\Gamma=\sum_{i=1}^{3} a_{i} F_{i}+\left\langle\sum_{i=1}^{3} b_{i} F_{i}\right\rangle$ with $b_{1} \neq 0$. Hence $\Gamma=a_{2}^{\prime} F_{2}+a_{3}^{\prime} F_{3}+$ $\left\langle F_{1}+b_{2}^{\prime} F_{2}+b_{3}^{\prime} F_{3}\right\rangle$. The condition that Γ has full rank is then equivalent to $a_{2}^{\prime} a_{3}^{\prime} \neq 0$. Thus

$$
\psi=\left[\begin{array}{ccc}
1 & 0 & 0 \\
b_{2}^{\prime} & a_{2}^{\prime} & 0 \\
b_{3}^{\prime} & 0 & a_{3}^{\prime}
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{1}=\Gamma$.
Next assume $F_{1}^{*}\left(\Gamma^{0}\right)=\{0\}$ and $F_{1}^{*}(A)=\alpha \neq 0$. Then $\Gamma=\alpha F_{1}+a_{2} F_{2}+$ $a_{3} F_{3}+\left\langle b_{2} F_{2}+b_{3} F_{3}\right\rangle$. A simple calculation shows that $b_{2} b_{3} \neq 0$ and so

$$
\psi=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{a_{2}}{\alpha} & b_{2} & 0 \\
\frac{a_{3}}{\alpha} & 0 & b_{3}
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{2, \alpha}=\Gamma$.
Lastly, we verify that none of these representatives are equivalent. $\Gamma_{2, \alpha}$ cannot be equivalent to Γ_{1} as F_{2} and F_{3} are eigenvectors of every automorphism, $\Gamma_{2, \alpha}^{0}=\left\langle F_{2}+F_{3}\right\rangle$, and $\Gamma_{1}^{0}=\left\langle F_{1}\right\rangle$. On the other hand, as $F_{1}^{*}\left(\psi \cdot \alpha F_{1}\right)=\alpha$ for any automorphism ψ, it follows that $\Gamma_{2, \alpha}$ and $\Gamma_{2, \alpha^{\prime}}$ are \mathfrak{L}-equivalent only if $\alpha=\alpha^{\prime}$.

We obtain the result for the homogeneous two-dimensional case by use of propositions 2 and 3.

Proposition 4. Any (2,0)-affine subspace of $\mathfrak{g}_{3.4}^{h}$ is \mathfrak{L}-equivalent to $\left\langle F_{1}, F_{2}+F_{3}\right\rangle$.

We now move on to the inhomogeneous two-dimensional case.
Proposition 5. Any (2,1)-affine subspace of $\mathfrak{g}_{3.4}^{h}$ is \mathfrak{L}-equivalent to exactly one of the following subspaces

$$
\begin{aligned}
& \Gamma_{1}=F_{3}+\left\langle F_{1}, F_{2}\right\rangle \quad \Gamma_{2}=F_{2}+\left\langle F_{3}, F_{1}\right\rangle \\
& \Gamma_{3}=F_{2}+\left\langle F_{1}, F_{2}+F_{3}\right\rangle \\
& \Gamma_{4, \alpha}=\alpha F_{1}+\left\langle F_{2}, F_{3}\right\rangle .
\end{aligned}
$$

Here $\alpha \neq 0$ parametrizes a family of class representatives, each different value corresponding to a distinct non-equivalent representative.

Proof. Let $\Gamma=A+\Gamma^{0}$ be a $(2,1)$-affine subspace of $\mathfrak{g}_{3.4}^{h}$. If $F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$, then not both F_{2} and F_{3} can be in Γ^{0}.

Assume that $F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$ and $F_{2} \in \Gamma^{0}$. Then $\Gamma=a_{1} F_{1}+a_{3} F_{3}+$ $\left\langle b_{1} F_{1}+b_{3} F_{3}, F_{2}\right\rangle$ with $b_{1} \neq 0$. Hence $\Gamma=\left(a_{3}-\frac{a_{1} b_{3}}{b_{1}}\right) F_{3}+\left\langle F_{1}+\frac{b_{3}}{b_{1}} F_{3}, F_{2}\right\rangle$. Thus $\left(a_{3}-\frac{a_{1} b_{3}}{b_{1}}\right) \neq 0$ and

$$
\psi=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{b_{3}}{b_{1}} & 0 & a_{3}-\frac{a_{1} b_{3}}{b_{1}}
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{1}=\psi \cdot\left(F_{3}+\left\langle F_{1}, F_{2}\right\rangle\right)=\Gamma$.
Next assume that $F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$ and $F_{3} \in \Gamma^{0}$. By a similar argument, we get $\Gamma=a_{2} F_{2}+\left\langle F_{3}, F_{1}+b_{2} F_{2}\right\rangle$. Then

$$
\psi=\left[\begin{array}{ccc}
1 & 0 & 0 \\
b_{2} & a_{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{2}=\psi \cdot\left(F_{2}+\left\langle F_{3}, F_{1}\right\rangle\right)=\Gamma$.

Now, assume that $F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}, F_{2} \notin \Gamma^{0}$, and $F_{3} \notin \Gamma^{0}$. Then $\Gamma=$ $\sum_{i=1}^{3} a_{i} F_{i}+\left\langle\sum_{i=1}^{3} b_{i} F_{i}, \sum_{i=1}^{3} c_{i} F_{i}\right\rangle$ with $b_{1} \neq 0$. Hence $\Gamma=a_{2}^{\prime} F_{2}+a_{3}^{\prime} F_{3}+$ $\left\langle F_{1}+b_{2}^{\prime} F_{2}+b_{3}^{\prime} F_{3}, c_{2}^{\prime} F_{2}+c_{3}^{\prime} F_{3}\right\rangle$ with $c_{2}^{\prime} \neq 0$ and $c_{3}^{\prime} \neq 0$. Therefore $\Gamma=$ $a_{2}^{\prime \prime} F_{2}+\left\langle F_{1}+b_{2}^{\prime} F_{2}+b_{3}^{\prime} F_{3}, F_{2}+\frac{c_{3}^{\prime}}{c_{2}^{\prime}} F_{3}\right\rangle$ with $a_{2}^{\prime \prime} \neq 0$. Thus

$$
\psi=\left[\begin{array}{ccc}
1 & 0 & 0 \\
b_{2}^{\prime} & a_{2}^{\prime \prime} & 0 \\
b_{3}^{\prime} & 0 & \frac{a_{2}^{\prime \prime} c_{3}^{\prime}}{c_{2}^{\prime}}
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{3}=\psi \cdot\left(F_{2}+\left\langle F_{1}, F_{2}+F_{3}\right\rangle\right)=\Gamma$.
Lastly, assume that $F_{1}^{*}\left(\Gamma^{0}\right)=\{0\}$ and $F_{1}^{*}(A)=\alpha \neq 0$. Then $\Gamma_{0}=\left\langle F_{2}, F_{3}\right\rangle$ and so $\Gamma=\alpha F_{1}+\left\langle F_{2}, F_{3}\right\rangle=\Gamma_{4, \alpha}$.

We verify that none of these representatives are equivalent. F_{2} and F_{3} are eigenvectors of every automorphism. Hence, none of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4, \alpha}$ can be equivalent to any of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, other than matching a representative with itself. On the other hand, as $F_{1}^{*}\left(\psi \cdot \alpha F_{1}\right)=\alpha$ for any automorphism ψ, it follows that $\Gamma_{4, \alpha}$ and $\Gamma_{4, \alpha^{\prime}}$ are \mathfrak{L}-equivalent only if $\alpha=\alpha^{\prime}$.

4.2 Type $V I_{0}$

Consider the Lie algebra $\mathfrak{g}_{3.4}^{0}$. With respect to the ordered basis $\left(F_{1}, F_{2}, F_{2}\right)$, the group of automorphisms takes the form

$$
\operatorname{Aut}\left(\mathfrak{g}_{3.4}^{0}\right)=\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
x & u & 0 \\
y & 0 & v
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
x & 0 & u \\
y & v & 0
\end{array}\right]: x, y, u, v \in \mathbb{R}, u v \neq 0\right\} .
$$

We start with the inhomogeneous one-dimensional case. The proof of the following result is very similar to that of proposition 3 and will be omitted. However, the automorphism

$$
\psi=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

now allows us to change the sign of α (and thus α can always be taken to be positive).

Proposition 6. Any (1,1)-affine subspace of $\mathfrak{g}_{3.4}^{0}$ is \mathfrak{L}-equivalent to exactly one of the following subspaces

$$
\Gamma_{1}=F_{2}+F_{3}+\left\langle F_{1}\right\rangle \quad \Gamma_{2, \alpha}=\alpha F_{1}+\left\langle F_{2}+F_{3}\right\rangle
$$

Here $\alpha>0$ parametrizes a family of class representatives, each different value corresponding to a distinct non-equivalent representative.

The result for the homogeneous two-dimensional case follows from propositions 2 and 6.

Proposition 7. Any (2,0)-affine subspace of $\mathfrak{g}_{3.4}^{0}$ is \mathfrak{L}-equivalent to $\left\langle F_{1}, F_{2}+F_{3}\right\rangle$.

Lastly, we consider the inhomogeneous two-dimensional case. Again, the proof of the following result is very similar to that of proposition 5 and will be omitted. However, the two affine subspaces $F_{3}+\left\langle F_{1}, F_{2}\right\rangle$ and $F_{2}+\left\langle F_{1}, F_{3}\right\rangle$ are now \mathfrak{L}-equivalent, the required automorphism relating the two being

$$
\psi=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

Also, the parameter α can be made positive.
Proposition 8. Any (2,1)-affine subspace of $\mathfrak{g}_{3.4}^{0}$ is \mathfrak{L}-equivalent to exactly one of the following subspaces

$$
\begin{gathered}
\Gamma_{1}=F_{3}+\left\langle F_{1}, F_{2}\right\rangle \\
\Gamma_{3, \alpha}=\alpha F_{1}+\left\langle F_{2}, F_{3}\right\rangle .
\end{gathered}
$$

Here $\alpha>0$ parametrizes a family of class representatives, each different value corresponding to a distinct non-equivalent representative.

4.3 Summary

We express the results for type $V I$ in terms of the ordered basis $\left(E_{1}, E_{2}, E_{3}\right)$. In some cases, additional automorphisms are used to simplify expressions.

Theorem 1. Any affine subspace of $\mathfrak{g}_{3.4}^{0}$ (type $V I_{0}$) is \mathfrak{L}-equivalent to exactly one of $E_{2}+\left\langle E_{3}\right\rangle, \alpha E_{3}+\left\langle E_{2}\right\rangle,\left\langle E_{2}, E_{3}\right\rangle, E_{1}+\left\langle E_{2}, E_{3}\right\rangle, E_{1}+\left\langle E_{1}+E_{2}, E_{3}\right\rangle$, and $\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle$, where $\alpha>0$. Any affine subspace of $\mathfrak{g}_{3.4}^{h}$ (type $V I_{h}$, including $\left.\mathfrak{g}_{2.1} \oplus \mathfrak{g}_{1}=\mathfrak{g}_{3.4}^{-1}\right)$ is \mathfrak{L}-equivalent to exactly one of the above formal list for $\mathfrak{g}_{3.4}^{0}$ or $E_{1}+\left\langle E_{1}-E_{2}, E_{3}\right\rangle$, but with $\alpha \neq 0$. In both cases α parametrizes families of class representatives, each different value corresponding to a distinct non-equivalent representative.

5 Type VII

The family of Lie algebras $\mathfrak{g}_{3.5}^{h}$ (including cases $h=0$ and $h=-1$), has commutator relations

$$
\left[E_{2}, E_{3}\right]=E_{1}-a E_{2}, \quad\left[E_{3}, E_{1}\right]=a E_{1}+E_{2}, \quad\left[E_{1}, E_{2}\right]=0
$$

in terms of an (appropriate) ordered basis $\left(E_{1}, E_{2}, E_{3}\right)$. Here a is a non-negative parameter $(a=\sqrt{h})$.

5.1 Type $V I I_{h}$

Consider the Lie algebra $\mathfrak{g}_{3.5}^{h}$ with $h>0$. With respect to the basis (E_{1}, E_{2}, E_{3}), the group of automorphisms takes the form

$$
\operatorname{Aut}\left(\mathfrak{g}_{3.5}^{h}\right)=\left\{\left[\begin{array}{ccc}
x & y & u \\
-y & x & v \\
0 & 0 & 1
\end{array}\right]: x, y, u, v \in \mathbb{R}, x^{2}+y^{2} \neq 0\right\} .
$$

We start with the inhomogeneous one-dimensional case.
Proposition 9. Any (1,1)-affine subspace of $\mathfrak{g}_{3.5}^{h}$ is \mathfrak{L}-equivalent to exactly one of the following subspaces

$$
\Gamma_{1}=E_{2}+\left\langle E_{3}\right\rangle \quad \Gamma_{2, \alpha}=\alpha E_{3}+\left\langle E_{2}\right\rangle
$$

Here $\alpha \neq 0$ parametrizes a family of class representatives, each different value corresponding to a distinct non-equivalent representative.
Proof. Let $\Gamma=A+\Gamma^{0}$ be a (1,1)-affine subspace of $\mathfrak{g}_{3.5}^{h}$. First, assume that $E_{3}^{*}\left(\Gamma^{0}\right) \neq\{0\}$. (Here E_{3}^{*} denotes the corresponding element of the dual basis.) Then $\Gamma=\sum_{i=1}^{3} a_{i} E_{i}+\left\langle\sum_{i=1}^{3} b_{i} E_{i}\right\rangle$ with $b_{3} \neq 0$. Hence $\Gamma=a_{1}^{\prime} E_{1}+a_{2}^{\prime} E_{2}+$ $\left\langle b_{1}^{\prime} E_{1}+b_{2}^{\prime} E_{2}+E_{3}\right\rangle$. Thus

$$
\psi=\left[\begin{array}{ccc}
a_{2}^{\prime} & a_{1}^{\prime} & b_{1}^{\prime} \\
-a_{1}^{\prime} & a_{2}^{\prime} & b_{2}^{\prime} \\
0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{1}=\psi \cdot\left(E_{2}+\left\langle E_{3}\right\rangle\right)=\Gamma$.
Now assume $E_{3}^{*}\left(\Gamma^{0}\right)=\{0\}$ and $E_{3}^{*}(A)=\alpha \neq 0$. Then $\Gamma=a_{1} E_{1}+a_{2} E_{2}+$ $\alpha E_{3}+\left\langle b_{1} E_{1}+b_{2} E_{2}\right\rangle$. Thus

$$
\psi=\left[\begin{array}{ccc}
b_{2} & b_{1} & \frac{a_{1}}{\alpha} \\
-b_{1} & b_{2} & \frac{a_{2}}{\alpha} \\
0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{2, \alpha}=\psi \cdot\left(\alpha E_{3}+\left\langle E_{2}\right\rangle\right)=\Gamma$.
We verify that none of the class representatives are equivalent. As $\left\langle E_{1}, E_{2}\right\rangle$ is invariant under automorphisms, $\Gamma_{2, \alpha}^{0}=\left\langle E_{2}\right\rangle$, and $\Gamma_{1}^{0}=\left\langle E_{3}\right\rangle$, it follows that $\Gamma_{2, \alpha}$ cannot be \mathfrak{L}-equivalent to Γ_{2}. On the other hand, as $E_{3}^{*}\left(\psi \cdot \alpha E_{3}\right)=\alpha$ for any automorphism ψ, it follows that $\Gamma_{2, \alpha}$ and $\Gamma_{2, \alpha^{\prime}}$ are \mathfrak{L}-equivalent only if $\alpha=\alpha^{\prime}$.

The result for the homogeneous two-dimensional case follows by propositions 2 and 9.

Proposition 10. Any (2,0)-affine subspace of $\mathfrak{g}_{3.5}^{h}$ is \mathfrak{L}-equivalent to $\left\langle E_{2}, E_{3}\right\rangle$.

Lastly, we consider the inhomogeneous two-dimensional case.
Proposition 11. Any (2,1)-affine subspace of $\mathfrak{g}_{3.5}^{h}$ is \mathfrak{L}-equivalent to exactly one of the following subspaces

$$
\Gamma_{1}=E_{1}+\left\langle E_{2}, E_{3}\right\rangle \quad \Gamma_{2, \alpha}=\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle .
$$

Here $\alpha \neq 0$ parametrizes a family of class representatives, each different value corresponding to a distinct non-equivalent representative.

Proof. Let $\Gamma=A+\Gamma^{0}$ be a (2,1)-affine subspace. First, assume $E_{3}^{*}\left(\Gamma^{0}\right) \neq\{0\}$. Then $\Gamma=\sum_{i=1}^{3} a_{i} E_{i}+\left\langle\sum_{i=1}^{3} b_{i} E_{i}, \sum_{i=1}^{3} c_{i} E_{i}\right\rangle$ with $c_{3} \neq 0$. Hence $\Gamma=a_{1}^{\prime} E_{1}+$ $a_{2}^{\prime} E_{2}+\left\langle b_{1}^{\prime} E_{1}+b_{2}^{\prime} E_{2}, c_{1}^{\prime} E_{1}+c_{2}^{\prime} E_{2}+E_{3}\right\rangle$. Now either $b_{1}^{\prime} \neq 0$ or $b_{2}^{\prime} \neq 0$, and so

$$
\left[\begin{array}{cc}
b_{2}^{\prime} & -b_{1}^{\prime} \\
b_{1}^{\prime} & b_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{2}^{\prime} \\
a_{1}^{\prime}
\end{array}\right]
$$

has a unique solution. By a simple argument, it follows that $v_{2} \neq 0$ (as Γ is inhomogeneous). Therefore

$$
\psi=\left[\begin{array}{ccc}
v_{2} b_{2}^{\prime} & v_{2} b_{1}^{\prime} & c_{1}^{\prime} \\
-v_{2} b_{1}^{\prime} & v_{2} b_{2}^{\prime} & c_{2}^{\prime} \\
0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{1}=\psi \cdot\left(E_{1}+\left\langle E_{2}, E_{3}\right\rangle\right)=\Gamma$. Indeed, $\psi \cdot \Gamma_{1}^{0}=\Gamma^{0}$ and

$$
\begin{aligned}
\psi \cdot E_{1} & =v_{2} b_{2}^{\prime} E_{1}-v_{2} b_{1}^{\prime} E_{2} \\
& =\left(a_{1}^{\prime}-v_{1} b_{1}^{\prime}\right) E_{1}+\left(a_{2}^{\prime}-v_{1} b_{2}^{\prime}\right) E_{2} \\
& =a_{1}^{\prime} E_{1}+a_{2}^{\prime} E_{2}-v_{1}\left(b_{1}^{\prime} E_{1}+b_{2}^{\prime} E_{2}\right) \in \Gamma .
\end{aligned}
$$

Now assume $E_{3}^{*}\left(\Gamma^{0}\right)=\{0\}$ and $E_{3}^{*}(A)=\alpha \neq 0$. Then $\Gamma^{0}=\left\langle E_{1}, E_{2}\right\rangle$ and so $\Gamma=\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle=\Gamma_{2, \alpha}$.

Finally, we verify that none of the class representatives are equivalent. As $\left\langle E_{1}, E_{2}\right\rangle$ is invariant under automorphisms, it follows that $\Gamma_{2, \alpha}$ cannot be equivalent to Γ_{1}. Then again, as $E_{3}^{*}\left(\psi \cdot \alpha E_{3}\right)=\alpha$ for any automorphism ψ, it follows that $\Gamma_{2, \alpha}$ is \mathfrak{L}-equivalent to $\Gamma_{2, \alpha^{\prime}}$ only if $\alpha=\alpha^{\prime}$.

5.2 Type $V I I_{0}$

Consider the Lie algebra $\mathfrak{g}_{3.5}^{0}$. With respect to the ordered basis $\left(E_{1}, E_{2}, E_{3}\right)$, the group of automorphisms takes the form

$$
\operatorname{Aut}\left(\mathfrak{g}_{3.5}^{0}\right)=\left\{\left[\begin{array}{ccc}
x & y & u \\
-\varsigma y & \varsigma x & v \\
0 & 0 & \varsigma
\end{array}\right]: x, y, u, v \in \mathbb{R}, x^{2}+y^{2} \neq 0, \varsigma= \pm 1\right\}
$$

The proof of the following result is very similar to that of propositions 9 and 11, and will be omitted. (Again, the homogeneous two-dimensional case follows by proposition 2.) However, the automorphism $\psi=\operatorname{diag}(1,-1,-1)$ now allows us to change the sign of α (and thus α can always be taken to be positive).

Proposition 12. Any affine subspace of $\mathfrak{g}_{3.5}^{0}$ is \mathfrak{L}-equivalent to exactly one of $E_{2}+\left\langle E_{3}\right\rangle, \alpha E_{3}+\left\langle E_{2}\right\rangle,\left\langle E_{2}, E_{3}\right\rangle, E_{1}+\left\langle E_{2}, E_{3}\right\rangle$, and $\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle$. Here $\alpha>0$ parametrizes families of class representatives, each different value corresponding to a distinct non-equivalent representative.

5.3 Summary

Theorem 2. Any affine subspace of $\mathfrak{g}_{3.5}^{0}$ or $\mathfrak{g}_{3.5}^{h}$ (type VII I_{0} or VII I_{h}, respectively) is \mathfrak{L}-equivalent (with respect to the different ordered bases) to exactly one of $E_{2}+\left\langle E_{3}\right\rangle, \alpha E_{3}+\left\langle E_{2}\right\rangle,\left\langle E_{2}, E_{3}\right\rangle, E_{1}+\left\langle E_{2}, E_{3}\right\rangle$, and $\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle$, where $\alpha>0$ for $\mathfrak{g}_{3.5}^{0}$ and $\alpha \neq 0$ for $\mathfrak{g}_{3.5}^{h}$. In both cases α parametrizes families of class representatives, each different value corresponding to a distinct non-equivalent representative.

6 Final remarks

A description of controllable single-input right-invariant systems on simply connected solvable Lie groups, up to dimension six, was obtained by Sachkov [19]. These results are of a different nature to those obtained here. (Besides, no equivalence relations were considered in [19].)

Agrachev and Barilari [1] recently classified the invariant sub-Riemannian structures on three-dimensional Lie groups. We, however, are concerned with the equivalence of the underlying invariant distributions. Invariant sub-Riemannian structures can be related to certain classes of invariant optimal control problems; two such problems are cost-equivalent only when the underlying invariant control systems are detached feedback equivalent ([8]).

The present paper forms part of a series in which the full-rank left-invariant control affine systems, evolving on three-dimensional Lie groups, are classified.

A summary of this classification can be found in [5]. The other solvable cases are treated in [7], whereas the semisimple cases are treated in [6].

References

[1] A.A. Agrachev, D. Barilari: Sub-Riemannian structures on 3D Lie groups, J. Dyn. Control Syst., 18 (2012), 21-44.
[2] A.A. Agrachev, Y.L. Sachkov: Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004.
[3] R. Biggs, C.C. Remsing: A category of control systems, An. Şt. Univ. Ovidius Constanţa, 20 (2012), 355-368.
[4] R. Biggs, C.C. Remsing: On the equivalence of control systems on Lie groups, to appear.
[5] R. Biggs, C.C. Remsing: A note on the affine subspaces of three-dimensional Lie algebras, Bul. Acad. Ştiinţne Repub. Mold. Mat., 2012, no.3, 45-52.
[6] R. Biggs, C.C. Remsing: Control affine systems on semisimple three-dimensional Lie groups, An. Şt. Univ. "A.I. Cuza" Iaşi. Ser. Mat., 59 (2013), 399-414.
[7] R. Biggs, C.C. Remsing: Control affine systems on solvable three-dimensional Lie algebras, I, Arch. Math. (Brno), 49 (2013), 109-119.
[8] R. Biggs, C.C. Remsing: On the equivalence of cost-extended control systems on Lie groups, in "Recent Researches in Automatic Control, Systems Science and Communications" (H.R. Karimi, Ed.), WSEAS Press, 2012, 60-65.
[9] K.Y. HA, J.B. LEE: Left invariant metrics and curvatures on simply connected threedimensional Lie groups, Math. Nachr., 282 (2009), 868-898.
[10] A. Harvey: Automorphisms of the Bianchi model Lie groups, J. Math. Phys., 20 (1979), 251-253.
[11] B. JakUBCZYK: Equivalence and invariants of nonlinear control systems, in "Nonlinear Controllability and Optimal Control" (H.J. Sussmann, Ed.), M. Dekker, 1990, 177-218.
[12] V. Jurdjevic: Geometric Control Theory, Cambridge University Press, Cambridge, 1997.
[13] V. Jurdjevic, H.J. Sussmann: Control systems on Lie groups, J. Diff. Equations, 12 (1972), 313-329.
[14] A. Krasiński et al.: The Bianchi classification in the Schücking-Behr approach, Gen. Relativ. Gravit., 35 (2003), 475-489.
[15] M.A.H. MacCallum: On the classification of the real four-dimensional Lie algebras, in "On Einstein's Path: Essays in Honour of E. Schücking" (A. Harvey, Ed.), SpringerVerlag, 1999, 299-317.
[16] R.O. Popovych, V.M. Boyco, M.O. Nesterenko, M.W. Lutfullin: Realizations of real low-dimensional Lie algebras, J. Phys. A: Math. Gen., 36 (2003), 7337-7360.
[17] C.C. Remsing: Optimal control and Hamilton-Poisson formalism, Int. J. Pure Appl. Math., 59 (2010), 11-17.
[18] Y.L. Sachkov: Control theory on Lie groups, J. Math. Sci., 156 (2009), 381-439.
[19] Y.L. SACHKOV: Classification of controllable systems on low-dimensional solvable Lie groups, J. Dyn. Control Syst., 6 (2000), 159-217.

Type	(ℓ, ε)	Conditions		Equiv. repr.
$V I_{0}$	$(1,1)$	$F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$		$F_{2}+F_{3}+\left\langle F_{1}\right\rangle$
		$F_{1}^{*}\left(\Gamma^{0}\right)=\{0\}, F_{1}^{*}(A)= \pm \alpha, \alpha>0$		$\alpha F_{1}+\left\langle F_{2}+F_{3}\right\rangle$
	$(2,0)$			$\left\langle F_{1}, F_{2}+F_{3}\right\rangle$
	$(2,1)$	$F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$	$F_{2} \in \Gamma^{0} \vee F_{3} \in \Gamma^{0}$	$F_{3}+\left\langle F_{1}, F_{2}\right\rangle$
			$F_{2} \notin \Gamma^{0} \wedge F_{3} \notin \Gamma^{0}$	$F_{2}+\left\langle F_{1}, F_{2}+F_{3}\right\rangle$
		$F_{1}^{*}\left(\Gamma^{0}\right)=\{0\}, F_{1}^{*}(A)= \pm \alpha, \alpha>0$		$\alpha F_{1}+\left\langle F_{2}, F_{3}\right\rangle$
$V I_{h}$	$(1,1)$	$F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$		$F_{2}+F_{3}+\left\langle F_{1}\right\rangle$
		$F_{1}^{*}\left(\Gamma^{0}\right)=\{0\}, F_{1}^{*}(A)=\alpha \neq 0$		$\alpha F_{1}+\left\langle F_{2}+F_{3}\right\rangle$
	$(2,0)$			$\left\langle F_{1}, F_{2}+F_{3}\right\rangle$
	$(2,1)$	$F_{1}^{*}\left(\Gamma^{0}\right) \neq\{0\}$	$F_{2} \in \Gamma^{0}$	$F_{3}+\left\langle F_{1}, F_{2}\right\rangle$
			$F_{3} \in \Gamma^{0}$	$F_{2}+\left\langle F_{3}, F_{1}\right\rangle$
			$F_{2} \notin \Gamma^{0} \wedge F_{3} \notin \Gamma^{0}$	$F_{2}+\left\langle F_{1}, F_{2}+F_{3}\right\rangle$
		$F_{1}^{*}\left(\Gamma^{0}\right)=\{0\}, F_{1}^{*}(A)=\alpha \neq 0$		$\alpha F_{1}+\left\langle F_{2}, F_{3}\right\rangle$
$V I I_{0}$	$(1,1)$	$E_{3}^{*}\left(\Gamma^{0}\right) \neq\{0\}$		$E_{2}+\left\langle E_{3}\right\rangle$
		$E_{3}^{*}\left(\Gamma^{0}\right)=\{0\}, E_{3}^{*}(A)= \pm \alpha, \alpha>0$		$\alpha E_{3}+\left\langle E_{2}\right\rangle$
	$(2,0)$			$\left\langle E_{2}, E_{3}\right\rangle$
	$(2,1)$	$E_{3}^{*}\left(\Gamma^{0}\right) \neq\{0\}$		$E_{1}+\left\langle E_{2}, E_{3}\right\rangle$
		$E_{3}^{*}\left(\Gamma^{0}\right)=\{0\}, E_{3}^{*}(A)= \pm \alpha, \alpha>0$		$\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle$
$V I I_{h}$	$(1,1)$	$E_{3}^{*}\left(\Gamma^{0}\right) \neq\{0\}$		$E_{2}+\left\langle E_{3}\right\rangle$
		$E_{3}^{*}\left(\Gamma^{0}\right)=\{0\}, E_{3}^{*}(A)=\alpha \neq 0$		$\alpha E_{3}+\left\langle E_{2}\right\rangle$
	$(2,0)$			$\left\langle E_{2}, E_{3}\right\rangle$
	$(2,1)$	$E_{3}^{*}\left(\Gamma^{0}\right) \neq\{0\}$		$E_{1}+\left\langle E_{2}, E_{3}\right\rangle$
		$E_{3}^{*}\left(\Gamma^{0}\right)=\{0\}, E_{3}^{*}(A)=\alpha \neq 0$		$\alpha E_{3}+\left\langle E_{1}, E_{2}\right\rangle$

Table 2. Affine subspaces of Lie algebras

Type	Commutators	Automorphisms
$V I_{0}$	$\begin{aligned} {\left[F_{2}, F_{3}\right] } & =0 \\ {\left[F_{3}, F_{1}\right] } & =-F_{3} \\ {\left[F_{1}, F_{2}\right] } & =-F_{2} \end{aligned}$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ x & u & 0 \\ y & 0 & v\end{array}\right],\left[\begin{array}{ccc}-1 & 0 & 0 \\ x & 0 & u \\ y & v & 0\end{array}\right] ; u v \neq 0$
$V I_{h}$	$\begin{aligned} & {\left[F_{2}, F_{3}\right]=0} \\ & {\left[F_{3}, F_{1}\right]=-(a+1) F_{3}} \\ & {\left[F_{1}, F_{2}\right]=(a-1) F_{2}} \end{aligned}$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ x & u & 0 \\ y & 0 & v\end{array}\right] ; u v \neq 0$
$V I_{0}$	$\begin{aligned} & {\left[E_{2}, E_{3}\right]=E_{1}} \\ & {\left[E_{3}, E_{1}\right]=-E_{2}} \\ & {\left[E_{1}, E_{2}\right]=0} \end{aligned}$	$\left[\begin{array}{lll}x & y & u \\ y & x & v \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}x & y & u \\ -y & -x & v \\ 0 & 0 & -1\end{array}\right] ; x^{2} \neq y^{2}$
$V I_{h}$	$\begin{aligned} & {\left[E_{2}, E_{3}\right]=E_{1}-a E_{2}} \\ & {\left[E_{3}, E_{1}\right]=a E_{1}-E_{2}} \\ & {\left[E_{1}, E_{2}\right]=0} \end{aligned}$	$\left[\begin{array}{ccc}x & y & u \\ y & x & v \\ 0 & 0 & 1\end{array}\right] ; x^{2} \neq y^{2}$
$V I I_{0}$	$\begin{aligned} {\left[E_{2}, E_{3}\right] } & =E_{1} \\ {\left[E_{3}, E_{1}\right] } & =E_{2} \\ {\left[E_{1}, E_{2}\right] } & =0 \end{aligned}$	$\left[\begin{array}{ccc}x & y & u \\ -y & x & v \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}x & y & u \\ y & -x & v \\ 0 & 0 & -1\end{array}\right] ; x^{2} \neq-y^{2}$
$V I I_{h}$	$\begin{aligned} & {\left[E_{2}, E_{3}\right]=E_{1}-a E_{2}} \\ & {\left[E_{3}, E_{1}\right]=a E_{1}+E_{2}} \\ & {\left[E_{1}, E_{2}\right]=0} \end{aligned}$	$\left[\begin{array}{ccc}x & y & u \\ -y & x & v \\ 0 & 0 & 1\end{array}\right] ; x^{2} \neq-y^{2}$

Table 3. Lie algebra automorphisms

[^0]: http://siba-ese.unisalento.it/ © 2013 Università del Salento

