THE INITIAL-VALUE PROBLEM FOR SINGULAR SYSTEMS OF DIFFERENTIAL EQUATIONS

GREGERS KRABBE

Dedicated to the memory of Professor Gottfried Köthe

Let A and B be $n \times n$ matrices, let A be a singular matrix and let c_1, \ldots, c_n be arbitrary numbers. Consider the system of differential equations

(1)
$$AY'(t) + BY(t) = 0 \dots t > 0$$
,

where Y is an unknown n-vector of differentiable functions such that

(2)
$$Y_1(0) = c_1, \dots, Y_n(0) = c_n.$$

G. Doetsch [4] was the first to satisfactorily discuss such problems: the exension of the one-sided Laplace transformation used in [4] is in the present paper replaced by an endomorphism $y \to \mathcal{L}y$ of an algebra of generalized functions; our basic equation $\mathcal{L}Dy = s\mathcal{L}y - y(0)\delta$ (where δ is the Dirac distribution) leads to the system of algebraic equations studied in [1]-[6] and [8]; our basic equation is akin to the «generalized Mikusinski formula» obtained in [8] but does not require the very deep properties established in [8]. Initial-value problems for singular systems occur in applications; an example is discussed in §4 and §5.

1. OPERATORS

Test-functions are infinitely differentiable complex-valued functions defined on $(-\infty, \infty)$, they and their derivatives vanish at the origin.

Thus, a test-function $\phi()$ is such that $0 = \phi(0) = \phi^{(n)}(0)$ for every integer $n \ge 0$. The equations $0 = \phi(0)$ and $\phi(t) = \exp(-1/|t|)$ for $-\infty < t < \infty$ define a test-function.

Operators assign test-functions to test-functions. Let p be an operator: if $\phi()$ is a test-function, we denote by p: $\phi()$ the test-function that the operator p assigns to the test-function $\phi()$. Let p_1 and p_2 be operators. The operator p_1p_2 is such that

$$(1.1) p_1 p_2 : \phi() = p_1 : [p_2 : \phi]()$$

for every test-function $\phi()$. The equation $p_1=p_2$ holds only when $p_1:\phi()=p_2:\phi()$ for every test-function $\phi()$.

If n is an integer ≥ 0 , the operator s^n assigns to each test-function $\phi()$ its derivative $\phi^{(n)}()$. In particular,

$$s: \phi() = \phi'()$$
 and $s^0: \phi() = \phi()$.

Let p, p_1 and p_2 be operators. From (1.1) it follows that

(1.3)
$$ps: \phi() = p: \phi'()$$
 and $sp: \phi() = [p: \phi]'()$

for every test-function $\phi()$. The operator $p_1 \pm p_2$ assigns to each test-function $\phi()$ the test-function p_1 : $\phi() \pm p_2$: $\phi()$:

$$[p_1 \pm p_2]: \phi(t) = p_1: \phi(t) \pm p_2: \phi(t) \dots - \infty < t < \infty.$$

Let α and α_1 be numbers (possibly complex). The operators αs^0 assigns to each test-function $\phi()$ the function $\alpha\phi()$; consequently,

$$[\alpha s^0] p: \phi(t) = \alpha [p: \phi(t)] \dots - \infty < t < \infty$$

for every test-function $\phi(\)$. Addition is associative and commutative. The following equations are easily verified

(1.6)
$$[\alpha + \alpha_1] s^0 = \alpha s^0 + \alpha_1 s^0$$
 and $\alpha \alpha_1 s^0 = [\alpha s^0] \alpha_1 s^0;$

also,

$$(1.7) 1s^0 = s_0,$$

(1.8)
$$ps^0 = p = s^0 p = [1s^0]p,$$

$$(1.9) p - p_1 = p + [-1s^0]p,$$

(1.10)
$$0s^0 + p = p$$
 and $p - p = 0s^0$,

(1.11)
$$[p_1 + p_2]p = p_1p + p_2p$$
 and $p_1[p_2p] = [p_1p_2]p$,

2. FUNCTION-LIKE OPERATORS

Let G() be a function whose derivative G'() is *continuous* (i.e., continuous on the interval $(-\infty,\infty)$). Let Y() be piecewise-continuous (only a finite number of jumps in any finite sub-interval of $(-\infty,\infty)$). We write

(2.1)
$$Y * G(t) \stackrel{\text{def}}{=} \int_0^t Y(\omega) G(t-\omega) d\omega \dots - \infty < t < \infty,$$

where

$$\int_0^t = -\int_t^0 \dots t < 0;$$

also, we denote by I() the unit constant:

$$I(x) = 1$$
 ... $-\infty < x < \infty$;

accordingly,

(2.2)
$$Y * I(t) = \int_0^t Y(\omega) d\omega \quad \dots \quad -\infty < t < \infty.$$

If

$$(2.3) F = Y * I,$$

then F() is a continuous function, 0 = F(0) and

$$Y * G(t) = \int_0^t F'(\omega)G(t-\omega)d\omega = F(\omega)G(t-\omega)\bigg|_0^t + \int_0^t F(\omega)G'(t-\omega)d\omega$$

when $-\infty < t < \infty$; consequently,

$$(2.4) Y * G() = G(0)F() + F * G'()$$

2.5 Remark If $\phi()$ is a test-function, then $\phi(0) = 0$ and (2.2) gives

(2.6)
$$\phi' * I(t) = \int_0^t \phi'(\omega) d\omega = \phi(t) - 0 \qquad \dots \qquad -\infty < t < \infty.$$

2.7. Remark. The space of continuous functions forms a commutative ring (see [9]); in particular,

$$G * H() = H * G()$$
 and $G * [H * H_1]() = [G * H] * H_1()$

for continuous functions G(), H(), and $H_1()$.

2.8. Remark. If G() is continuous, then [G*I]'()=G(). To verify that [G*I]'(0)=G(0), note that

$$G * I(\varepsilon) - G * I(0) = \int_0^{\varepsilon} G(\omega) d\omega = G(\omega_{\varepsilon}) \varepsilon,$$

so that $\lim [G * I(\varepsilon) - G * I(0)]/\varepsilon = \lim G(\omega_{\varepsilon}) = G(0)$ as $\varepsilon \to 0$: these equations come from the Mean Value Theorem and $0 < |\omega_{\varepsilon}| < \varepsilon$.

2.9 Theorem. Let Y() be piecewise-continuous: also, let F = Y * I. If $\phi()$ is a test-function, then $F * \phi()$ is a test-functions

$$(2.10) Y * \phi() = F * \phi'() = [F * \phi]'()$$

and

$$(2.11) Y * \phi'() = [Y * \phi]'().$$

Proof. Set $G = \phi$ in (2.4) to obtain $Y * \phi() = F * \phi'()$; this establishes the left side of (2.10). Let n be any integer ≥ 0 and set $\phi_n() = \phi^{(n)}()$; in particular, $\phi_0() = \phi()$. Note that $\phi_n()$ is a test-function. Since both F() and $\phi'_n()$ are continuous, it follows from 2.7 that

(3)
$$[F * \phi'_n] * I() = F * [\phi'_n * I]() = F * \phi_n();$$

the right-hand equation comes from (2.6); since $F * \phi'_n()$ is continuous, we can set $G = F * \phi'_n$ in 2.8 to obtain

$$G() = [G * I]'() = [F * \phi_n]'();$$

the right-hand equation comes from $G = F * \phi'_n$ and (3); thus,

(4)
$$F * \phi'_n() = [F * \phi_n]'().$$

Choosing n=0 in (4) gives the right-hand equation in (2.10), namely, $F*\phi'()=[F*\phi_n]'()$.

To verifty that the equation

(5)
$$F * \phi^{(m)}() = [F * \phi]^{(m)}()$$

holds for every integer $m \ge 1$, we proceed by induction. Set n = m in (4) to obtain

$$F * \phi^{(m+1)}() = [F * \phi^{(m)}]'() = [F * \phi]^{(m+1)}();$$

the right-hand equation comes from the induction hypothesis (5). Thus, (5) holds for every integer $m \ge 1$; since $\phi^{(m)}()$ is continuous, the function $F * \phi^{(m)}()$ is continuous and vanishes at the origin; accordingly, (5) states the m^{th} derivative of $F*\phi()$ has the properties; consequently, that function is a test-function.

It remains to verify (2.11). From (2.10) we get

(6)
$$[Y * \phi]'() = [F * \phi]^{(2)}() = F * \phi^{(2)}();$$

the right-hand equation comes from (5); replacing ϕ by ϕ' in (2.10), we get

$$Y * \phi'() = F * \phi^{(2)}() = [Y * \phi]'();$$

the right-hand equation comes from (6).

2.12 Definition. Let Y() be piecewise-continuous. We shall denote by $\{Y\}$ the operator that assigns to each test-function $\phi()$ the test-function $Y * \phi()$:

(2.13)
$$\{Y\}: \phi(t) = Y * \phi(t) = \int_0^t Y(\omega)\phi(t-\omega)d\omega \dots - \infty < t < \infty.$$

2.14. Again, let $\phi()$ be a test-function. If H() is continous, it follows from (1.3) that

$$\{H\}s:\phi(\)=\{H\}:\phi'(\)=H*\phi'(\);$$

the right-hand equation can be obtained by replacing Y by H in (2.13). As in 2.9, suppose that $F(\) = Y * I(\)$ and let $Y(\)$ be piecewise-continuous. From (2.15) and (2.10) we get

$${F}s: \phi() = F * \phi'() = Y * \phi() = {Y}: \phi();$$

the right-hand equation comes from (2.13); since $\phi()$ is arbitrary, we conclude that $\{F\}s = \{Y\}$, namely,

$$\{Y * I\}s = \{Y\}.$$

From (2.15) we get

$${I}s: \phi() = I * \phi'() = \phi' * I() = \phi() = s^0: \phi():$$

the right-hand equations come from 2.7, (2.6), and (1.2); consequently,

$$\{I\}s = s^0.$$

2.18 Theorem. If Y() is piecewise-continuous, then $\{Y\}s = s\{Y\}$.

Proof. Let $\phi()$ be an arbitrary test-function. From (1.3) we have

$$\{Y\}s:\phi(\)=\{Y\}:\phi'(\)=Y*\phi'(\)=[Y*\phi]'(\)=[\{Y\}:\phi]'(\)=s\{Y\}:\phi(\);$$

the right-hand equations come from (2.11), (2.13) and (1.3). Consequently,

$${Y}s: \phi(\) = s{Y}: \phi(\)$$

for every test-function $\phi(\)$. The conclusion $\{Y\}s=s\{Y\}$ is at hand.

2.19 Theorem. Let $H_1()$ and $H_2()$ be continuous; also, let a be a number. If $H() = aH_1() + H_2()$, then

(6)
$$\{H\} = [\alpha s^0]\{H_1\} + \{H_2\}.$$

Proof. Let $\phi()$ be an arbitrary test-function. Set $\alpha_1 = \alpha$ and $\alpha_2 = 1$. From (2.1) we have

$$H * \phi(t) = \int_0^t \sum_{k=1}^2 \alpha_k H_k(\omega) \phi(t - \omega) d\omega = \sum_{k=1}^2 \alpha_k [H_k * \phi](t)$$

when $-\infty < t < \infty$; from (2.12) it results that

$$\{H\}: \phi(t) = \alpha[\{H_1\}: \phi(t)] + \{H_2\}: \phi(t) = [\alpha s^0]\{H_1\}: \phi(t) + \{H_2\}: \phi(t)$$

the right-hand equation comes from (1.5). Since $\phi()$ is arbitrary, the conclusion (6) comes from (1.4).

2.20 Theorem. If H() is a continuous function whose derivative H'() is piecewise-continuous, then

(7)
$$\{H\}s = H(0)s^0 + \{H'\}.$$

Proof. From the Fundamental Theorem of Calculus we have

$$H(t) = H(0) + \int_0^t H'(\omega) d\omega = H(0)I(t) + H' * I(t)$$

the right-hand equation comes from (2.2); since this holds when $-\infty < t < \infty$, it results form 2.19 that

$${H} = [H(0)s^{0}]{I} + {H' * I}$$

to which we may apply the right-factorization (1.11) to get

$${H}s = [H(0)s^{0}]{I}s + {H' * I}s = [H(0)s^{0}]s^{0} + {H'}:$$

the right-hand equation comes from (2.17) and (2.16): the conclusion (7) is obtained by setting $p = H(0)s^0$ in (1.8).

2.21 Remark. Let $H_1()$ and $H_2()$ be continuous. The equations

$${H_1 \pm H_2} = {H_1} \pm {H_2}$$
 and ${0} = 0s^0$

can be obtained by setting a=1 and a=-1, respectively, in 2.19 and taking into account (1.7)-(1.10); for the right-hand equation, note that I-I() is the constant O() and I-I=I = I=I=I=I=I=I is the constant I=I=I=I=I=I=I=I.

If $H_1() = H_2()$, then $\{0\} = \{H_1 - H_2\} = \{H_1\} - \{H_2\}$ and it follows from (1.11)-(1.12) that $\{H_1\} = \{H_2\}$.

2.22 Lemma. If G() and H() are continuous, then

(8)
$$\{G*H\} = \{G\}\{H\} = \{H\}\{G\}.$$

Proof. Let $\phi()$ be an arbitrary test-function. From (2.13) and 2.7 we have

$${G * H} : \phi() = [G * H] * \phi() = G * [H * \phi]() = {G} : [{H} : \phi]();$$

similarly,

$$\{H * G\}: \phi() = \{H\}: [\{G\}: \phi]() = \{H\}\{G\}: \phi();$$

the right-hand equations come from (1.1); since H*G()=G*H() (see 2.7), the conclusion (8) is at hand.

2.23 Theorem. Let $G_1()$ and $G_2()$ be continuous. If $\{G_1\} = \{G_2\}$, then $G_1() = G_2()$.

Proof. This is an immediate consequence of Titchmarsh's Convolution Theorem: instead using it, we shall use the Bounded Convergence Theorem.

Let k be any integer ≥ 0 . The equations

$$0 = \phi_k(0)$$
 and $\phi_k(\omega) = \exp\left(\frac{-1}{k|\omega|}\right) \dots \omega \neq 0$

define a test-function $\phi_k()$ such that

(9)
$$\lim_{k \to \infty} \phi_k(\omega) = 1 \qquad \dots \qquad \omega \neq 0.$$

Replacing Y by G_n in (2.13), we get

(10)
$$\{G_n\}: \phi_k(\) = G_n * \phi_k(\) = \phi_k * G_n(\);$$

the right-hand equation comes from 2.7. Our hypothesis implies that $G_1: \phi_k(\) = G_2: \phi_k(\)$; consequently, it results from (10) that $\phi_k * G_1(\) = \phi_k * G_2(\)$ whence, in view of (2.1)

$$\int_0^\tau \phi_k(\omega) G_1(\tau-\omega) d\omega = \int_0^\tau \phi_k(\omega) G_2(\tau-\omega) d\omega \dots - \infty < \tau \neq 0 < \infty,$$

so that

(11)
$$0 = \int_0^\tau \phi_k(\omega) [G_1(\tau - \omega) - G_2(\tau - \omega)] d\omega = \int_0^\tau f_k(\omega) d\omega,$$

where

(12)
$$f_k(\omega) = \phi_k(\omega)[G_1(\tau - \omega) - G_2(\tau - \omega)].$$

Since $0 \le \phi_k(x) \le 1$ for $-\infty < x < \infty$ we have

(13)
$$|f_k(\omega)| \le \max_{0 \le |x| \le |\tau|} |G_1(x) - G_2(x)|;$$

also, the function $f_k()$ is continuous and

(14)
$$f_{\infty}(\omega) \stackrel{\text{def}}{=} \lim_{k \to \infty} f_k(\omega) = G_1(\tau - \omega) - G_2(\tau - \omega) \dots \omega \neq 0$$

the right-hand equation comes from (12) and (9). Since $f_{\infty}()$ is integrable, taking into account (13)-(14), we may apply Arzelà's theorem to obtain from (11) that

$$0 = \lim_{k \to \infty} \int_0^{\tau} f_k(\omega) d\omega = \int_0^{\tau} f_{\infty}(\omega) d\omega = \int_0^{\tau} [G_1(\tau - \omega) - G_2(\tau - \omega)] d\omega;$$

the right-hand equation comes from (14); therefore,

$$\int_0^{\tau} G_1(\tau - \omega) d\omega = \int_0^{\tau} G_2(\tau - \omega) d\omega \qquad -\infty < \tau \neq 0 < \infty;$$

consequently, $I*G_1()=I*G_2()$, whence $G_1*I()=G_2*I()$, hence $[G_1*I]'()=[G_2*I]'()$ and we may use 2.8 to conclude that $G_1()=G_2()$.

2.24. The unit step-function

We shall denote by U() the function

$$U(t) = \begin{cases} 0 & \dots & t < 0 \\ 1 & \dots & t \geq 0; \end{cases}$$

and by δ the operator such that

(15)
$$\delta: \phi(t) = U(t)\phi(t) \qquad \dots \qquad -\infty < t < \infty$$

for every test-function $\phi()$.

2.25 Theorem. Let X() be piecewise-continuous. If UX() is the function such that

$$UX(t) = U(t)X(t) = \begin{cases} 0 & \dots & t < 0 \\ X(t) & \dots & t \ge 0, \end{cases}$$

then $\delta\{X\} = \{UX\}$.

Proof. Let $\phi()$ be an arbitrary test-function; also, suppose that $-\infty < t < \infty$. From (1.1) it results that

$$\delta{X}: \phi(t) = \delta: [{X}: \phi](t) = U(t)[{X}: \phi(t)];$$

the right-hand equation is obtained by replacing ϕ in (15) by $\{X\}$: ϕ ; from (2.13) we therefore have

$$\delta\{X\} : \phi(t) = U(t) \int_0^t X(\omega) \phi(t-\omega) d\omega = \int_0^t U X(\omega) \phi(t-\omega) d\omega;$$

we can therefore replace Y by UX in (2.13) to obtain $\delta\{X\}$: $\phi(t) = \{UX\}$: $\phi(t)$ for $-\infty < t < \infty$. Since $\phi(\cdot)$ is arbitrary, the conclusion $\delta\{X\} = \{UX\}$ is at hand.

2.27. The equations

$$\delta = \{U\}s$$
 and $\delta \delta = \delta$

can be verified as follows. From (1.8) and (2.17) it follows that

$$\delta = \delta s^0 = \delta[\{I\}s] = [\delta\{I\}]s = [\{UI\}]s = \{U\}s;$$

the right-hand equations are from 2.25. Next,

$$\delta\delta = \delta[\{U\}s] = [\delta\{U\}]s = \{UU\}s = \{U\}s = \delta.$$

3. DISTRIBUTION-LIKE OPERATORS

An operator will be called distribution-like if it has the form $\{H_1\}s^m$, where $H_1()$ is a continuous function and m is an integer ≥ 0 . If Y() is piecewise-continuous, it follows from (2.16) that $\{Y\} = \{H_1\}s$, where $H_1()$ is the continuous function Y*I(); consequently, the operator $\{Y\}$ is distribution-like.

3.1 Let a be a number. To verify that as^0 is distribution-like, let H() be the constant a(); since H(0) = a and since H'() = 0(), it follows from 2.20 and 2.21 that

$${H}s = H(0)s^{0} + {0} = as^{0} + 0s^{0} = as^{0};$$

consequently, $as^0 = \{H\}s$ and as^0 is distribution-like; setting a = 1 and using (1.7), we find that s^0 is distribution-like. Since $\delta = \{U\}s$, that operator is also distribution-like. Since $s = s^0s = \{I\}ss = \{I\}s^2$ in view of (2.17), the operator s is also distribution-like.

3.2 Let \mathscr{C} be the ring of all operators of the form $\{H_1\}$, where $H_1()$ is continuous. If g, h, and h_1 belong to \mathscr{C} , then

$$g = \{G\}, \quad h = \{H\}, \quad \text{and} \quad h_1 = \{H_1\}$$

for continuous functions $G(\)$, $H(\)$, and $H_1(\)$, from 2.22 and 2.21 we have

(1)
$$gh = \{G * H\} = hg$$
 and $g + h = \{G * H\};$

consequently, the operators gh and g+h belong to \mathscr{C} .

3.3. Remark. An operator c is distribution-like only if there is an integer $k \ge 0$ such that $c = h_1 s^k$ for some operator h_1 belonging to \mathscr{C} .

As we shall see, distribution-like operators form a commutative algebra. Repeated use will be made of the equations

(2)
$$p_1[p_2p] = [p_1p_2]p, ps^0 = p = s^0p$$

and

$$[p_1 + p_2]p = p_1p + p_2p,$$

which hold for any three operators p, p_1 , and p_2 .

3.5. Set $i = \{I\}$. From (2.17) it follows that

(3.5)
$$s^0 = \{I\}s = s\{I\} = si = is;$$

the middle equation comes form 2.18. Since the operator i belongs to the ring \mathscr{C} , it follows from 3.2 that the operators $ii = i^2, \ldots, i^n i = i^{n+1}, \ldots$ all belong to the ring \mathscr{C} . To verify that the equation

$$i^k s^k = s^0$$

holds for every integer $k \ge 1$, we proceed by induction:

$$i^{k+1}s^{k+1} = i^ki[ss^k] = i^k[is]s^k = i^ks^0s^k = i^ks^k = s^0$$

the right-hand equations come from (3.5) and the induction hypothesis (3.6).

3.7 Remark. Let $y = \{Y\}$ for some continuous function Y(). From (2.18) it follows that sy = ys. To verify that the equation

$$(3.8) s^k y = y s^k$$

holds for every integer $k \ge 1$, we proceed by induction:

$$s^{k+1}y = ss^ky = s[s^ky] = s[ys^k] = [sy]s^k = [ys]s^k = y[ss^k] = ys^{k+1}$$

the right-hand equations come from the induction hypothesis (3.8) and from the equation sy = ys.

3.9 Theorem. If a and b are distribution-like, then ab and a + b are distribution-like; also, ab = ba.

Proof. Since a and b are distribution-like it follows from 3.3 the existence of integers m and $n \ge 0$ such that

(3)
$$a = gs^m$$
 and $b = hs^n$

for some operators g and h belonging to the commutative ring \mathscr{C} . Consequently,

(4)
$$ab = gs^m hs^n = g[s^{n}h]s^n = g[hs^m]s^n = g[hs^ms^n] = ghs^{m+n};$$

the right-hand equations come from (3.8) and (2); since it follows from 3.2 that gh belongs to the ring \mathcal{E} , it follows from (3)-(4) and 3.3 that ab is distribution-like. By exchanging the positions of a and b in (4), we get

$$ba = hgs^{n+m} = ghs^{m+n} = ab;$$

the right-hand equations come from (1) and (4).

It only remains to consider the operator a + b. From (3) we have

$$a + b = gs^{0}s^{m} + hs^{0}s^{n} = g[i^{n}s^{n}]s^{m} + h[i^{m}s^{m}]s^{n}$$
$$= gi^{n}[s^{n}s^{m}] + hi^{m}[s^{m}s^{n}] = [gi^{n} + hi^{m}]s^{m+n},$$

the right-hand equations come from (3.6), from (2), and from (3.4). Set $h_1 = gi^n + hi^m$, since

(5)
$$a + b = h_1 s^k \dots \text{ if } k = m + n,$$

it will result from 3.3 that a+b is distribution-like once it has been established that $gi^n + hi^m$ belongs to \mathscr{C} ; to that effect, note that (as pointed out above) both i^n and i^m belong to \mathscr{C} ; from 3.2 we may therefore infer that gi^n and hi^m also belong to the ring \mathscr{C} ; we may now replace g by gi^n and h by hi^m in 3.2 to conclude that $gi^n + hi^m$ belongs to \mathscr{C} . Since $h_1 = gi^n + hi^m$ in (5), we conclude that a + b is distribution-like.

3.10. Suppose that a, b and c are distribution-like. From 3.9 we get

$$ba + bc = ab + cb = [a + c]b = b[a + c];$$

the right-hand equations come from (3.4) and by replacing a by a + c in 3.9. Conclusion: distribution-like operators form a commutative ring.

Let α be a number; we write

(3.11)
$$\alpha a \stackrel{\text{def}}{=} [\alpha s^0] a$$
 and $b \pm \alpha \stackrel{\text{def}}{=} b \pm \alpha s^0$;

since it follows from 3.1 that αs^0 is distribution-like, the operators in (3.11) are distribution-like. If H() is the constant O(), it follows from 2.21 and (1.7)-(1.11) that

$${H} = {0} = 0s^0 = 0a = b - b + -1b$$

and $a + \{0\} = a = 1a$. All the laws of algebra hold; for example,

$$\alpha[ab] = [\alpha a]b = \alpha ab$$
 and $\alpha b + \beta b = [\alpha + \beta]b$

for any numbers α and β .

3.12. Invertibility

An operator v is called *invertible* if it is distribution-like and if $vb = s^0$ for some distribution-like operator b. Let v be invertible; we denote by s^0/v the unique distribution-like operator b such that $vb = s^0$; if a is an operator, then

$$\frac{a}{v} \stackrel{\text{def}}{=} a \frac{s^0}{v}$$
.

Let a and b be distribution-like. If v and w are invertible, then a/v = b/w if (and only if) aw = bv. All the familiar rules for fractions apply.

3.13. Let α be a number. If $H(t) = e^{\alpha t}$ for $-\infty < t < \infty$, it follows from 2.20 that

$${H}s = H(0)s^{0} + {H'} = 1s^{0} + [\alpha s^{0}]{H}$$
:

the right-hand equation comes from 2.19; consequently, $s\{H\} - \alpha s^0\{H\} = s^0$, whence $[s-\alpha s^0]\{H\} = s^0$; the distribution-like operator $s-\alpha$ is invertible and $\{H\} = s^0/[s-\alpha]$.

3.14. In particular, the operator s-0 is invertible. Let Y() be piecewise-continuous. Since it follows from (2.16) that $s\{Y*I\} = \{Y\}$ and since $\{Y*I\}$ is distribution-like, we conclude that

$$(3.15) {Y * I} = {Y}/s.$$

3.16. Suppose that G() is continuous. If G'() is piecewise-continuous, it follows from 2.20 that

(3.17)
$$\{G'\} = s\{G\} - G(0)s^0.$$

3.18. Suppose that $F(t) = \sin t$ for $-\infty < t < \infty$. From (3.17) it follows that $\{F'\} = s\{F\}$; replacing G by F' in (3.17), we get

$${F''} = s{F'} - F'(0)s^0 = s^2{F} - s^0,$$

thus,

$$s^0 = s^2\{F\} - \{F''\} = s^2\{F\} + \{F\} = [s^2 + 1]\{F\};$$

therefore, $s^2 + 1$ is invertible and

(3.19)
$$\{\sin \tau\} \stackrel{\text{def}}{=} \{F\} = \frac{s^0}{s^2 + 1}.$$

3.20. Let $\alpha_0, \ldots, \alpha_n$ and β_0, \ldots, β_n be numbers, $n \ge 1$ and $\alpha_n \ne 0$; set

$$v = \alpha_n s^n + \ldots + \alpha_0$$
 and $b = \beta_n s^n + \ldots + \beta_0$.

The operator v is invertible; if F() is piecewise-continuous, then

$$\frac{b}{v}\{F\} = \left\{\frac{\beta_n}{\alpha_n}F + F * G\right\},\,$$

where F * G() is continuous and has a piecewise-continuous derivative. If y is an operator such that

$$[\alpha_n s^n + \ldots + \alpha_0] y = \beta_{n-1} s^{n-1} + \ldots + \beta_0,$$

then $y = \{P_n\}$ for some infinitely differentiable function $P_n()$ such that $P_n(0) = \beta_{n-1}/\alpha_n$.

126 Gregers Krabbe

4. A SINGULAR SYSTEM OF DIFFERENTIAL EQUATIONS

With the help of 3.20, 2.19 and elementary results such as the ones in 3.15-3.19, non-singular systems of differential equations on the whole real line $(-\infty, \infty)$ can be solved by proceeding as when using one-sided Laplace transforms.

4.1 Definition. If Y() is piecewise-continuous, we write

(1)
$$D\{Y\} \stackrel{\text{def}}{=} s\{Y\} - Y(0-)s^0.$$

4.2 Theorem. Let Y() be a piecewise-continuous function which is continuous except possibly at the origin. If Y'() is piecewise-continuous, then

(2)
$$D\{Y\} = \{Y'\} + [Y(0+) - Y(0-)]\delta.$$

Proof. Set

(3)
$$G(t) = Y(t) - [Y(0+) - Y(0-)]U(t) \qquad \dots - \infty < t \neq 0 < \infty$$

and G(0) = Y(0-). Since G(0+) = Y(0-) = G(0) and G(0-) = Y(0-), the function G() is continuous and G'(t) = Y(t) for $t \neq 0$; consequently, G'() is piecewise-continuous and it follows from (3.17) that

$$\{G'\} = \{G\}s - G(0)s^{0}$$

$$= [\{Y\} - [Y(0+) - Y(0-)]\{U\}]s - G(0)s^{0} \dots \text{ from (3) and (2.19)}$$

$$= \{Y\}s - [Y(0+) - Y(0-)]\delta - Y(0-)s^{0};$$

this last equation comes from 2.27 and G(0) = Y(0-). Therefore,

(4)
$$s\{Y\} - Y(0-)s^0 = \{G'\} + [Y(0+) - Y(0-)]\delta.$$

Since G'(t) = Y'(t) when $t \neq 0$, we have G' * I() = Y' * I(), so that $\{G' * I\}s = \{Y' * I\}s$ and (3.14) gives $\{G'\} = \{Y'\}$; consequently, the conclusion (2) now comes from (4) and (1).

4.3. The operator δ corresponds to the Dirac distribution: see 5.15; from (1) and 2.27 it follows that $\delta = D\{U\}$. The equation (2) holds for the distributional derivative of the distributions generated by the functions Y() and Y'().

4.4. Notation

If a is an operator, then

$$\mathscr{L}a \stackrel{\mathrm{def}}{=} \delta a.$$

From (1) it follows that

(6)
$$\mathscr{L}D\{Y\} = s\delta\{Y\} - Y(0-)\delta = s\{UY\} - Y(0-)\delta.$$

the right-hand equation comes from 2.25. If Y() is continuous and if Y'() is piecewise-continuous, it follows from 4.2 and since Y(0-)=Y(0)=Y(0+) that

$$\mathcal{L}D\{Y\} = \mathcal{L}\{Y'\} = s\mathcal{L}\{Y\} - Y(0)\delta$$
:

the right-hand equation comes from (6), from $\{UY\} = \delta\{Y\}$ (see 2.25), and from (5). Note the resemblance with the identity involvings Laplace transforms - often abusively applied to singular systems of differential equations.

If X() is piecewise-continuous, it follows from (5) and 2.25 that

$$\mathscr{L}\{X\} = \delta\{X\} = \{UX\}.$$

4.5. Suppose that $H_1()$ and $H_2()$ are piecewise-continuous on the interval $[0,\infty)$. If

(8)
$$H_1(t) = H_2(t) \dots t > 0$$
,

then $UH_1() = UH_2()$; therefore, $\{UH_1\} = \{UH_2\}$ and it follows from (7) that

$$\mathscr{L}\{H_1\} = \mathscr{L}\{H_2\}.$$

4.6. A singular system

Let $G_1()$ and $G_2()$ be continuous on the interval $[0,\infty)$. Consider the system

(10)
$$a_k^1 Y_1'(t) + a_k^2 Y_2'(t) + b_k^1 Y_1(t) + b_k^2 Y_2(t) = G_k(t) \dots t > 0,$$

where k=1,2. The coefficients a_k^n and b_k^n are numbers, $0 \neq a_1^1 a_2^2 = a_2^1 a_1^2$: the system is singular, it may govern the currents in an electric circuit obtained by switching off (at time t=0) an earlier circuit which has determined the values $Y_1(0-)$ and $Y_2(0-)$.

Since (8) implies (9), the equations (10) imply the equations

(11)
$$\mathscr{L}\left\{a_k^1 Y_1' + a_k^2 Y_2' + b_k^1 Y_1 + b_k^2 Y_2\right\} = \mathscr{L}\left\{G_k\right\} \dots k = 1, 2$$

To find the physically acceptable particular solution of the equations (10), we replace (11) by

(12)
$$a_k^1 \mathcal{L}D\{Y_1\} + a_k^2 \mathcal{L}D\{Y_2\} + b_k^1 \mathcal{L}\{Y_1\} + b_k^2 \mathcal{L}\{Y_2\} = \mathcal{L}\{G_k\} \dots k = 1, 2;$$

since it follows from (7) and (6) that

$$\mathcal{L}{Y_k} = \{UY_k\}$$
 and $\mathcal{L}D{Y_k} = s\{UY_k\} - Y_k(0-)\delta$,

the system (12) becomes the system of algebraic equations

$$[a_k^1 s + b_k^1] \{ UY_1 \} + [a_k^2 s + b_k^2] \{ UY_2 \} = \{ UG_k \} + [a_k^1 Y_1(0-) + a_k^2 Y_2(0-)] \delta,$$

where k = 1, 2. We suppose that $\beta_1 a_2^2 \neq \beta_2 a_2^1$, where

$$\beta_k \stackrel{\text{def}}{=} a_1^1 b_2^k - a_2^1 b_1^k.$$

Solving for $\{UY_1\}$ the above system of algebraic equations, we get

$$\{UY_1\} = \{F\} + \{F_0\}\delta = \{F + UF_0\},\$$

where

$$\{F\} = \frac{[a_2^2 s + b_2^2 - \beta_2]\{a_1^2 G_2 - a_2^2 G_1\}}{[\beta_1 a_2^2 - \beta_2 a_2^1]s + \beta_1 b_2^2 - \beta_2 b_2^1}$$

and

$$\{F_0\} = \frac{-[a_2^1 Y_1(0-) + a_2^2 Y_2(0-)]\beta_2}{[\beta_1 a_2^2 - \beta_2 a_2^1]s + \beta_1 b_2^2 - \beta_2 b_2^1}.$$

From 3.20 it results that

$$F(0+) = \frac{a_2^2}{\beta_1 a_2^2 - \beta_2 a^1} [a_1^2 G_2(0+) - a^2 G_1(0+)]$$

and

$$F_0(0+) = \frac{-\beta_2 [a_2^1 Y_1(0-) + a_2^2 Y_2(0-)]}{\beta_1 a_2^2 - \beta_2 a_2^1}$$

From (13) we have $UY_1(\)=F(\)+UF_0(\)$, so that $Y_1(t)=F(t)+F_0(t)$ for t>0. Similarly, $UY_2(\)=G(\)+UG_0(\)$ for continuous functions $G(\)$ and $G_0(\)$. It turns out that

(14)
$$0 = a_2^1 [Y_1(0+) - Y_1(0-)] + a_2^2 [Y_2(0+) - Y_2(0-)]$$

The initial-value problem for singular systmes of differential equations

and

(15)
$$\frac{Y_1(0+) - Y_1(0-)}{a_2^2} = \frac{a_1^2 G_2(0+) - a_2^2 G_1(0+) - \beta_1 Y_1(0-) - \beta_2 Y_2(0-)}{\beta_1 a_2^2 - \beta_2 a_2^1}$$

4.7. Continuous transition

As can be seen from (15), the equation $Y_1(0+) = Y_1(0-)$ holds only when

$$a_1^2G_2(0+) - a_2^2G_1(0+) = \beta_1Y_1(0-) + \beta_2Y_2(0-);$$

in the words of G. Doetsch [4, p. 73], this equation ensures «a continuous transition from the past into the future».

4.8. The conservation property

Written in the form

$$a_2^1 Y_1(0+) + a_2^2 Y_2(0+) = a_2^1 Y_1(0-) + a_2^2 Y_2(0-),$$

the equation (14) yields various physical conservation principles. For example when the system (10) governs the currents in a perfectly coupled transformer, that equation states the principle of «conservation of flux».

4.9. If $\beta_1 a_2^2 = \beta_2 a_2^1$, there are no functions $Y_k()$ satisfying the equation (12); the response of the circuit is impulsive – see 5.12.

5. INITIAL VALUES AT THE ORIGIN

- **5.1.** Let (\mathcal{S}) be the linear space generated by the family of operators of the form $s^k\{X\}$, where k is an integer ≥ 1 and X() is a piecewise-continuous function such that 0 = X(0-) and $X'(\omega) = 0$ when $X(\omega_{-}^{+}) = X(\omega)$ and $-\infty < \omega < \infty$.
- **5.2.** Since $\delta s = \{U\}$, the operator δ belongs to (\mathcal{S}) . The space (\mathcal{S}) consists of singular distributions; indeed, if Y() is piecewise-continuous and such that $\{Y\}$ belongs to (\mathcal{S}) then $\{Y\} = \{0\}$ (see 6.2). If $p \in (\mathcal{S})$ then it follows from 2.25 that $\delta p \in (\mathcal{S})$; moreover, $s^k p \in (\mathcal{S})$ for every integer $k \geq 0$.
- **5.3 Definition.** An operator y will be called differentiable if there is a piecewise-continuous function Y() such that $y \{Y\}$ belongs to (\mathcal{S}) ; if so, then

(1)
$$y(t) \stackrel{\text{def}}{=} Y(t-) \qquad \dots \quad -\infty < t < \infty$$

and

$$Dy \stackrel{\text{def}}{=} sy - y(0)s^0.$$

- **5.4.** The definition (1) does not depend on the choice of the function Y(): if there are piecewise-continuous functions $Y_k()$ such that $y \{Y_k\}$ belongs to (\mathcal{S}) for k = 1, 2, then $Y_1(t-)$ when $-\infty < t < \infty$. The proof is given in 6.3.
- **5.5.** If $y = \{Y\}$ for some piecewise-continuous function Y(), then $y \{Y\} = \{0\} \in (\mathscr{S})$; therefore, Definition (1) becomes y(t) = Y(t-) (when $-\infty < t < \infty$) and

$$Dy = D\{Y\} = s\{Y\} - Y(0-)s^0$$

which agrees with 4.1. If $y = p \in (\mathcal{S})$, then $y - \{Y\}$ belongs to (\mathcal{S}) with Y() = 0(); therefore, y() = 0() and Dy = sp; in particular, since $\delta \in (\mathcal{S})$, we have $D\delta = s\delta$.

5.6. Let z be differentiable. Consequently, there is a piecewise-continuous function Z() such that $z = \{Z\} + p$ for some operator $p \in (\mathcal{S})$ and

$$\delta z = \delta \{Z\} + \delta p = \{UZ\} + \delta p;$$

the right-hand equation comes from 2.26 and 2.25; since it follows from 5.2 that $\delta p \in (\mathcal{S})$, we have $\delta z - \{UZ\} \in (\mathcal{S})$; replacing y by δz in 5.3, we find that δz is differentiable and

(5.7)
$$\delta z(t) = UZ(t-) = U(t-)Z(t-) = U(t-)z(t) \dots - \infty < t < \infty;$$

the middle equation comes from 2.25; to obtain the right-hand equation, note that $z - \{Z\} \in (\mathscr{S})$, whence z(t) = Z(t-). Consequently,

(5.8)
$$\delta z(t) = \begin{cases} 0 & \dots & t \leq 0 \\ z(t) & \dots & t > 0 \end{cases}$$

From 5.3 it results that

$$\delta Dz = s\delta z - z(0)\delta = \delta[sz - z(0)\delta];$$

the right-hand equation comes from recalling that $\delta \delta = \delta$ (see 2.27); in view of 4.4 we therefore have

(5.9)
$$\mathscr{L}Dz = s\mathscr{L}z - z(0)\delta = \mathscr{L}[sz - z(0)\delta].$$

5.10. It is now possible to re-state the singular system in 4.6. There are differentiable operators y_1 and y_2 such that

(3)
$$\mathscr{L}[a_k^1 D y_1 + a_k^2 D y_2 + b_k^1 y_1 + b_k^2 y_2] = \mathscr{L}\{G_k\} \qquad \dots \qquad k = 1, 2$$

and numbers $Y_1(0-)$ and $Y_2(0-)$ (originating from the past of the circuit) such that $y_1(0) = Y_1(0-)$ and $y_2(0) = Y_2(0-)$; since it follows from (5.9) that $\mathcal{L}Dy_k = s\mathcal{L}y_k - Y_k(0-)\delta$, the system (3) becomes

(4)
$$[a_k^1 s + b_k^1] \mathcal{L} y_1 + [a_k^2 s + b_k^2] \mathcal{L} y_2 + b_k^1 \mathcal{L} y_1 + b_k^2 \mathcal{L} y_2 = \mathcal{L} \{G_k\} \dots k = 1, 2;$$

5.11. If z_1 and z_2 are differentiable, we shall write $z_1 = z_2$ on $(0, \infty)$ to indicate that $\delta z_1 = \delta z_2$. Therefore, in view of 4.4,

(5)
$$\mathcal{L}z_1 = \mathcal{L}z_2$$
 if (and only if) $z_1 = z_2$ on $(0, \infty)$

5.12 Solving for $\mathcal{L}y_1$ the algebraic system (4) in case $\beta_1 a_2^2 \neq \beta_2 a_2^1$, we find that $\mathcal{L}y_1 = \{UY_1\}$, where $UY_1()$ is the function $F() + F_0()$ obtained in 4.6. Now suppose that $\beta_1 a_2^2 = \beta_2 a_2^1$ and $G_1() = 0() = G_2()$: in this case,

(6)
$$\mathscr{L}y_1 = \alpha\delta = \delta\alpha\delta = \mathscr{L}\alpha\delta,$$

where $\alpha = [a_2^1 Y_1(0-) + a_2^2 Y_2(0-)]\beta_2/[\beta_2 b_2^1 - \beta_1 b_2^2]$. In view of (5) the equation (6) can be written

$$y_1 = \alpha \delta$$
 on $(0, \infty)$

this is the *physically acceptable* particular solution of the singular system (3), namely, of the system

(7)
$$a_k^1 D y_1 + a_k^2 D y_2 + b_k^1 y_1 + b_k^2 y_2 = \{0\} \text{ on } (0, \infty) \dots k = 1, 2;$$

in simple circuits, agreement with physical reality is readily observed – for example, when the circuit involves a capacitor short-circuited at time t=0 (causing an impulsive surge of current), or the impulsive surge of voltage caused by opening a switch on a RL-loop circuit at time t=0.

Since (5.9) combines with (5) to give

$$Dz = sz - z(0)\delta$$
 on $(0, \infty)$,

132 Gregers Krabbe

this equation combines with (7) to give the system of algebraic equations we have been dealing with all along, without the symbol \mathcal{L} .

5.13. Let $H_1()$ and $H_2()$ be piecewise-continuous on $[0,\infty)$. If

(8)
$$H_1(t) = H_2(t) \dots t > 0$$

it follows from 4.5 and (5) that

$$\{H_1\} = \{H_2\} \quad on(0,\infty).$$

Conversely, if (8), it results from 4.4 that $\{UH_1\} = \{UH\}_2$ and it results from 6.3 that

$$H_1(t-) = H_2(t-) \dots t > 0$$
.

5.14. Let F() be continuous on $[0,\infty)$. If

$$z = \{F\} \quad on(0,\infty),$$

then z(t) = F(t) for t > 0; also, if F'() is piecewise-continuous on $[0, \infty)$, the

$$Dz = \{UF'\} + [z(0+) - z(0)]\delta \quad on(0, \infty).$$

5.15 We return briefly to the interval $(-\infty, \infty)$ to illustrate the effect of the operator δ as an impulse input. Suppose that y and Dy are differentiable and such that

$$(9) D^2 y + y = \delta;$$

since it follows from (2) that

$$D^2 y = s^2 y - y(0) s - Dy(0) s^0$$

the equation (9) implies

(10)
$$y = \frac{\delta}{s^2 + 1} + \{H\} = \delta\{\sin \tau\} + \{H\} = \delta\{F\} + \{H\}.$$

where H() is the infinitely differentiable function such that $\{H\} = [y(0)s + Dy(0)]/[s^2 + 1]$ and $F(t) = \sin t$ for $-\infty < t < \infty$; the right-hand equation comes from (3.19). From 2.26 and 2.19 it results that $y = \{UF + H\}$; from 5.5 we conclude that

(11)
$$y(t) = U(t-)F(t-) + h(t-) = \begin{cases} H(t) & \dots & t \le 0 \\ H(t) + \sin t & \dots & t \ge 0 \end{cases}$$

5.16. Zero state at t = 0. If (9) and 0 = y(0) = Dy(0), then H() = 0() and $y = \{UF\}$. Conversely, suppose that $y = \{UF\}$; setting Y = UF in 4.2, we obtain $Dy = D\{UF\} = \{UF'\}$; replacing y by Dy and Y by UF' in (1), we get

$$Dy(t) = U(t-)F'(t-) = \begin{cases} 0 & \dots & t \le 0 \\ \cos t & \dots & t > 0; \end{cases}$$

consequently, $Dy(0) = 0 \neq Dy(0+) = 1$; the equations y(0) = 0 = y(0+) are immediate from (11). In order to verify (9), another application of 4.2 with Y = UF' gives

$$D^2y + y = D\{UF'\} + y = \{UF''\} + F'(0+)\delta + y = -y + y + \delta.$$

6. APPENDIX

The aim of this section is to establish the assertion in 5.4 and a remark in 5.2.

6.1 Lemma. Let G() be continuous. If $\{G\} = \{X\}$ for some piecewise-continuous function X(), then

(7)
$$X(\omega -) = G(\omega) \qquad \dots \qquad -\infty < \omega < \infty;$$

moreover, if 0 = X(0-) and if

(8)
$$0 = X'(x)$$
 when $X(x) = X(x_{-}^{+}) \dots - \infty < x < \infty$,

then $\{G\} = \{0\} = \{X\}.$

Proof. By hypothesis, $\{G\}/s = \{X\}/s$; form (3.14) we find that $\{G*I\} = \{X*I\}$; since both G*I() and X*I() are continuous, it results from 2.23 that G*I() = X*I(); therefore, it follows from 2.8 that

$$G(t) = [G * I]'(t) = \frac{d}{dt} \int_0^t X(\omega) d\omega \dots - \infty < t < \infty;$$

the right-hand equation comes from (2.2); consequently,

(9)
$$G(x) = X(x) \quad \text{when } X(x\pm) = X(x).$$

134 Gregers Krabbe

If $-\infty < \omega < \infty$ there is a point $t_1 < \omega$ such that the function X() is continuous on the open interval (t_1, ω) ; from (9) it follows that X(t) = G(t) when $t_1 < t < \omega$, whence

(10)
$$X(\omega -) = G(\omega -) = G(\omega) \quad \dots \quad -\infty < \omega < \infty;$$

the right-hand equation comes from the continuity of G().

Having thus verified (7), suppose that (8) obtains:

(11)
$$0 = X'(x) = G'(x)$$
 ... when $X(x\pm) = X(x)$;

the right-hand equation comes from (9); consequently,

$$(12) G' * I(t) = 0 \ldots -\infty < t < \infty,$$

and from (3.15) we therefore have

$$\{G'\} = \{G' * I\}s = \{0\}s = \{0\}.$$

Since X() is piecewise-continuous, it follows from (11) that G'() is piecewise-continuous; since G() is continuous, it results form 2.20 that

(14)
$$s\{G\} = G(0)s^0 + \{G'\} = X(0-)s^0 + \{0\} = X(0-)s^0;$$

the right-hand equations come from (10) and (13); since the operator s is invertible, the equation (14) gives $\{G\} = X(0-)s^0/s$; our hypothesis X(0-) = 0 (see (8)) now yields our conclusion $\{G\} = \{0\}$.

6.2 Theorem. Let $X_0()$ be piecewise-continuous. If $\{X_0\}$ belongs to (\mathcal{S}) , then $\{X_0\}$ = $\{0\}$.

Proof. Since, by hypothesis, $\{X_0\}$ belongs to (\mathcal{S}) ,

(15)
$$\{X_0\} = \sum_{k=1}^n s^k \{X_k\},$$

where $X_k()$ is piecewise-continuous, $0 = X_k(0-)$, and

(16)
$$0 = X'_{k}(x)$$
 when $X_{k}(x) = X_{k}(x\pm)$... $-\infty < x < \infty$.

To show that

(17)
$$\{0\} = \{X_1\} = \ldots = \{X_{n-1}\} = \{X_n\},\$$

we proceed by contradiction.

Suppose that $\{X_m\} \neq 0$ for some integer $m \geq 1$; let n be the least integer ≥ 1 such that $\{X_n\} \neq 0$; from (15) it results that

(18)
$$\frac{\{X_0\}}{s^n} = \frac{s}{s^n} \{X_1\} + \ldots + \frac{s^{n-1}}{s^n} \{X_{n-1}\} + \{X_n\}.$$

Suppose that $0 \le k \le n-1$: in view of 3.20, the equation

$$\frac{s^k}{s^n}\{X_k\} = \{X_k * G_k\}$$

holds for some infinitely differentiable function $G_k()$; also, the function $X_k * G_k()$ is continuous. Therefore, (18) becomes

$${G_0 * X_0} = {G_1 * X_1} + \ldots + {G_{n-1} * X_{n-1}} + {X_n};$$

consequently, $\{G\} = \{X_n\}$, where

$$G() = G_0 * X_0() - G_1 * X_1() - ... - G_{n-1} * X_{n-1}();$$

since G() is continuous, it results from $\{G\} = \{X_n\}$ and since (16) holds for k = n, we may apply 6.1 to conclude that $\{G\} = \{0\} = \{X_n\}$, equations which contradict our assumption $\{X_n\} \neq \{0\}$. This establishes (17), whence (15) gives $\{X_0\} = \{0\}$.

6.3 Theorem. Let $Y_1()$ and $Y_2()$ be piecewise-continuous. If $y - \{Y_1\}$ and $y - \{Y_2\}$ belong to (\mathcal{S}) , then $Y_1(t-) = Y_2(t-)$ for $-\infty < t < \infty$.

Proof. By hypothesis, $y=\{Y_k\}+p_k$ for some operators p_1 and p_2 belonging to (\mathcal{S}) ; therefore, $\{Y_1\}+p_1=\{Y_2\}+p_2$, hence $\{Y_1\}-\{Y_2\}=p_2-p_1$; since p_2-p_1 belongs to (\mathcal{S}) , we infer that

(19)
$$\{Y_1\} - \{Y_2\} \text{ belongs to } (\mathcal{S}).$$

Let X() be the piecewise-continuous function such that

(20)
$$X(t) = Y_1(t) - Y_2(t)$$

at every point t where both $Y_1()$ and $Y_2()$ are continuous; the reasoning in 2.19 shows that $\{X\} = \{Y_1\} - \{Y_2\}$; from (19) we conclude that $\{X\}$ belongs to (\mathcal{S}) and it results from 6.2 that $\{X\} = \{0\}$; thus, $\{X\} = \{G\}$, where G() = 0() (the constant zero); from 6.2 we obtain

$$X(\omega -) = G(\omega) = 0 \quad \dots \quad -\infty < \omega < \infty,$$

so that (20) yields the conclusion $Y_1(\omega -) - Y_2(\omega -) = 0$.

136 Gregers Krabbe

REFERENCES

- [1] L. BERG, Operatorenrechnung, Algebraische Methoden, VEB, Berlin, (1972).
- [2] S.L. CAMPBELL, Singular systems of differential equations, Pitman Publishing Ltd., London, (1980).
- [3] D. Cobb, On the solutions of linear differential equations with singular coefficients, J. of Diff. Equat., vol. 46, 3, (1982), 310-323.
- [4] G. DOETSCH, Introduction to the theory and applications of the Laplace and Z-transforms, Van Nostrand, New York, (1968).
- [5] V. DOLEZAL, Dynamics of Linear Systems, P. Nordhoff, Prague, (1967).
- [6] A. GHIZETTI, Sull'uso della trasformazione di Laplace nello studio dei circuiti elettrici, Rend. Circ. Mat. Palermo, 61, (1939), 339-368.
- [7] G. KRABBE, An algebra of generalized functions on an open interval. Two-sided Operational Calculus, Bull. Amer. Math. Soc., 77, (1971), 78-84.
- [8] V.-P. PELTOLA, Singular systems of ordinary linear differential equations with constant coefficients, Report-Mat-A221, (1984), Institute of Math., Helsinki Univ. of Tech.
- [9] A. SZAZ, Zweiseitige Operatorenrechnung, Publ. Math. Debrecen, 18, (1971), 211-237.