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THE INITIAL-VALUE PROBLEM FOR SINGULAR SYSTEMS
OF DIFFERENTIAL EQUATIONS

GREGERS KRABBE
Dedicated to the memory of Professor Gottfried Kothe

Let A and B be nx n matrices, let A be a singular matrix and let ¢,, ..., c_ be arbitrary
numbers. Consider the system of differential equations

(1) AY'(t) + BY (t) =0 t>0,
where Y 1s an unknown n-vector of differentiable functions such that
(2) Y,(0) =¢,...,Y (0) =c,.

G. Doetsch [4] was the first to satisfactorily discuss such problems: the exension of the
one-sided Laplace transformation used in [4] is in the present paper replaced by an endo-
morphism y — £y of an algebra of generalized functions; our basic equation # Dy =
s ¥y — y(0)8§ (where § is the Dirac distribution) leads to the system of algebraic equations
studied in [1]-[6] and [8]; our basic equation is akin to the «generalized Mikusinski formula»
obtained in [8] but does not require the very deep properties established in [8]. Initial-value
problems for singular systems occur in applications; an example is discussed in §4 and §5.

1. OPERATORS

Test-functions are infinitely differentiable complex-valued functions defined on (—o0, 00),
they and their derivatives vanish at the origin.
Thus, a test-function ¢( ) is such that 0 = ¢(0) = ¢'™ (0) for every integer n > 0. The
equations 0 = ¢(0) and ¢(t) = exp(—1/|t|]) for —oo < t < oo define a test-function.
Operators assign test-functions to test-functions. Let p be an operator: if ¢( ) 1s a test-
function, we denote by p: ¢( ) the test-function that the operator p assigns to the test-function
¢( ). Let p, and p, be operators. The operator p;p, 1S such that

(1.1) PPy () =pyi[pyidl()

for every test-function ¢( ). The equation p, = p, holds only when p,:¢( ) = p,: ¢( ) for
every test-functuon ¢( ).
If n is an integer > 0, the operator s™ assigns to each test-function ¢( ) its derivative

™ ( ). In particular,

ssop()=¢'() and  $":4() =¢().
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Let p,p, and p, be operators. From (1.1) it follows that

(1.3) ps:p()=p:¢'() and  sp:é() =[p:¢]()

for every test-function ¢( ). The operator p, + p, assigns to each test-function ¢( ) the
test-function p,: ¢( ) £ p,: ()

(1.4) [P £ P71 0(2) =pi (1) £pyi (1) ... — 00 <t < 00.

0

Let o and «; be numbers (possibly complex). The operators as™ assigns to each test-

function ¢( ) the function a¢( ) ; consequently,

(1.5 [r::r:sﬂ]p::i)(t)=a[p:¢v(t)]...—m<t<m

for every test-function ¢( ). Addition is associative and commutative. The following equa-
tions are easily verified

(1.6) [a+ a,]s’ = as’ + o5 and aa, s’ = [as’]a, s°;
also,

(1.7) 15’ = s,

(1.8) ps’ =p=s"p=[1s"]p,

(1.9) p—p =p+[-1s]p,

(1.10) 0s°+p=0p and p—p=0s"

(1.11) [P, + ;2lp=pip+ DD and p[pypl = [P0y )0,

2. FUNCTION-LIKE OPERATORS

Let G( ) be a function whose derivative G'( ) 1s continuous (i.e., continuous on the interval
(—00,00)). Let Y () be piecewise-continuous (only a finite number of jumps in any finite
sub-interval of ( —oo0, 00) ). We write

t
(2.1 Y *G(1) dif-/Y(m)G(t—w)dw...—m{t{m}
0

where
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also, we denote by I( ) the unit constant:

I(z) =1 — 00 < z < 00;
accordingly,
t
(2.2) Y#I(t)=-£1’(w)dw ... —o00<t<oo.
If
(2.3) F=Y I,

then F'( ) 1s a continuous functuon, 0 = F(0) and

t

t t
Y *G(2) = f F(w)G(t —w)dw = F(w)G(t —w) +[ F(w)G'(t — w)dw
0 0 0

when —oo < t < oo, consequently,
(2 .4) Y*G()=GO)F()+ FxG'()

2.5 Remark If ¢( ) 1s a test-function, then ¢(0) = 0 and (2.2) gives

t
(2.6) ¢'*I(t)=f¢’(m)dw=¢(t)—0 — 00 <1< 00.
0

2.7. Remark. The space of continuous functions forms a commutative ring (see [9]); in
particular,

GxH()Y=HxG() and Gx[HxH{J()=[G*H]*H()

for continuous functions G( ), H( ),and H( ).

2.8. Remark. If G( ) is continuous, then [G * I1'( ) = G( ). To verify that [G * I]'(0) =
G(0) , note that

GxI(e) -GxI(0) = / G(w)dw = G(w,)E,
0

sothat Im[G* I(e) —GxI(0)] /e = lim G(w,) = G(0) as € — 0 : these equations come
from the Mean Value Theorem and 0 < |w,| < €.
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2.9 Theorem. Let Y ( ) be piecewise-continuous: also, let ' =Y x 1. If ¢( ) is a test-
function, then F x ¢( ) is a test-functions

(2.10) Y*¢()=Fx¢'()=[Fx¢l'()
and
(2.11) Y*xd'()=[Y*x¢]'().

Proof. Set G = ¢ in(24)toobtain Y x ¢( ) = F * ¢'( ); this establishes the left side of
(2.10). Let n be any integer > 0 andset ¢_( ) = ¢'™ ( ); in particular, ¢o( ) = ¢( ). Note
that ¢_( ) is atest-function. Since both F( ) and ¢ ( ) are continuous, it follows from 2.7
that

(3) [Fx¢ 1 +I()=Fx[¢,xI1()=Fx¢,();

the right-hand equation comes from (2.6); since F' x ¢ ( ) is continuous, we can set G =
F x ¢! in 2.8 to obtain
G()=[GxIN'()=[F=x¢,)();

the right-hand equation comes from G = F' x ¢ and (3); thus,
(4) Fx¢p ()=[Fx¢,().

Choosing n = 0 in (4) gives the right-hand equation in (2.10), namely, F' x ¢'( ) =

[F*¢,1'().
To verifty that the equation

(5) Fx¢™()=[Fx*pl™()
holds for every integer m > 1, we proceed by induction. Set n = m in (4) to obtain
Fx¢™D()y=[Fxdp!™V()=[Fx*gpl™PV();

the right-hand equation comes from the induction hypothesis (5). Thus, (5) holds for every
integer m > 1; since ¢‘™ () is continuous, the function F * ¢{™ () is continuous and
vanishes at the origin; accordingly, (5) states the m** derivative of Fx¢( ) has the properties;
consequently, that function is a test-function.

It remains to verify (2.11). From (2.10) we get

(6) [Y x¢)( ) =[Fx¢]?() = Fx¢'?();
the right-hand equation comes from (5); replacing ¢ by ¢' in (2.10), we get
Y*¢'()=Fx¢?() =Y %4)'();

the right-hand equation comes from (6).
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2.12 Definition. Let Y ( ) be piecewise-continuous. We shall denote by {Y'} the operator
that assigns to each test-function ¢( ) the test-function Y x ¢( ) :

t
(2.13) {(Y}:d(t) =Y x (1) = f Y(w)d(t —w)dw...— 00 < t < 00.
0

2.14. Again, let ¢( ) be atest-funcuon. If H( ) 1s continous, 1t follows from (1.3) that

(2.15) {H}s:¢()={H}:¢'() = H*¢'();

the right-hand equation can be obtained by replacing Y by H in (2.13). As in 2.9, suppose
that F( ) =Y % I( ) andlet Y( ) be piecewise-continuous. From (2.15) and (2.10) we get

{F}sig()=F*¢'()=Y *¢()={V}:¢();

the right-hand equation comes from (2.13); since ¢( ) is arbitrary, we conclude that {F'}s =
{Y'}, namely,

(2.16) (Y xI}s={Y}.
From (2.15) we get

(I}s: () =Txg'()=¢' xI() = ¢() =" () :
the right-hand equations come from 2.7, (2.6), and (1.2); consequently,
(2.17) {I}s=s".

2.18 Theorem. If Y () is piecewise-continuous, then {Y }s = s{Y'}.

Proof. Let ¢( ) be an arbitrary test-function. From (1.3) we have
{Y}s:p()={Y}:¢'( ) =Y *x¢'() =Y ' () =[{YV}:6]'( ) = s{YV}: &();
the right-hand equations come from (2.11), (2.13) and (1.3). Consequently,
{Y}si¢() =s{Y}:¢()

for every test-function ¢( ). The conclusion {Y'}s = s{Y} is at hand.
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2.19 Theorem. Let H,( ) and H,( ) be continuous, also, let a be a number. If H( ) =
aH,( )+ H,(),then

(6) {H} = [as’1{H,}+ {H,}.

Proof. Let ¢( ) be an arbitrary test-function. Set a; = a and «, = 1. From (2.1) we have

¢ 2 2
H*gb(t):J/; Y o H(w)g(t —w)dw =Y o[ Hy * ¢1(2)
k=1

k=1

when —oo < t < oo; from (2.12) it results that
{H}: ¢(t) = al {H, }: ()] + {H, }: $(t) = [as’1{H, }: $(2) + {H, }: (1)

the right-hand equation comes from (1.5). Since ¢( ) is arbitrary, the conclusion (6) comes
from (1.4).

2.20 Theorem. If H( ) is a continuous function whose derivative H'( ) is piecewise-

continuous, then
(7) {H}s= H(0)s® + {H'}.

Proof, From the Fundamental Theorem of Calculus we have
t
H(t) = H(O) +/ H(w)dw = HO)I() + H * I(1)
0

the right-hand equation comes from (2.2); since this holds when —oo < t < o0, it results
form 2.19 that

{HY=[H0)s°1{I}+ {H I}

to which we may apply the right-factorization (1.11) to get
{H}s=[H(0)s®}{I}s+ {H xI}s=[H(0)s°]s" + {H'} :

the right-hand equation comes from (2.17) and (2.16): the conclusion (7) is obtained by setling
p= H(0)s® in (1.8).
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2.21 Remark. Let H,( ) and H,( ) be continuous. The equations

({H i+ H,}={H,}+{H,} and {0}=0s"

can be obtained by setting ¢ = 1 and a = —1, respectively, in 2.19 and taking into account
(1.7)-(1.10); for the right-hand equation, note that I —I( ) istheconstant O( ) and {/ -1} =
{I} — {I} = 05", in view of (1.10).

If H ()= Hy(),then {0}={H, - H,}={H,}— {H,} and it follows from (1.11)-
(1.12) that {H, } = {H, }.

2.22 Lemma. If G( ) and H( ) are continuous, then

(8) {GxH}={GHH}={HHG}.

Proof, Let ¢( ) be an arbitrary test-function. From (2.13) and 2.7 we have
{(GxH}:¢()=[G*xHlx¢()=G*[Hx*¢]()={G}y:[{H}: ¢]();

similarly,

{HxG}¢() ={H}:[{G}:¢]() = {HHG}: ¢( );

the right-hand equations come from (1.1); since HxG( ) = GxH( ) (see 2.7), the conclusion
(8) 1s at hand.

2.23 Theorem. Let G,( ) and G,( ) be continuwous. If {G,} = {G,}, then G,() =
G,().

Proof. This is an immediate consequence of Titchmarsh’s Convolution Theorem: instead
using it, we shall use the Bounded Convergence Theorem.

Let k be any integer > 0. The equations

—1
0=¢,(0) and ¢, (w)=exp (m).,w#o

define a test-function ¢, ( ) such that

(9) im ¢, (w) =1 ... w#0.

k—o0
Replacing Y by G 1n (2.13), we get

(10) (G} ()=G, % () = xGL( )35
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the right-hand equation comes from 2.7. Our hypothesis impliesthat G,: ¢, ( ) = G5: ¢ ( ) ;
consequently, it results from (10) that ¢, * G, ( ) = ¢, * G, ( ) whence, in view of (2.1)

/ ¢ (wW)G (T —w)dw = /Tcﬁk(w)Gz('r—m)dw...—m < T17#0 < 00,
0 0

sO that

(11) 0= [ )Gy (r-w) = Gy(r-wdw = [ f(w)do
where

(12) Fo(w) = $p ()G (7 — w) — Gy (7 —w)].

Since 0 < ¢,(z) <1 for —oo < z < co we have

(13) fl@) < max Gy (3) - Gy ()]

also, the function f,( ) is continuous and
(14) foo (w) 11m fk(w) Gi(tT—w) —Gy(7T—w)...w#0

the right-hand equation comes from (12) and (9). Since f_( ) is integrable, taking into ac-
count (13)-(14), we may apply Arzeld’s theorem to obtain from (11) that

= llmf fi(w)dw = ff (w)dw = /[G (T—-w) — Gy (17— w)]ldw;

k—00

the right-hand equation comes from (14); therefore,
T T
f Gl('r—w)dw=f Gy (T —w)dw —00 < 7#0 < o0;
0 0

consequently, I «G,( ) = I «xG,( ),whence G, *I( ) =G, *I( ) ,hence [G; *xI]'( ) =
[G, = I1'( ) and we may use 2.8 to conclude that G,( ) = G,( ).

2.24. The unit step-function
We shall denote by U( ) the function

0 t<0
U(t) =
(1) {1 ‘e t > 0;
and by & the operator such that
(15) 6: (1) = U(L)p(2t) —00 < 1< 00

for every test-function ¢( ).
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2.25 Theorem. Let X () be piecewise-continuous. If UX( ) is the function such that

0
UX(t) = U)X (1) = {xm S 0

then 6{X}={UX}.

Proof. Let ¢( ) be an arbitrary test-function; also, suppose that —oo < t < oo. From (1.1)
it results that

S{X}: (1) =8 [{X}:01(2) =U@)[{X}: ¢(D)];

the right-hand equation is obtained by replacing ¢ in (15) by {X }: ¢; from (2.13) we there-
fore have

t t
(X} 40 =U() | X@)o(t —w)dw = [ UX(w)o(t - w)do
we can therefore replace Y by UX in(2.13)toobtain §{X }: ¢(t) = {UX }: ¢(t) for —oco <

t < oo. Since ¢( ) is arbitrary, the conclusion §{X } = {UX} is at hand.

2.27. The equations
§={U}s and 00 = 0

can be verified as follows. From (1.8) and (2.17) it follows that
§=268s" =8[{I}s] = [6{I})s=[{UI})s={U}s;
the right-hand equations are from 2.25. Next,

56 = [{U}s] = [6{U})s={UU}s={U}s=0.

3. DISTRIBUTION-LIKE OPERATORS

An operator will be called distribution-like if it has the form {H,}s™, where H,( ) is acon-
tinuous function and m is an integer > 0. If Y'( ) is piecewise-continuous, it follows from
(2.16) that {Y'} = {H,}s, where H,( ) is the continuous function ¥ = I( ) ; consequently,
the operator {Y'} is distribution-like.

._'I. e e
i < AN G
e
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3.1 Let o be anumber. To verify that as® is distribution-like, let H( ) be the constant a( ) ;
since H(0) = a and since H'( ) = 0( ), 1t follows from 2.20 and 2.21 that

{HYs= H(0)s? + {0} = as® + 0s° = as”;

consequently, as® = {H}s and as® is distribution-like; setting a = 1 and using (1.7), we
find that s° is distribution-like. Since § = {U } s, that operator is also distribution-like. Since
s=8%s = {I}ss= {I}s? inview of (2.17), the operator s is also distribution-like.

3.2 Let & be the ring of all operators of the form {H, }, where H, () is continuous. If g, A,
and h, belong to &, then

g={G}, h={H} and hy = {H,}
for continuous functions G( ), H( ),and H,( ), from 2.22 and 2.21 we have
(1) gh={GxH} = hg and g+ h={Gx*xH};
consequently, the operators gh and g + h belong to & .

3.3. Remark. An operator c is distribution-like only if there 1s an integer k > O such that
c = h,s* for some operator h, belonging to &.
As we shall see, distribution-like operators form a commutative algebra. Repeated use

will be made of the equations

(2) plppl = pip2lpy, ps =p=sp

and

(3.4) [p; + plp=pip+ D20,

which hold for any three operators p, p, , and p, .

3.5. Set 1 = {I}. From (2.17) it follows that

(3.5) s = {I}s = s{I} = si = is;

the middle equation comes form 2.18. Since the operator 1 belongs to the ring &, it follows
from 3.2 that the operators 1 = 12,...,i" = {®! ... all belong to the ring & . To verify that
the equation

(3.6) iksk = §°

holds for every integer £ > 1, we proceed by induction:

k 0 _k k k 0

Fr1gk+l = (kiss%] = iF[is] sk = 1%s%sF = iksh = &

the right-hand equations come from (3.5) and the induction hypothesis (3.6).



The initial-value problem for singular systmes of differential equations 123

3.7 Remark. Let y = {Y'} for some continuous function Y'( ). From (2.18) it follows that
sy = ys. To verify that the equation

(3.8) sky = ys*

holds for every integer £ > 1, we proceed by induction:

¥y = ss¥y = s[s*y) = s[ys*) = [syls* = [ys)s* = y[ss*] = ys**!,

the right-hand equations come from the induction hypothesis (3.8) and from the equation
Sy = ys.

3.9 Theorem. If a and b are distribution-like, then ab and a + b are distribution-like,; also,
ab = ba.

Proof. Since a and b are distribution-like it follows from 3.3 the existence of integers m and
n > 0 such that

(3) a=gs" and b= hs"
for some operators g and h belonging to the commutative ring €. Consequently,
(4) ab=gs™hs" = g[s"h]s" = g[hs™]s" = g[hs™s"] = ghs™"";

the right-hand equations come from (3.8) and (2); since it follows from 3.2 that gh belongs
to the ring &, it follows from (3)-(4) and 3.3 that ab is distribution-like. By exchanging the

positions of a and b in (4), we get

ab;

ba = hgs™™ = ghs™""

the right-hand equatons come from (1) and (4).
It only remains to consider the operator a + b. From (3) we have
a+ b= gsﬂs"‘ + hs’s™ = g[i"s™]s™ + h[1"s™]s"
= gi"[s"s™] + hi™[s™s"] = [gi" + haT )]s T,

the right-hand equations come from (3.6), from (2), and from (3.4). Set h, = g™+ hi™, since

(5) a+b=h,s .. ifk=m+n,

it will result from 3.3 that a + b is distribution-like once it has been established that g2 + A1™
belongs to &; to that effect, note that (as pointed out above) both :* and ™ belong 10 &,
from 3.2 we may therefore infer that gi® and hi™ also belong to the ring &°; we may now
replace g by ¢i® and A by hi™ in 3.2 to conclude that gi™ + hi™ belongs to &. Since
h, = gi" + hi™ in (5), we conclude that a + b is distribution-like.
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3.10. Suppose that a, b and ¢ are distribution-like. From 3.9 we get
ba+ bc=ab+ch=[a+c]b=bla+ c];

the right-hand equations come from (3.4) and by replacing a by a + ¢ in 3.9. Conclusion:
distribution-like operators form a commutative rng.
Let a be a number; we write

(3.11) aa = [as’]a and b+ oS b+ as’;

since it follows from 3.1 that as® is distribution-like, the operators in (3.11) are distribution-
like. If H( ) is the constant O( ), it follows from 2.21 and (1.7)-(1.11) that

{H}={0}=0s"=0a=b—-b+ —1b
and a + {0} = a = 1a. All the laws of algebra hold; for example,
afab]l = [aalb = cab and ab+ fb=[a+ B]b
for any numbers o and .
3.12. Invertibility
An operator v is called invertibie if it is distribution-like and if vb = s° for some distribu-

tion-like operator b. Let v be invertible; we denote by s° /v the unique distribution-like
operator b such that vb = s if a is an operator, then

Let a and b be distribution-like. If v and w are invertible, then a/v = b/w if (and only
if) aw = bv. All the familiar rules for fractions apply.

3.13. Let o be a number. If H(t) = e** for —oo < t < oo, it follows from 2.20 that
{H}s= H(0)s" + {H'} = 15" + [as’]{H} :

the right-hand equation comes from 2.19; consequently, s{ H} — as®{H} = s°, whence
[s—as®]{H} = s°; the distribution-like operator s—« is invertibleand {H } = s°/[s—«a].
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3.14. In particular, the operator s — 0 1s invertible. Let Y( ) be piecewise-continuous. Since
it follows from (2.16) that s{Y =/} = {Y'} and since {Y *I} is distribution-like, we conclude
that

(3.15) {Y xI}={Y}/s.
3.16. Suppose that G( ) is continuous. If G'( ) is piccewise-continuous, it follows from
2.20 that

(3.17) {(G'} = s{G} — G(0)s°.

3.18. Suppose that F(t) = sint for —oo < t < oo. From (3.17) it follows that {F'} =
s{F'}; replacing G by F' in (3.17), we get

{F"} = s{F'} = F'(0)s® = s*{F} = §°,

thus,
¥ = S {F} - {F"} = s}{F} + {F} = [ + 1]{F};

therefore, s + 1 is invertible and

def Sﬂ

(3.19) {sinT} = {F} = a2

3.20. Let o, ..., e, and Sy, ..., B, be numbers, n > 1 and o, # 0 ; set
v=a 8"+ ...+ and b=pB.s"+...+ f,.

The operator v is invertible; if F'( ) is piecewise-continuous, then

b B & )
;{F}-— {QHF+F G‘},

where F' = G( ) is continuous and has a piecewise-continuous derivative. If y is an operator
such that
[, 8"+ ...+ aply = ﬁn_lsn_l + ...+ 5,

then y = { P, } for some infinitely differentiable function P, ( ) suchthat P, (0) = §,_, /e, .
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4. A SINGULAR SYSTEM OF DIFFERENTIAL EQUATIONS

With the help of 3.20, 2.19 and elementary results such as the ones in 3.15-3.19, non-singular
systems of differential equations on the whole real line ( —oo, 0o) can be solved by procecd-
ing as when using one-sided Laplace transforms.

4.1 Definition. If Y ( ) is piecewise-continuous, we write

(1) D{Y} = s{Y}-Y(0-)s°.

4.2 Theorem. Let Y ( ) be a piecewise-continuous function which is continuous except pos-
sibly at the origin. If Y'( ) is piecewise-continuous, then

(2) D{Y} = {Y’} +[Y(0+) - Y(0-)]6é.
Proof. Set
(3) Gt)=Y(1) - [Y(0+) =Y (0O=)]1U(?) ..—00<t#0 < 00

and G(0) = Y(0-). Since G(0+) = Y(0-) = G(0) and G(0—-) = Y(0-), the
function G'( ) is continuous and G'(t) = Y (¢) for t# 0 ; consequently, G'( ) is piecewise-
continuous and it follows from (3.17) that

{G'} = {G}s — G(0)s"
=[{Y} - [Y(0+) =Y (0=)1{U}s — G(0)s" ...from (3) and (2.19)
= {Y}s— [Y(0+) —Y(0-)16 — Y (0-)s’;

this last equation comes from 2.27 and G(0) = Y (0 —) . Therefore,
(4) s{Y}-Y(0-)s" = {G'}+ [Y(0+) — Y (0-)]6.

Since G'(t) = Y'(t) whent#0,wehave G'xI( ) = Y'xI( ),sothat {G'*I}s = {Y'*1I}s
and (3.14) gives {G"'} = {Y''}; consequently, the conclusion (2) now comes from (4) and (1).

4.3. The operator § corresponds to the Dirac distribution: see 5.15; from (1) and 2.27 1t
follows that = D{U}. The equation (2) holds for the distributional derivative of the distri-
butions generated by the functions Y ( ) and Y'( ).

4.4. Notation
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If a 1s an operator, then

def

(3) ZKa = ba.
From (1) it follows that
(6) LD{Y}=5s8{(Y}-Y(0-)6=s{UY} -Y(0-)6.

the right-hand equation comes from 2.25. If Y'( ) is continuous and if Y'( ) is piecewise-
continuous, 1t follows from 4.2 and since Y(0—) = Y(0) = Y (0+) that

FD{YY=F{Y'} = sZ{Y} - Y(0)5:

the right-hand equation comes from (6), from {UY } = §{Y'} (see 2.25), and from (5). Note
the resemblance with the identity involvings Laplace transforms - often abusively applied to

singular systems of differential equations.
If X () is piecewise-continuous, it follows from (5) and 2.25 that

(7) Z{X}=6{X}={UX}

4.5. Suppose that H,( ) and H,( ) are piecewise-continuous on the interval [0, oo) .If
(8) H,(t)=H,(t) ... t>0,

then UH,( ) = UH,( ); therefore, {UH,} = {UH,} and it follows from (7) that

(9) FZ{H }=2{H,}.

4.6. A singular system
Let &G,( ) and G,( ) be continuous on the interval [0, oo) . Consider the system

(10) a Y (1) + a;Y; (1) + b, Y, (1) + bi Y, (1) = Gi(t) ...t >0,

where k = 1,2 . The coefficients a? and b7 are numbers, 0 # alaj = ajaf: the system is
singular, it may govern the currents in an electric circuit obtained by switching off (at time
t = 0) an earlier circuit which has determined the values Y, (0—) and Y, (0-).

Since (8) implies (9), the equations (10) imply the equations

(11) F{a Y| +aiY, + b)Y, + biYr} = Z{G,}...k=1,2
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To find the physically acceptable particular solution of the equatons (10), we replace (11) by
(12) o, FD{Y,}+aiZD{Y,}+ b, Z{Y,} + b; Z{Y,} = ZL{GC,}...k=1,2;
since it follows from (7) and (6) that
Z{Y,} = {UY,} and ZD{Y,}=s{UY,} - ¥,(0-)8
the system (12) becomes the system of algebraic equations
[a,s+ b J{UY,}+ [ats+ bi 1{UY,} = {UG,} + [a,Y,(0—) + a2 Y, (0—)]8,

where k = 1,2 . We suppose that 3, a5 # 3, a, , where

def 1.k 1 1k
By = ﬂ1bz"ﬂzbl+

Solving for {UY, } the above system of algebraic equations, we get
(13) {UY )} ={F}+{F}0={F+UF,},
where

ass+ b5 — B,1{a} G, —a3G,}
[B,a0% — B,a3]s + B, b3 — B, b,

(F} = -

and
—{aéYl(O—) + ﬂgyz(g“)]ﬁz

[ 5, ﬂ% — Byay)s + f b% — ﬁzbé |

{Fo}=

From 3.20 it results that

2

2
51“% — p,a

F(0+) = -[a] G, (0+) — a®G,(0+)]

and
—B, (a3 Y (0—=) + a3Y,(0—)]
Bya3 — Bya;
From (13) we have UY,( ) = F( )+ UF,( ),sothat Y,(t) = F(t) + Fy(t) fort > 0.

Similarly, UY, () = G( )+ UG, ( ) for continuous functions G( ) and G,( ). It turns out
that

Fy(0+) =

(14) 0=a,[Y;(0+) —Y;(0-)] + 5[ Y, (0+) = Y, (0-)]
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and

Y,(0+) = Y;(0-)  alG,(0+) — a3G,(0+) — B,Y,(0-) — B,Y,(0-)
(15) 2 - 2 1
as }31“1 _ﬁzﬂz

4.7. Continuous transition
As can be seen from (15), the equation Y, (0+) = Y, (0—) holds only when

ufG2(0+) — E%GI(D"‘) = £,Y,(0-) + 5,Y,(0-);

in the words of G. Doetsch [4, p. 73], this equation ensures «a continuous transition from the
past into the future».

4.8. The conservation property
Written 1n the form

;Y1 (0+) + a3 Y, (0+) = a3 Y} (0=) + a5 Y5 (0 ),

the equation (14) yields various physical conservation principles. For example when the sys-
tem (10) governs the currents in a perfectly coupled transformer, that equation states the prin-
ciple of «conservation of flux».

4.9. If 8,03 = B,a) , there are no functions Y, ( ) satisfying the equation (12); the response
of the circuit is impulsive — see 5.12.

5. INITIAL VALUES AT THE ORIGIN

5.1. Let (%) be the linear space generated by the family of operators of the form s*{X},
where k is an integer > 1 and X ( ) is a piecewise-continuous function such that 0 =

——

X(0-) and X'(w) =0 when X(w') = X(w) and —o00 < w < 00.

5.2. Since §s = {U}, the operator é belongs to (% ). The space (5 ) consists of singular
distributions; indeed, if Y'( ) is piecewise-continuous and such that {Y'} belongs to (%)
then {Y'} = {0} (see6.2). If p € (5 ) thenitfollows from 2.25 that ép € (5 ) ; moreover,
skp € (&) forevery integer k > 0 .

5.3 Definition. An operator y will be called differentiable if there is a piecewise-continuous
function Y () suchthat y — {Y'} belongsto (5 ), if so, then

(1) v() L Y(t-) ... —oco<t<oo
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and

ef
(2) Dy € sy — y(0)s°.

S.4. The definition (1) does not depend on the choice of the function Y ( ). if there are
piecewise-continuous functions Y, () such that y — {Y,} belongs to () for k = 1,2,
then Y, (1—) when —oo < t < oo. The proof is given in 6.3.

5.5. If y = {Y'} for some piecewise-continuous function Y( ), then y — {Y} = {0} €
(% ) ; therefore, Definition (1) becomes y(t) = Y(t—) (when —co < t < o0) and

Dy=D{Y}=s{Y}-Y(0-)s’

which agrees with4.1. If y=p € (¥ ),then y—{Y'} belongsto (& ) withY () = 0( );
therefore, y( ) = 0( ) and Dy = sp; in particular, since § € (& ), we have D = sé.

5.6. Let z be differentiable. Consequently, there is a piecewise-continuous function Z{( )
such that z = {Z} + p for some operator p € (% ) and

bz2=06{Z}+ ép={UZ} + bp;

the right-hand equation comes from 2.26 and 2.25; since it follows from 5.2 that ép € (%),
we have 6z — {UZ} € (% ); replacing y by 8z in 5.3, we find that 2z is differentiable and

(3.7) 02(1) =UZ(l—) =U({{-)Z2(t—-) =U(t=)z(L) ... — 00 <t < 00;

the middle equation comes from 2.25; to obtain the right-hand equation, note that 2z — {Z} €
(% ), whence 2(t) = Z(t—) . Consequently,

t<0

0

From 5.3 it results that
6Dz = 86z — 2(0)6 = 8f sz — 2(0)81;

the right-hand equation comes from recalling that 66 = & (see 2.27); in view of 4.4 we
therefore have

(5.9 FDz=8Fz—2(006 = L[sz— 2(0)8].
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3.10. It is now possible to re-state the singular system in 4.6. There are differentiable operators
y, and y, such that

(3) Zla Dy, + ai Dy, + by, + byy,] = Z{G,)} o k=1,2

and numbers Y,(0-) and Y, (0-) (originating from the past of the circuit) such that
Y, (0-)d, the system (3) becomes

(4) [u};a—i— bi]_%?yl + [u§3+ b%]gyz + bi.’zﬁ‘apyl + bi_%?yz = Z{G,}...k=1,2;

S.11. If z; and 2z, are differentiable, we shall write 2, = 2z, on (0,00) to indicate that
0z, = 0z, . Therefore, In view of 4.4,

(5) K2 =Fz, if(andonlyif) 2z =2z, on(0,o0)

5.12 Solving for Zy, the algebraic system (4) in case B,a5 # B,a; , we find that Ly, =
{UY;}, where UY,( ) is the function F'( ) + F,( ) obtained in 4.6. Now suppose that

B,a5 = B,a; and G,( ) = 0( ) = G,( ): in this case,

(6) Ly, = ab = bad = L ad,

where @ = [a}Y,(0—) + a2Y,(0-)18,/(8,b) — B,b3]. In view of (5) the equation (6)
can be written
y, = ad on (0,00)

this is the physically acceptable particular solution of the singular system (3), namely, of the
system

(7) al Dy, + a; Dy, + by, + bfy, = {0} on (0,00) ...k=1,2;

in simple circuits, agrecement with physical reality is readily observed — for example, when
the circuit involves a capacitor short-circuited at time t = 0 (causing an impulsive surge of
current), or the impulsive surge of voltage caused by opening a switch on a RL -loop circuit
atume t = 0.

Since (5.9) combines with (5) to give

Dz=sz—2(0)6 on(0,00),
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this equation combines with (7) to give the system of algebraic equations we have been dealing
with all along, without the symbol ¥ .

3.13. Let H;( ) and H,( ) be piecewise-continuous on [0, 00) . If
(8) H (1) = Hy(t) ... t>0
it follows from 4.5 and (5) that

{H,}={H,} on(0,00).
Conversely, if (8), it results from 4.4 that {U H, } = {U H }, and it results from 6.3 that

H (t—)=H,(t—) ... t>0.
S5.14. Let F'( ) be continuous on [0, 00). If
z={F} on(0,o00),
then 2(t) = F(t) fort > 0; also, if F'( ) is piecewise-continuous on [0, 0co) , the
Dz={UF'}+ [2(0+) — 2(0)]16 on(0,00).

3.15 We return briefly to the interval (—oo, 0o) to illustrate the effect of the operator 6 as an
impulse mput. Suppose that y and Dy are differentiable and such that

(9) D*y+y=38;
since it follows from (2) that

D*y=s"y —y(0)s — Dy(0)s’,
the equation (9) implies

o
s? +

(10) y = -+ {H} = é{sin7}+ {H} = §{F} + {H}.

where H( ) is the infinitely differentiable function such that { H} = [y(0) s+ Dy(0)]/[s* +
1] and F'(t) = sint for —oo < t < oo; the right-hand equation comes from (3.19). From
2.26 and 2.19 it results that y = {UF + H}; from 5.5 we conclude that

H(t) oo 1 <0

(11) y(t)=U(f—)F(t_)+h(t_):{H(t)+sint .. t>0.
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5.16. Zerostateat t = 0. If (9)and 0 = y(0) = Dy(0),then H( ) =0( ) andy = {UF'}.
Conversely, suppose that y = {UF}; scetting Y = UF in4.2, we obtain Dy = D{UF} =
{UF'}; replacing y by Dy and Y by UF’ in (1), we get

0 o 1 <0

Dy(t) = U F(i-) = {cost t> 0:;

consequently, Dy(0) = 0# Dy(0+) = 1; the equations y(0) = 0 = y(0+) are immediate
from (11). In order to verify (9), another application of 4.2 with Y = U F’ gives

D’y+y=D{UF}+y={UF'}+ F(0+)§+y=—y+y+ 8

6. APPENDIX

The aim of this section is to establish the assertion in 5.4 and a remark 1n 5.2.

6.1 Lemma. Let G( ) be continuous. If {G} = {X} for some piecewise-continuous func-
tion X( ), then

(7) X(w-) = G(w) — 00 < W < 00;
moreover, if 0= X(0—) and if
(8) 0=X"(z) when X(z)=X(z")...—00< T < 00,

then {G} = {0} = {X}.

Proof. By hypothesis, {G}/s = {X}/s; form (3.14) we find that {G = [} = {X = [}, since
both G x I( ) and X * I( ) are continuous, it results from 223 that Gx I( ) = X x I( );
therefore, it follows from 2.8 that

t
G(t) = [G* I (1) = %f X(w)aw) ...— o0 < 1 < 00;
0

the right-hand equation comes from (2.2); consequently,

(9) G(z) = X () when X(z1) = X(zx).
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If —0o < w < oo thereis a point {; < w such that the function X ( ) 1s continuous on
the open interval (t,,w); from (9) it follows that X (t) = G(t) when{, <t < w, whence

(10) X(w=-)=Gw=)=G(w) ... —oco<w<oo;

the right-hand equation comes from the continuity of G( ).
Having thus verified (7), suppose that (8) obtains:

(11) 0=X'(x2) =G (x) ... when X(z3%)=X(x2);
the right-hand equation comes from (9); consequently,

(12) G'xI(t) =0 — 00 <t < 00,

and from (3.15) we therefore have

(13) {G'}={G' xI}s={0}s={0}.

Since X () is piecewise-continuous, it follows from (11) that G'( ) is piecewise-
continuous; since G( ) is continuous, it results form 2.20 that

(14) 3{G} = G(0)s’ + {G'} = X(0-)s" + {0} = X (0—)s’;

the right-hand equations come from (10) and (13); since the operator s is inveruble, the equa-
tion (14) gives {G} = X (0-)s"/s; our hypothesis X(0—) = 0 (see (8)) now yields our
conclusion {G} = {0}.

6.2 Theorem. Let X,( ) be piecewise-continuous. If {X,} belongsto (¥ ), then {X,} =
{0}

Proof. Since, by hypothesis, {X,} belongs to (%),

(15) {Xo} = Es"‘{}(k},
k=1

where X, ( ) is piecewise-continuous, 0 = X, (0—), and

(16) 0=X,(z) when X,(z)=X,(z+) ...—00<z < 00.
To show that

(17) {0} ={X}=...={X1 } = {X;},
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we proceed by contradicuon.
Suppose that {X__}# 0 for some integer m > 1; let n be the least integer > 1 such that
{X.,}+#0; from (15) it results that

Sﬂ_

sh {Xﬂ—l } + {Xn}

(18) Ko} _ 3 ix 34 s

Suppose that 0 < k& < n— 1: 1n view of 3.20, the equation

k
9
S_,.,{Xk} = { X *G,}

holds for some infinitely differentiable function G,( ), also, the function X, » G, () 18
continuous. Therefore, (18) becomes

{Go * Xo} ={G » X} + ...+ {G,_; » X, } + {X, };
consequently, {G} = {X_}, where
G()=Gy*xXy() -G *xX,()—...—-G__ *X__,();

since G( ) is continuous, it results from {G} = {X } and since (16) holds for k& = n,
we may apply 6.1 to conclude that {G} = {0} = {X_}, equations which contradict our
assumption {X_}# {0}. This establishes (17), whence (15) gives {X,} = {0}.

6.3 Theorem. Let Y () and Y,( ) be piecewise-continuous. If y — {Y,} and y — {Y, }
belong to (¥ ), then Y, (1—) = Y,(t—) for —oo <t < 00.

Proof. By hypothesis, y = {Y,} + p, for some operators p, and p, belonging to (%) ;
therefore, {Y;} + p; = {Y5}+ p,, hence {Y;} ~{Y,} = p, — p;; since p, — p, belongs to
(.% ), we infer that

(19) {Y;}— {Y; } belongs to (% ).
Let X( ) be the piecewise-continuous function such that
(20) X(t) =Y,(1) — ¥, (1)

at every point t where both Y, () and Y,( ) arc conunuous; the reasoning in 2.19 shows
that {X} = {Y;} — {Y, }; from (19) we conclude that { X } belongs to (% ) and it results
from 6.2 that {X } = {0}; thus, {X} = {G}, where G( ) = O( ) (the constant zero); from
6.2 we obtain

X(w=)=Gw)=0 ... —o0o<w< oo,

so that (20) yields the conclusion Y, (w—) — ¥, (w—) = 0.
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