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THE NUMBER OF POINTS WHERE A LINEAR MAPPING
FROM [J INTO 34 ATTAINS ITS NORM

WERNER LINDE
Dedicated to the memory of Professor Goltfried Kothe

Abstract. Let S be a regular n x n-matrix mapping l; onto lj,1 < p < oo, with norm

ISl = IS : & — L||. Then we are interested in the sef

Ci={zeR%|}zllp =1 and  ||Sz||,=||S|I},

i.e. the set of points on the unit sphere where S attains its norm. We prove card(C) < oo for
1 < p< 2. This follows from properties of the Taylor expansion of x — ||Sx||, near points
in C. The case 2 < p < oo remains open. But we show by an example that for p > 2 the
behaviour of x — ||Sx||, may be completely different as forp < 2.

0. INTRODUCTION

As usual we denote by [7 the space R™ equipped with the norm

1/p

n 3
”I”p::'.: IIilﬂ:|b ) 'Iz(Ilj"**jIn)] lip‘{{)@
= J

-

We shall write |z| instead of [|z]|, .
Let S be an nx n-matrix. Then its norm ||S : [ — || is defined by sup{||Sz]|; |z| <

< 1}. For simplicity we always assume

§: 13 — I7|| = 1. Moreover we always suppose

that § is regular, i.e. S maps [3 onto [7. The set C C R™ of norm attaining points is then
defined by

C:={zeR"|z[=||Sz|,=1}.
The image S(C) may be described geometrically. Define an ellipsoid & by
&:={zeR" (R 'z, 1) < 1)
where B = §§*. By assumption we have

& CUy:={z€R"|

IHP <1}
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Then S(C) coincides with those points where & contacts the boundary of Ug,ie.

S(C) = &NaUg.

Hence we have card(C) = card(S((C)) and the problem may be formulated as follows:
What 1s the maximal number of points where an ellipsoid inscribed in UZ contacts the bound-
ary of UZ'? The question is easy to answer if R is diagonal, i.e. if the main axes of & arc the
unit vectors in R ™. Here we have card(C) = 2" for 1 < p< 2 whilefor 2 < p < oo card
(C) coincides with 2k and k denotes the multiplicity of the largest eigenvalue of K. Es-
pecially we always have card(C) < 2n in this case. In a recent paper R. GrzaSlewicz ([Gr])
proved card(C) < oo for p < 2 and arbitrary S. Unfortunately, his proof is not correct. So
our first aim 18 to give a correct proof of this result. But it remains open whether or not we
even have card(C) <€ 2" in the general case.

The case 2 < p < oo turns out to be much more complicated. It seems to be open 1f
always card(C) < oo also for those p. We conjecture that this 1s so at least if p 1s not an
even integer. We show by an example that the method of proof for p < 2 does not apply for

p>2.
Finally we should mention that there exist estimates for card(C) in the case of special

matrices, 1.¢. for special ellipsoids (John ellipsoids) (cf. [T/P]).

1. DERIVATIVES OF THE (" -NORM

The results of this section are well-known and easy to prove. The summarize them for later

use.
Let y = (yy,---,y,) bein R™ with ||y||, = 1. Then we define d, € R™ by

=1 -
dy:=(y1 l"‘"lyi 1)

where we write a® instead of [a|*sgn(a) for a,a € R. For 1 < p < oo the vector & 1s
uniquely determined by

||dy|lpr =1, 1/p+ I/P’= 1, and (y,dy) = 1.
Let D, be the diagonal matrix with (JyP~*), atthediagonal. Of course, we have to assume

yl-ifD,I < 1 < n,whenever p < 2.

Lemmal. Let y = (y,,...,y,) bein R™" wi{h”pr: 1.If p< 2 weassume y.#0,1 <

< i< n. The l7-norm is twice differentiable at y and for v € R™

~1
ly + vll, =1+ (v,d )+ F >—[(D,v,v) - (v, d )*] + o(|u]?).
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Corollary 1. Let S : I} — I} be as above and suppose that y = Sz satisfies the assumptions
of Lemma 1. Then the function u — ||Su||, istwice differentiableat z € R™ andfor z € R™

we have
|S(z + I)llp =1+ (z,8"dg )+

~ 1
M 3 [(§*Dg,Sz,z) — |(I,S*dsz)|2] + of [$|2).

Remark. Let C C R™ be defined as above, i.e. 2 € C iff |z] = |[Sz]||, = 1. As shown
in [Li1] for those z the image Sz satisfies the assumpuons of Lemma 1, 1.e. for p < 2 all
coordinates of Sz are necessarily different of zero. Moreover, since ||S* : I, — [7|| = 1 and

lds.lly =1, by
(2,8%dg,) = (Sz,dg,) = 1

we obtain S*dg, = z in this case. Hence the following is true:

Proposition 1. Let S be as above and let z be in C. Then we have forall € R™

—1
2

IS(z+ D)||, = 1+ (z,2) + - —[(S"Dg, Sz, 7) — |(z,2) "] + o(|z]*)

Especially, for x 1 z it follows

— 1
ISz + )|, = 1+ —— (8" Ds, Sz, 7) + ol|*).

Remark. If z 1 =z, then by assumpuon

1S(z+ D)||, < |z+ 7| = (1+ |z]) /% = 1+ |z]*/2+ o(|z[*).
Consequently, we necessarily have
(p— 1)(S* Dg,S7,7) < |z’

in this case. Let A,,..., A be the eigenvalues of S*Dg §. Because of 5*Dg, 5z = 2 one,
say A, ,eigenvalue is equal to 1 and the remaining satisfy

0<)N<1/(p=1), 2<i<n

We shall prove lateron A, < 1/(p — 1) for p < 2 while we may have A\; = 1/(p — 1) for
some 1 > 2 inthecase p > 2.
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Proposition 2. Let z be in C and suppose
(p— 1)(S* Dg,S7,7) < |f’

forallz 1 z,2#0,ie weassume 0 < A; < 1/(p—1),2 <1< n,inthe above notation.
Then there is a neighborhood U of z in {u € R"; |u| = 1} such that [|Su”p < 1 for all

u e U\{z}.

Proof. The assumpton easily implies (use Prop. 1 and the following remark)
1S(z + )|, < (1+ |z*)/?

forall z L 2 with O < |z|] < é forsome 6 > 0. If |u| =1 and u# 2 we write
u=(uz2)z2+z

where z L z and |z]* = 1 — [{u, 2)|*.
Hence
1Sull, = [(w, 2)[[S(z + z/{u, 2)) ||,

< Wu, 2)|(1 + |z (u, 2)| 7)1 /* = |u] = 1

provided that
0 < (1—u,2)]*)/|{u,2)|* < 8.

Of course, this completes the proof.

Corollary 2. Let S be as above and suppose we have
(p— D(S*Dg,Sz,1) < ||
forall z € Candall £ 1 z,z#0 . Then it follows
card(C) < oo.

Proof. This is an easy consequence of Prop. 2 and of the compactness of the unit sphere 1n
R™.
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2. THECASE 1 <p <2

Letus first shortly menuon the trivial cases p= 1 and p = 2. As above we define the posituve
and symmetric matrix £ by R := SS§*. Recall that we always assume S to be regular and
IS: 5 = f|=1.
(1) If p =2, then card(C) 1s finite iff the largest eigenvalue A, (= 1) of K has multi-
plicity 1. Then
C={x8z}

where z, 1s a normed eigenvector with respectto A, = 1.

Hence, if p = 2, then either card(C) = 2 or card(C) = oo in dependence of the
muluplicity of the largest eigenvalue of R.

(2) For p =1 iteasily follows that

C={S%ec E, and (Re,e)=1}.

Heree € E_if e= (g,,...,g,) with g, = 1. Consequently, for p = 1 we always have
card(C) < 2°".

Moreover, it is not difficult to see that card(C) = 2" iff R 1s a diagonal matrix (with trace
(R) =n).

Next we treat the case 1 < p < 2. As mentioned above the proof of card(C) < oo 1n
[Gr] is not correct. The error is in the proof of Lemma 1 in [Gr]. There the author claims (we

use his notation) that ||y + Av|[f is close to (1+ A*/(p — 1))?/? as X is near to zero. This
1S indeed true yet doesn’t contradict the estimate

lly + A|[2 < (14 A2)P/2
as written in [Gr]. In order to obtain a contradiction one has to have

A2 {|ly + Ml — (1+ X2 /(p— 1D)P?} -0

as A — 0 which isn’t valid in general.

Theorem 1. Suppose 1 < p < 2 andlet S from [ onto I; be as above. Then the number

of points where S attains its norm on the unit sphere is finite (card(C) < o0) .

Proof. Choose z € C. In view of Cor. 2 we only have to show

(p— 1)(S*Dg,Sz,1z) < |z
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forall z L 2,z#0. Let us assume the contrary, i.e. forsome z L z,|z| = 1 we have
(p— 1)(S*DS:SI,$) = 1.

Defining y = (yy,...,y,) by y:=8Szand v = (v,,...,v_ ) by v := Sz this yields
1= (p— 1)(S"Dg,Sz,z)=(p— 1) D |y:[P vl
1=]

Next we define a function f on R by
FQ) = (1+t3)P2 — ||y + to||P

which satisfies f(t) > 0 becauseof [[S: 1} — ]| =1.

Since y,#0,1 < 1 < n (cf. Remark after Cor. 1) f is infinitely often differentiable at
zero and its Taylor expansion is given by

-

(=3 (pf > k- (i) D o luilPCvi/u)* |tk
k=0 k=0 | 1=] -

Recall that (v;/y,)* = |v,/y.|*sgn(v,/y;) whenever k is an odd integer.
From the assumption and by

Eyf’k‘l”i = (SIJ dgz) = (I,z} =0

1=]

we derive

1) = Z (Pf ) t* — E (i) ; |yilp(”i/yi)k t*.

k=2 k=3 ' )
Because of f(t) > O forall ¢t € R the summation of the second term cannot startat £ = 3,
i.e. we also have

E |y;1P( Ui/yi)3 =0,
1=1

and, consequently,

- -

f(1) = (péz) = () o lwd Il | £ + o).

i= -

Butinviewof 1 < p < 2 we have (”f) < 0 as well as (?) > O which implies

P

4
f(t)/t* < 0 for t near to zero and, of course, contradicts f(t) > O for all real t. This
completes the proof of Theorem 1.
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Remark. If the proof of Lemma 1 in [Gr] would be correct it would even give a stronger
estimate for (S‘ DS:SI! g;) : ﬂflelCl)’,

(§*Dg,Sz,1) < |z

for z L z. Observe that p — 1 < 1. This estimate is equivalent to lim inf ,_, f(t)/t* >
p(2 —p)/2 > 0 where f is defined as in the proof of Th. 1. We do not know if this stronger
estimate 1s true in general. It holds in the case that E = §5* 1s diagonal. In this case one
always has S* D¢ S = I, I identity, as easy computations show.

3. THE CASE 2 < p < oo

It seems to be an open question whether or not a linear mapping from [ onto (7, p > 2, may
attain its norm at infinitely many points of the unit sphere. The aim of this section 1s to show
that 1in contrast to the case p < 2 an esumate

(p“ 1)(S*DS;-SI:I) < |$|21

r 1 z,z#0, does not hold for p > 2 in general. Thus it may happen that S* D¢ S pos-
sesses an eigenvalue equal 1/(p— 1) . Geometrically this means that an ellipsoid inscribed in
Ugp,2 < p < oo, may contact the boundary of the I; -ball «very smoothly». Consequently,
at least the ideas of the proof of Theorem 1 are not applicable for p > 2.

We start with an interesting incquality due to W. Beckner ([Be]). A proof can be found 1n

[L/T], p. 75.

Proposition 3. For 2 < p< oo andt € R we have

(JI+ P+ |1 =¢tP)/2 < (1+ (p— Dt*)P?.

We define now a 2 x 2 -matrix as follows:

1 (p—1~Y2
S =271/
1 —(p—1D~12

Proposition 4. For 2 < p < oo this matrix S satisfies

||Si£% —rlﬁ”= ].

Proof. This is an easy conscquence of Prop. 3. Observe that S attains its norm at +e,; with
e, :=(1,0).
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Corollary 3. If e, := (0,1), then we have

(p—1)(S"Dg, Sey,e;) = 1,

i.e. it holds
(1+ 82?2 —||S(e, + tey) |2 = o(t?).

Proof. 1t 1s easy to see that

S*Dg, S =
0 (p—D~!
which proves the Corollary.

Remark. (1) We should mention that in this example

2(p—2
(1+ t%)P/? || S(e, + te,) ||§= II}ZEi— 1;1‘,4 + o(th).

Consequently, also in this example e, is an isolated maximum of v — [|Su||; on the unit

sphere.
(2) The corresponding ellipsoid & in R? is gencrated by

72 -2/p D p—2
p=1ip-2 p

R=S8S8"=

1.e.
&={(z,1,):|z; + T, + (p— D]z, — 7,]* < 2*/7}

It contacts QU7 at the points +2~'/P(1,1) «very smoothly».

We shall prove now that up to a unitary mapping the matrix S defined above is the only
example in R* where S*Dg_S possesses the eigenvalue (p — 1)~! for some z € C.

Proposition 5. Let S be an arbitrary mapping from 5 onto l;‘; 2 <p<oo,with|lS]|=1.

Suppose that ||Sz||, = |z| = 1 and

(p—1){(S"Dg,Sz,z) =1
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for some z L z,|z| = 1. Then either

o —1/p] 1 2-1/p
Sz=+ (1,1) and SIH"(pml)lﬂ(l'_l)
or
~-1/p 271/
Sz =42 (1,-1) and S$=::(p_1)1!2(1.1).

Proof. Set Sz = (y,,y,) and Sz = (v,,v,). Using the same argument as in the proof of
Theorem 1 we obtain the following four equatons:

v P+ |y, [P =1,
—1 -1
yf ”1'*'!-*';2} v, =0,
7 ]p_lvxz + Iyzl’“"zvi =(p-1"" and

p—3 .3 p—3,3 _
y; vy +y; v; =0.

The only solutions are |y, | = |y,| = 2717, |v,| = |v,| = 271/P(p — 1)71/? and (y,,y,) L
1 (vy,vy) . This completes the proof.

Remark. Prop. 5 tells us that only at the points +2 ~!/?(1,1) and £2~!'/7(1,—-1) of §U§
an ¢llipsoid may contact the boundary «very smoothly», Moreover, there are exactly two
possible ellipsoids.

One may ask now if such examples also exist in higher dimensions. The answer is af-
firmative by trivial reasons. For n > 2 we fix two integers £, € {1,...,n}, k < £, and
define

and
2 -1/p
S,e, = e, —€e,).
Here e,,...,e_ denotes the sequence of unit vectors in R™. If S| maps i;‘z onto I;;‘Z
with ||S,|| < 1 we define it as a mapping from span {es,...,e,} ontospan {e,; j# k,(} in

canonical way. Then § from {3 onto (7 with

Sz:=5y(z,,z5) + 5,(z3,...,1,),
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z=(x,...,T,.),satsfies

1Szl], = (lISo(zy, 2 )|+ |[Si (z5,..., z,)|[E) 1/p

. p/2 l/p
< <|m1|2+|lel>”"“(Zlml'z) ) <l=

1=3

as well as
{S*DSE] Se,,e,)=(p— !,

Problems. (71)Inthe preceding example the matrix 5* D¢, S (z = e,) hadexactly one eigen-

value equal to (p — 1)~! . What is the maximal multiplicity of this eigenvalue? Equivalently,
in how many orthogonal directions may an ellipsoid contact 6U; «very smoothly»?

(2) In our example the «exceptuonal» contact points are of the form 2 ‘”P(y] T
with y; € {—1,0,1} and card{i;y; #0} = 2. Are this the only points of U] where an

ellipsoid may contact the [7-sphere «very smoothly»?
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